دورية أكاديمية

Evaluating the performance of the cognitive workload model with subjective endorsement in addition to EEG.

التفاصيل البيبلوغرافية
العنوان: Evaluating the performance of the cognitive workload model with subjective endorsement in addition to EEG.
المؤلفون: Gogna Y; ICE Department, Dr. B. R. Ambedkar NIT Jalandhar, GT Road Bye-Pass, Jalandhar, Punjab, 144008, India. gognayaminiice@gmail.com., Tiwari S; ICE Department, Dr. B. R. Ambedkar NIT Jalandhar, GT Road Bye-Pass, Jalandhar, Punjab, 144008, India., Singla R; ICE Department, Dr. B. R. Ambedkar NIT Jalandhar, GT Road Bye-Pass, Jalandhar, Punjab, 144008, India.
المصدر: Medical & biological engineering & computing [Med Biol Eng Comput] 2024 Jul; Vol. 62 (7), pp. 2019-2036. Date of Electronic Publication: 2024 Mar 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 7704869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1741-0444 (Electronic) Linking ISSN: 01400118 NLM ISO Abbreviation: Med Biol Eng Comput Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Springer
Original Publication: Stevenage, Eng., Peregrinus.
مواضيع طبية MeSH: Electroencephalography*/methods , Workload* , Cognition*/physiology , Support Vector Machine*, Humans ; Male ; Female ; Adult ; Young Adult ; Task Performance and Analysis
مستخلص: The aptitude-oriented exercises from almost all domains impose cognitive load on their operators. Evaluating such load poses several challenges owing to many factors like measurement mode and complexity, nature of the load, overloading conditions, etc. Nevertheless, the physiological measurement of a specific genre of cognitive load and subjective measurement have not been reported along with each other. In this study, the electroencephalography (EEG)-driven machine learning (Support Vector Machine (SVM)) model is sought along with the support of NASA's Task Load Index (NASA-TLX) rating scale for a novel purpose in workload exploration of operators. The Cognitive Load Theory (CLT) was used as the foundation to design the intrinsic stimulus (Spot the Difference task), as most workloads operators are exposed to are notably intrinsic. The SVM-based three-level classification accuracy ranged from 85.4 to 97.4% (p < 0.05), and the NASA-TLX-based three-level classification accuracy ranged from 88.33 to 97.33%. The t-test results show that the neurometric indices contributing to the classification significantly differed (p < 0.05) for every level. The NASA-TLX scale was utilised for validation in its basic form after the validity (Pearson correlation coefficients 0.338 to 0.805 (p < 0.05)) and reliability (Cronbach's α = 0.753) test. This modeling is beneficial to phase out particular-level cognitive exercises from the curriculum during under or overload workload (critical) conditions.
(© 2024. International Federation for Medical and Biological Engineering.)
References: Balfe N, Sharples S, Wilson JR (2015) Impact of automation: measurement of performance, workload and behaviour in a complex control environment. Appl Ergon 47:52–64. https://doi.org/10.1016/j.apergo.2014.08.002. (PMID: 10.1016/j.apergo.2014.08.00225479974)
Ismail LE, Karwowski W (2020) Applications of EEG indices for the quantification of human cognitive performance: a systematic review and bibliometric analysis. PLoS ONE 15:e0242857. (PMID: 10.1371/journal.pone.0242857332756327717519)
Dimitrakopoulos GN, Kakkos I, Dai Z et al (2017) Task-independent mental workload classification based upon common multiband EEG cortical connectivity. IEEE Trans Neural Syst Rehabil Eng 25:1940–1949. https://doi.org/10.1109/TNSRE.2017.2701002. (PMID: 10.1109/TNSRE.2017.270100228489539)
Zhou Y, Huang S, Xu Z et al (2021) Cognitive workload recognition using EEG signals and machine learning: a review. IEEE Trans Cogn Dev Syst 14(3):799–818. https://doi.org/10.1109/TCDS.2021.3090217.
Zhu G, Zong F, Zhang H et al (2021) Cognitive load during multitasking can be accurately assessed based on single channel electroencephalography using graph methods. IEEE Access 9:33102–33109. (PMID: 10.1109/ACCESS.2021.3058271)
Na K (2021) The effects of cognitive load on query reformulation: mental demand, temporal demand and frustration. Aslib J Inf Manag 73(3):436–453. https://doi.org/10.1108/AJIM-07-2020-0206.
Orru G, Longo L (2018) The evolution of cognitive load theory and the measurement of its intrinsic, extraneous and Germane loads: a review. In: International symposium on human mental workload: models and applications. Springer, pp 23–48. https://doi.org/10.1007/978-3-030-14273-5&#95;3.
Hart SG (2006) NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the human factors and ergonomics society annual meeting. Sage Publications Sage CA, Los Angeles, pp 904–908.
Cooper GE (1969) The use of pilot rating in the evaluation of aircraft handling qualities. NASA TND-5153.
Yin Z, Zhang J (2017) Cross-session classification of mental workload levels using EEG and an adaptive deep learning model. Biomed Signal Process Control 33:30–47. (PMID: 10.1016/j.bspc.2016.11.013)
Parent M, Peysakhovich V, Mandrick K et al (2019) The diagnosticity of psychophysiological signatures: can we disentangle mental workload from acute stress with ECG and fNIRS? Int J Psychophysiol 146:139–147. https://doi.org/10.1016/j.ijpsycho.2019.09.005. (PMID: 10.1016/j.ijpsycho.2019.09.00531639382)
Katyal A, Singla R (2020) Towards enhanced information transfer rate: a comparative study based on classification techniques. Comput Methods Biomech Biomed Eng Imaging Vis 8(4):446–457. https://doi.org/10.1080/21681163.2020.1727775.
Lin C-T, Wang Y, Chen S-F et al (2023) Design and verification of a wearable wireless 64-channel high-resolution EEG acquisition system with wi-fi transmission. Med Biol Eng Comput. https://doi.org/10.1007/s11517-023-02879-y. (PMID: 10.1007/s11517-023-02879-y38141104)
Khosla A, Khandnor P, Chand T (2020) A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern Biomed Eng 40:649–690. https://doi.org/10.1016/j.bbe.2020.02.002. (PMID: 10.1016/j.bbe.2020.02.002)
Zakeri Z, Arif A, Omurtag A et al (2023) Multimodal assessment of cognitive workload using neural, subjective and behavioural measures in smart factory settings. Sensors 23:8926. (PMID: 10.3390/s232189263796062510647588)
Mastropietro A, Pirovano I, Marciano A et al (2023) Reliability of mental workload index assessed by EEG with different electrode configurations and signal pre-processing pipelines. Sensors 23:1367. (PMID: 10.3390/s23031367367724099920504)
Raufi B, Longo L (2022) An evaluation of the EEG alpha-to-theta and theta-to-alpha band ratios as indexes of mental workload. arXiv Prepr arXiv220212937.
Zhao Y, Dai G, Borghini G et al (2021) Label-based alignment multi-source domain adaptation for cross-subject EEG fatigue mental state evaluation. Front Hum Neurosci 15. https://doi.org/10.3389/fnhum.2021.706270.
Brunzini A, Peruzzini M, Grandi F et al (2021) A preliminary experimental study on the workers’ workload assessment to design industrial products and processes. Appl Sci 11:12066. (PMID: 10.3390/app112412066)
Andreessen LM, Gerjets P, Meurers D, Zander TO (2020) Toward neuroadaptive support technologies for improving digital reading: a passive BCI-based assessment of mental workload imposed by text difficulty and presentation speed during reading. User Model User-adapt Interact 31:75–104.
Anand V, Ahmed Z, Sreeja SR (2019) An automated approach for task evaluation using EEG signals. arXiv Prepr arXiv191102966.
Plechawska-Wójcik M, Tokovarov M, Kaczorowska M, Zapała D (2019) A three-class classification of cognitive workload based on EEG spectral data. Appl Sci 9(24):5340. https://doi.org/10.3390/app9245340.
Gogna Y, Tiwari S, Singla R (2023) Towards a versatile mental workload modeling using neurometric indices. Biomed Eng Tech 68(3):297–316. https://doi.org/10.1515/bmt-2022-0479.
Grissmann S, Spuler M, Faller J et al (2017) Context sensitivity of EEG-based workload classification under different affective valence. IEEE Trans Affect Comput 11(2):327–334. https://doi.org/10.1109/TAFFC.2017.2775616.
Bashivan P, Yeasin M, Bidelman GM (2014) Modulation of brain connectivity by memory load in a working memory network. In: 2014 IEEE symposium on computational intelligence, cognitive algorithms, mind, and brain (CCMB). IEEE, pp 127–133. https://doi.org/10.1109/CCMB.2014.7020705.
Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12:1211–1279. (PMID: 10.3390/s120201211224387083304110)
Mathôt S, Schreij D, Theeuwes J (2012) OpenSesame: an open-source, graphical experiment builder for the social sciences. Behav Res Methods 44:314–324. (PMID: 10.3758/s13428-011-0168-722083660)
Hart SG, Staveland LE (1988) Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Hancock PA, Meshkati N (eds) Human mental workload. North-Holland, 52:139–183. https://doi.org/10.1016/S0166-4115(08)62386-9.
Hart SG (1986) NASA task load index (TLX). https://ntrs.nasa.gov/citations/20000021487.
Ille N, Berg P, Scherg M (2002) Artifact correction of the ongoing EEG using spatial filters based on artifact and brain signal topographies. J Clin Neurophysiol 19:113–124. (PMID: 10.1097/00004691-200203000-0000211997722)
Rathi N, Singla R, Tiwari S (2022) A comparative study of classification methods for designing a pictorial P300-based authentication system. Med Biol Eng Comput 60:2899–2916. https://doi.org/10.1007/s11517-022-02626-9. (PMID: 10.1007/s11517-022-02626-935948840)
Liu P-K, Beh W, Shih C-Y et al (2019) Entropy and complexity assisted EEG-based mental workload assessment system. In: 2019 IEEE biomedical circuits and systems conference (BioCAS), pp 1–4. https://doi.org/10.1109/BIOCAS.2019.8919019.
Morton J, Vanneste P, Larmuseau C et al (2019) Identifying predictive EEG features for cognitive overload detection in assembly workers in Industry 4.0. In: 3rd international symposium on human mental workload: models and applications (HWORKLOAD 2019), p 1.
Wu C, Liu Y, Guo X et al (2022) Enhancing the feasibility of cognitive load recognition in remote learning using physiological measures and an adaptive feature recalibration convolutional neural network. Med Biol Eng Comput 60:3447–3460. https://doi.org/10.1007/s11517-022-02670-5. (PMID: 10.1007/s11517-022-02670-5361976399532827)
Zarjam P, Epps J, Lovell NH (2015) Beyond subjective self-rating: EEG signal classification of cognitive workload. IEEE Trans Auton Ment Dev 7:301–310. (PMID: 10.1109/TAMD.2015.2441960)
Zammouri A, Chraa-Mesbahi S, Moussa AA et al (2017) Brain waves-based index for workload estimation and mental effort engagement recognition. J Phys Conf Ser 904(1):012008. https://doi.org/10.1088/1742-6596/904/1/012008.
Sinha A, Chatterjee D, Saha SK, Basu A (2015) Validation of stimulus for EEG signal based cognitive load analysis. In: 2015 fifth national conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG). IEEE, pp 1–4. https://doi.org/10.1109/NCVPRIPG.2015.7490067.
Gogna Y, Singla R, Tiwari S (2020) Analyzing attention deviation during collaterally proceeding cognitive tasks. In: International congress on information and communication technology, vol 1. Springer, pp 490–497.
Gogna Y, Singla R, Tiwari S (2019) Steady state detection during a cognitive task. In: 2019 IEEE 5th international conference for convergence in technology (I2CT). IEEE, pp 1–4. https://doi.org/10.1109/I2CT45611.2019.9033870.
Sleigh JW, Donovan J (1999) Comparison of bispectral index, 95% spectral edge frequency and approximate entropy of the EEG, with changes in heart rate variability during induction of general anaesthesia. Br J Anaesth 82:666–671. (PMID: 10.1093/bja/82.5.66610536540)
Acharya UR, Fujita H, Sudarshan VK et al (2015) Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl-Based Syst 88:85–96. (PMID: 10.1016/j.knosys.2015.08.004)
Wang Q, Sourina O (2013) Real-time mental arithmetic task recognition from EEG signals. IEEE Trans Neural Syst Rehabil Eng 21:225–232. (PMID: 10.1109/TNSRE.2012.223657623314778)
Rathi N, Singla R, Tiwari S (2021) A novel approach for designing authentication system using a picture based P300 speller. Cogn Neurodyn 15:805–824. https://doi.org/10.1007/s11571-021-09664-3.
So WKY, Wong SWH, Mak JN, Chan RHM (2017) An evaluation of mental workload with frontal EEG. PLoS ONE 12:e0174949. (PMID: 10.1371/journal.pone.0174949284147295393562)
Aghajani H, Garbey M, Omurtag A (2017) Measuring mental workload with EEG+ fNIRS. Front Hum Neurosci 11:359. (PMID: 10.3389/fnhum.2017.00359287697755509792)
Rathi N, Singla R, Tiwari S (2020) Authentication framework for security application developed using a pictorial P300 speller. Brain-Comput Interfaces 7:70–89. https://doi.org/10.1080/2326263X.2020.1860520. (PMID: 10.1080/2326263X.2020.1860520)
Ali M, Son D-H, Kang S-H, Nam S-R (2017) An accurate CT saturation classification using a deep learning approach based on unsupervised feature extraction and supervised fine-tuning strategy. Energies 10:1830. https://doi.org/10.3390/en10111830. (PMID: 10.3390/en10111830)
Raufi B, Longo L (2022) An Evaluation of the EEG alpha-to-theta and theta-to-alpha band ratios as indexes of mental workload. Front Neuroinformatics 16:44.
Al-Shargie F, Tang TB, Badruddin N, Kiguchi M (2018) Towards multilevel mental stress assessment using SVM with ECOC: an EEG approach. Med Biol Eng Comput 56:125–136.
Mun S, Whang M, Park S, Park MC (2017) Effects of mental workload on involuntary attention: A somatosensory ERP study. Neuropsychologia 106:7–20.
Al-Shargie FM, Tang TB, Badruddin N, Kiguchi M (2016) Mental stress quantification using EEG signals. In: International conference for innovation in biomedical engineering and life sciences: ICIBEL2015, 6-8 December 2015, Putrajaya, Malaysia 1. Springer, Singapore, pp 15–19.
فهرسة مساهمة: Keywords: Electroencephalography (EEG); Mental workload (MWL); NASA’s Task Load Index (NASA-TLX); Support vector machine (SVM)
تواريخ الأحداث: Date Created: 20240303 Date Completed: 20240620 Latest Revision: 20240620
رمز التحديث: 20240620
DOI: 10.1007/s11517-024-03049-4
PMID: 38433179
قاعدة البيانات: MEDLINE
الوصف
تدمد:1741-0444
DOI:10.1007/s11517-024-03049-4