دورية أكاديمية

GPU-accelerated Bloch simulations and MR-STAT reconstructions using the Julia programming language.

التفاصيل البيبلوغرافية
العنوان: GPU-accelerated Bloch simulations and MR-STAT reconstructions using the Julia programming language.
المؤلفون: van der Heide O; Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.; Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands., van den Berg CAT; Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.; Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands., Sbrizzi A; Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.; Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
المصدر: Magnetic resonance in medicine [Magn Reson Med] 2024 Aug; Vol. 92 (2), pp. 618-630. Date of Electronic Publication: 2024 Mar 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 8505245 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-2594 (Electronic) Linking ISSN: 07403194 NLM ISO Abbreviation: Magn Reson Med Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York, NY : Wiley
Original Publication: San Diego : Academic Press,
مواضيع طبية MeSH: Algorithms* , Magnetic Resonance Imaging*/methods , Programming Languages* , Image Processing, Computer-Assisted*/methods , Computer Simulation*, Humans ; Computer Graphics ; Brain/diagnostic imaging ; Phantoms, Imaging ; Software ; Image Interpretation, Computer-Assisted/methods ; Reproducibility of Results
مستخلص: Purpose: MR-STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large-scale nonlinear optimization problem. Managing reconstruction times is one of the main challenges of MR-STAT. In this work we leverage GPU hardware to reduce MR-STAT reconstruction times. A highly optimized, GPU-compatible Bloch simulation toolbox is developed as part of this work that can be utilized for other quantitative MRI techniques as well.
Methods: The Julia programming language was used to develop a flexible yet highly performant and GPU-compatible Bloch simulation toolbox called BlochSimulators.jl. The runtime performance of the toolbox is benchmarked against other Bloch simulation toolboxes. Furthermore, a (partially matrix-free) modification of a previously presented (matrix-free) MR-STAT reconstruction algorithm is proposed and implemented using the Julia language on GPU hardware. The proposed algorithm is combined with BlochSimulators.jl and the resulting MR-STAT reconstruction times on GPU hardware are compared to previously presented MR-STAT reconstruction times.
Results: The BlochSimulators.jl package demonstrates superior runtime performance on both CPU and GPU hardware when compared to other existing Bloch simulation toolboxes. The GPU-accelerated partially matrix-free MR-STAT reconstruction algorithm, which relies on BlochSimulators.jl, allows for reconstructions of 68 seconds per two-dimensional (2D slice).
Conclusion: By combining the proposed Bloch simulation toolbox and the partially matrix-free reconstruction algorithm, 2D MR-STAT reconstructions can be performed in the order of one minute on a modern GPU card. The Bloch simulation toolbox can be utilized for other quantitative MRI techniques as well, for example for online dictionary generation for MR Fingerprinting.
(© 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.)
References: Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 2013;495:187‐192.
Sbrizzi A, Heide O, Cloos M, et al. Fast quantitative MRI as a nonlinear tomography problem. Magn Reson Imaging. 2018;46:56‐63.
Van der Heide O, Sbrizzi A, Luijten PR, Van den Berg CAT. High resolution in‐vivo MR‐STAT using a matrix‐free and parallelized reconstruction algorithm. NMR Biomed. 2020;33:e4251.
Liu H, Van der Heide O, Mandija S, Van den Berg CAT, Sbrizzi A. Acceleration strategies for MR‐STAT: achieving high‐resolution reconstructions on a desktop pc within 3 minutes. IEEE Trans Med Imaging. 2022;41:2681‐2692.
van der Heide O, Sbrizzi A, van den Berg CAT. Accelerated MR‐STAT reconstructions using sparse hessian approximations. IEEE Trans Med Imaging. 2020;39(11):3737‐3748.
Stone SS, Haldar JP, Tsao SC, Hwu W‐MW, Liang Z‐P, Sutton BP. Accelerating advanced MRI reconstructions on GPUs. Paper presented at: Proceedings of the 5th Conference on Computing Frontiers, Ischia, Italy; 2008:261‐272.
Wang H, Peng H, Chang Y, Liang D. A survey of GPU‐based acceleration techniques in MRI reconstructions. Quant Imaging Med Surg. 2018;8:196‐208.
Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59:65‐98.
Besard T, Foket C, De Sutter B. Effective extensible programming: unleashing Julia on GPUs. IEEE Trans Parallel Distrib Syst. 2018;30(4):827‐841.
Brian H. Bloch equation simulator. Accessed January 25, 2023. http://mrsrl.stanford.edu/brian/blochsim/.
Stöcker T, Vahedipour K, Pflugfelder D, Shah NJ. High‐performance computing MRI simulations. Magn Reson Med. 2010;64:186‐193.
Wang D, Ostenson J, Smith DS. snapMRF: GPU‐accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs. Magn Reson Imaging. 2020;66:248‐256.
Castillo‐Passi C, Coronado R, Varela‐Mattatall G, Alberola‐López C, Botnar R, Irarrazaval P. KomaMRI. jl: an open‐source framework for general MRI simulations with GPU acceleration. Magn Reson Med. 2023;90:329‐342.
Liu F, Velikina JV, Block WF, Kijowski R, Samsonov AA. Fast realistic MRI simulations based on generalized multi‐pool exchange tissue model. IEEE Trans Med Imaging. 2017;36:527‐537.
Paige CC, Saunders MA. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans Math Softw. 1982;8:43‐71.
Jaynes ET. Matrix treatment of nuclear induction. Phys Rev. 1955;98:1099‐1105.
Willem V. MR Pulse Design through Optimal Control and Model Order Reduction of the Bloch Equations. Master Thesis. Utrecht University. 2015.
Jürgen H. Echoes—how to generate, recognize, use or avoid them in MR‐imaging sequences. Part I: fundamental and not so fundamental properties of spin echoes. Concepts Magn Reson. 1991;3:125‐143.
Jürgen H. Echoes—how to generate, recognize, use or avoid them in MR‐imaging sequences. Part II: echoes in imaging sequences. Concepts Magn Reson. 1991;3:179‐192.
Matthias W. Extended phase graphs: dephasing, RF pulses, and echoes‐pure and simple. J Magn Reson Imaging. 2015;41:266‐295.
Lebel RM, Wilman AH. Transverse relaxometry with stimulated echo compensation. Magn Reson Med. 2010;64:1005‐1014.
Sbrizzi A, Bruijnen T, van der Heide O, Luijten P, van den Berg CAT. Dictionary‐free MR Fingerprinting reconstruction of balanced‐GRE sequences. 2017.
Assländer J, Glaser SJ, Hennig J. Pseudo steady‐state free precession for MR‐fingerprinting. Magn Reson Med. 2017;77:1151‐1161.
Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med. 2015;74:1621‐1631.
Yang M, Jiang Y, Ma D, Mehta BB, Griswold MA. Game of learning Bloch equation simulations for MR fingerprinting. arXiv preprint arXiv:2004.02270. 2020.
Liu H, Van der Heide O, Van den Berg CAT, Sbrizzi A. Fast and accurate modeling of transient‐state, gradient‐spoiled sequences by recurrent neural networks. NMR Biomed. 2021;34:e4527.
BlochSim.jl. Accessed December 4, 2023. https://github.com/StevenWhitaker/BlochSim.jl.
Jonathan D, Christian K, Alexander R. DECAES ‐ DEcomposition and component analysis of exponential signals. Zeit Med Phys. 2020;30(4):271‐278.
MRIEPG.jl. Accessed December 4, 2023. https://github.com/felixhorger/MRIEPG.jl.
Knopp T, Grosser M. MRIReco.Jl: an MRI reconstruction framework written in Julia. Magn Reson Med. 2021;86(3):1633‐1646.
MRIgeneralizedBloch.jl. Accessed December 4, 2023. https://github.com/JakobAsslaender/MRIgeneralizedBloch.jl.
Li JR, Nguyen VD, Tran TN, et al. SpinDoctor: a MATLAB toolbox for diffusion MRI simulation. Neuroimage. 2019;202:116120.
Assländer J, Gultekin C, Flassbeck S, Glaser SJ, Sodickson DK. Generalized Bloch model: a theory for pulsed magnetization transfer. Magn Reson Med. 2022;87:2003‐2017.
Van der Heide O, Sbrizzi A, Van den Berg CAT. Cartesian vs radial MR‐STAT: an efficiency and robustness study. Magn Reson Imaging. 2023;99:7‐19.
Moses W, Churavy V. Instead of rewriting foreign code for machine learning, automatically synthesize fast gradients. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, eds. Advances in Neural Information Processing Systems. Curran Associates, Inc.; 2020:12472‐12485.
Moses WS, Churavy V, Paehler L, et al. Reverse‐Mode Automatic Differentiation and optimization of GPU kernels via enzyme. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis SC 21. Association for Computing Machinery; 2021.
Innes M. Don't unroll adjoint: differentiating SSA‐form programs. CoRR. 2018:abs/1810.07951.
معلومات مُعتمدة: 17986 Dutch Technology Foundation
فهرسة مساهمة: Keywords: Bloch simulations; CUDA; Julia; MR‐STAT; quantitative MRI
تواريخ الأحداث: Date Created: 20240305 Date Completed: 20240531 Latest Revision: 20240531
رمز التحديث: 20240601
DOI: 10.1002/mrm.30074
PMID: 38441315
قاعدة البيانات: MEDLINE
الوصف
تدمد:1522-2594
DOI:10.1002/mrm.30074