دورية أكاديمية

A synthetic flavonoid derivate in the plasma membrane transforms the voltage-clamp fluorometry signal of CiHv1.

التفاصيل البيبلوغرافية
العنوان: A synthetic flavonoid derivate in the plasma membrane transforms the voltage-clamp fluorometry signal of CiHv1.
المؤلفون: Pethő Z; Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary.; Institut für Physiologie II, University of Münster, Germany., Pajtás D; Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary., Piga M; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia., Magyar Z; Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary., Zakany F; Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary., Kovacs T; Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary., Zidar N; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia., Panyi G; Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary., Varga Z; Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary., Papp F; Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary.
المصدر: The FEBS journal [FEBS J] 2024 Jun; Vol. 291 (11), pp. 2354-2371. Date of Electronic Publication: 2024 Mar 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Country of Publication: England NLM ID: 101229646 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1742-4658 (Electronic) Linking ISSN: 1742464X NLM ISO Abbreviation: FEBS J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
مواضيع طبية MeSH: Cell Membrane*/metabolism , Cell Membrane*/chemistry , Fluorometry*/methods , Patch-Clamp Techniques* , Ciona intestinalis*/metabolism , Ciona intestinalis*/chemistry , Ciona intestinalis*/genetics , Phenylalanine*/chemistry , Phenylalanine*/analogs & derivatives, Animals ; Oocytes/metabolism ; Flavonoids/chemistry ; Flavonoids/pharmacology ; Xenopus laevis ; Ion Channels/metabolism ; Ion Channels/chemistry ; Fluorescent Dyes/chemistry ; Humans
مستخلص: Voltage-clamp fluorometry (VCF) enables the study of voltage-sensitive proteins through fluorescent labeling accompanied by ionic current measurements for voltage-gated ion channels. The heterogeneity of the fluorescent signal represents a significant challenge in VCF. The VCF signal depends on where the cysteine mutation is incorporated, making it difficult to compare data among different mutations and different studies and standardize their interpretation. We have recently shown that the VCF signal originates from quenching amino acids in the vicinity of the attached fluorophores, together with the effect of the lipid microenvironment. Based on these, we performed experiments to test the hypothesis that the VCF signal could be altered by amphiphilic quenching molecules in the cell membrane. Here we show that a phenylalanine-conjugated flavonoid (4-oxo-2-phenyl-4H-chromene-7-yl)-phenylalanine, (later Oxophench) has potent effects on the VCF signals of the Ciona intestinalis H V 1 (CiHv1) proton channel. Using spectrofluorimetry, we showed that Oxophench quenches TAMRA (5(6)-carboxytetramethylrhodamine-(methane thiosulfonate)) fluorescence. Moreover, Oxophench reduces the baseline fluorescence in oocytes and incorporates into the cell membrane while reducing the membrane fluidity of HEK293 cells. Our model calculations confirmed that Oxophench, a potent membrane-bound quencher, modifies the VCF signal during conformational changes. These results support our previously published model of VCF signal generation and point out that a change in the VCF signal may not necessarily indicate an altered conformational transition of the investigated protein.
(© 2024 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.)
References: Gandhi CS & Olcese R (2008) The voltage‐clamp fluorometry technique. Methods Mol Biol 491, 213–231.
Mannuzzu LM, Moronne MM & Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271, 213–216.
Mony L, Berger TK & Isacoff EY (2015) A specialized molecular motion opens the Hv1 voltage‐gated proton channel. Nat Struct Mol Biol 22, 283–290.
Pantazis A, Westerberg K, Althoff T, Abramson J & Olcese R (2018) Harnessing photoinduced electron transfer to optically determine protein sub‐nanoscale atomic distances. Nat Commun 9, 4738.
Papp F, Lomash S, Szilagyi O, Babikow E, Smith J, Chang TH, Bahamonde MI, Toombes GES & Swartz KJ (2019) TMEM266 is a functional voltage sensor regulated by extracellular Zn(2). Elife 8, e42372.
Papp F, Toombes GES, Petho Z, Bagosi A, Feher A, Almassy J, Borrego J, Kuki A, Keki S, Panyi G et al. (2022) Multiple mechanisms contribute to fluorometry signals from the voltage‐gated proton channel. Commun Biol 5, 1131.
Cha A & Bezanilla F (1997) Characterizing voltage‐dependent conformational changes in the shaker K+ channel with fluorescence. Neuron 19, 1127–1140.
Asamoah OK, Wuskell JP, Loew LM & Bezanilla F (2003) A fluorometric approach to local electric field measurements in a voltage‐gated ion channel. Neuron 37, 85–97.
Klymchenko AS & Demchenko AP (2002) Electrochromic modulation of excited‐state intramolecular proton transfer: the new principle in design of fluorescence sensors. J Am Chem Soc 124, 12372–12379.
Klymchenko AS, Stoeckel H, Takeda K & Mely Y (2006) Fluorescent probe based on intramolecular proton transfer for fast ratiometric measurement of cellular transmembrane potential. J Phys Chem B 110, 13624–13632.
Wen K, Fang X, Yang J, Yao Y, Nandakumar KS, Salem ML & Cheng K (2021) Recent research on flavonoids and their biomedical applications. Curr Med Chem 28, 1042–1066.
Pajtas D, Konya K, Kiss‐Szikszai A, Dzubak P, Petho Z, Varga Z, Panyi G & Patonay T (2017) Optimization of the synthesis of flavone‐amino acid and flavone‐dipeptide hybrids via Buchwald‐Hartwig reaction. J Org Chem 82, 4578–4587.
Wloch A, Strugala‐Danak P, Pruchnik H, Krawczyk‐Lebek A, Szczecka K, Janeczko T & Kostrzewa‐Suslow E (2021) Interaction of 4′‐methylflavonoids with biological membranes, liposomes, and human albumin. Sci Rep 11, 16003.
Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S & Krishnan UM (2015) Influence of membrane lipid composition on flavonoid‐membrane interactions: implications on their biological activity. Prog Lipid Res 58, 1–13.
Zakany F, Kovacs T, Panyi G & Varga Z (2020) Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 1865, 158706.
Orts DJB & Arcisio‐Miranda M (2022) Cell glycosaminoglycans content modulates human voltage‐gated proton channel (H(V) 1) gating. FEBS J 289, 2593–2612.
Richter‐Laskowska M, Trybek P, Delfino DV & Wawrzkiewicz‐Jalowiecka A (2023) Flavonoids as modulators of potassium channels. Int J Mol Sci 24, 1311.
Chae MR, Kang SJ, Lee KP, Choi BR, Kim HK, Park JK, Kim CY & Lee SW (2017) Onion (Allium cepa L.) peel extract (OPE) regulates human sperm motility via protein kinase C‐mediated activation of the human voltage‐gated proton channel. Andrology 5, 979–989.
Schoefer L, Braune A & Blaut M (2001) A fluorescence quenching test for the detection of flavonoid transformation. FEMS Microbiol Lett 204, 277–280.
Liu Z, Balasubramanian V, Bhat C, Vahermo M, Makila E, Kemell M, Fontana F, Janoniene A, Petrikaite V, Salonen J et al. (2017) Quercetin‐based modified porous silicon nanoparticles for enhanced inhibition of doxorubicin‐resistant cancer cells. Adv Healthc Mater 6, doi: 10.1002/adhm.201601009.
Papadopoulou A, Green RJ & Frazier RA (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53, 158–163.
Sett R, Paul BK & Guchhait N (2021) Deciphering the fluorescence quenching mechanism of a flavonoid drug following interaction with human hemoglobin. J Phys Org Chem 35, e4307.
Ramsey IS, Moran MM, Chong JA & Clapham DE (2006) A voltage‐gated proton‐selective channel lacking the pore domain. Nature 440, 1213–1216.
Sasaki M, Takagi M & Okamura Y (2006) A voltage sensor‐domain protein is a voltage‐gated proton channel. Science 312, 589–592.
Qiu F, Rebolledo S, Gonzalez C & Larsson HP (2013) Subunit interactions during cooperative opening of voltage‐gated proton channels. Neuron 77, 288–298.
Wu K, Zhao Z, Wang R & Wei GW (2018) TopP‐S: persistent homology‐based multi‐task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility. J Comput Chem 39, 1444–1454.
Zakany F, Szabo M, Batta G, Karpati L, Mandity IM, Fulop P, Varga Z, Panyi G, Nagy P & Kovacs T (2021) An omega‐3, but not an omega‐6 polyunsaturated fatty acid decreases membrane dipole potential and stimulates Endo‐lysosomal escape of penetratin. Front Cell Dev Biol 9, 647300.
Kovacs T, Sohajda T, Szente L, Nagy P, Panyi G, Varga Z & Zakany F (2021) Cyclodextrins exert a ligand‐like current inhibitory effect on the K(V)1.3 ion channel independent of membrane cholesterol extraction. Front Mol Biosci 8, 735357.
Chen H, Ahsan SS, Santiago‐Berrios MB, Abruna HD & Webb WW (2010) Mechanisms of quenching of Alexa fluorophores by natural amino acids. J Am Chem Soc 132, 7244–7245.
Zakany F, Pap P, Papp F, Kovacs T, Nagy P, Peter M, Szente L, Panyi G & Varga Z (2019) Determining the target of membrane sterols on voltage‐gated potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 1864, 312–325.
Colovos C & Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2, 1511–1519.
Takeshita K, Sakata S, Yamashita E, Fujiwara Y, Kawanabe A, Kurokawa T, Okochi Y, Matsuda M, Narita H, Okamura Y et al. (2014) X‐ray crystal structure of voltage‐gated proton channel. Nat Struct Mol Biol 21, 352–357.
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH & Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30, 70–82.
Sommer B, Dingersen T, Gamroth C, Schneider SE, Rubert S, Kruger J & Dietz KJ (2011) CELLmicrocosmos 2.2 MembraneEditor: a modular interactive shape‐based software approach to solve heterogeneous membrane packing problems. J Chem Inf Model 51, 1165–1182.
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS & Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30, 2785–2791.
معلومات مُعتمدة: P1-0208 Slovenian Research Agency; BO/00355/21/8 János Bolyai Research Scholarship of the Hungarian Academy of Sciences; 2019-00059 2019-2.1.11-TÉT; 1G3DBKB0BFPF247 OTKA Bridging Fund; 132906 OTKA; ÚNKP-22-5-DE-420 New National Excellence Program of the Ministry for Innovation and Technology
فهرسة مساهمة: Keywords: CiHv1; flavonoid derivate; fluorescence‐quenching; membrane fluidity; voltage‐clamp fluorometry
المشرفين على المادة: 47E5O17Y3R (Phenylalanine)
0 (Flavonoids)
0 (Ion Channels)
0 (Fluorescent Dyes)
تواريخ الأحداث: Date Created: 20240303 Date Completed: 20240605 Latest Revision: 20240605
رمز التحديث: 20240605
DOI: 10.1111/febs.17105
PMID: 38431775
قاعدة البيانات: MEDLINE
الوصف
تدمد:1742-4658
DOI:10.1111/febs.17105