دورية أكاديمية

Mitochondrial ATP generation is more proteome efficient than glycolysis.

التفاصيل البيبلوغرافية
العنوان: Mitochondrial ATP generation is more proteome efficient than glycolysis.
المؤلفون: Shen Y; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Dinh HV; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA., Cruz ER; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.; Department of Molecular Biology, Princeton University, Princeton, NJ, USA., Chen Z; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.; Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA., Bartman CR; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.; Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA., Xiao T; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Call CM; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Ryseck RP; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Pratas J; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Weilandt D; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Baron H; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Subramanian A; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Fatma Z; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA., Wu ZY; US Department of Energy Joint Genome Institute and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Dwaraknath S; US Department of Energy Joint Genome Institute and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Hendry JI; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA., Tran VG; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA., Yang L; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Yoshikuni Y; US Department of Energy Joint Genome Institute and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Zhao H; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA., Maranas CD; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA., Wühr M; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA. wuhr@princeton.edu.; Department of Molecular Biology, Princeton University, Princeton, NJ, USA. wuhr@princeton.edu., Rabinowitz JD; Department of Chemistry, Princeton University, Princeton, NJ, USA. joshr@princeton.edu.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA. joshr@princeton.edu.; Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA. joshr@princeton.edu.
المصدر: Nature chemical biology [Nat Chem Biol] 2024 Mar 06. Date of Electronic Publication: 2024 Mar 06.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101231976 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4469 (Electronic) Linking ISSN: 15524450 NLM ISO Abbreviation: Nat Chem Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group, [2005]-
مستخلص: Metabolic efficiency profoundly influences organismal fitness. Nonphotosynthetic organisms, from yeast to mammals, derive usable energy primarily through glycolysis and respiration. Although respiration is more energy efficient, some cells favor glycolysis even when oxygen is available (aerobic glycolysis, Warburg effect). A leading explanation is that glycolysis is more efficient in terms of ATP production per unit mass of protein (that is, faster). Through quantitative flux analysis and proteomics, we find, however, that mitochondrial respiration is actually more proteome efficient than aerobic glycolysis. This is shown across yeast strains, T cells, cancer cells, and tissues and tumors in vivo. Instead of aerobic glycolysis being valuable for fast ATP production, it correlates with high glycolytic protein expression, which promotes hypoxic growth. Aerobic glycolytic yeasts do not excel at aerobic growth but outgrow respiratory cells during oxygen limitation. We accordingly propose that aerobic glycolysis emerges from cells maintaining a proteome conducive to both aerobic and hypoxic growth.
(© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
References: Crabtree, H. G. Observations on the carbohydrate metabolism of tumours. Biochem. J. 23, 536–545 (1929). (PMID: 16744238125409710.1042/bj0230536)
De Deken, R. H. The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 44, 149–156 (1966). (PMID: 596949710.1099/00221287-44-2-149)
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009). (PMID: 10.1126/science.1160809)
DeBerardinis, R. J. & Chandel, N. S. We need to talk about the Warburg effect. Nat. Metab. 2, 127–129 (2020). (PMID: 3269468910.1038/s42255-020-0172-2)
Wolfe, A. J. The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50 (2005). (PMID: 15755952108279310.1128/MMBR.69.1.12-50.2005)
Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001). (PMID: 1128335510.1126/science.1058079)
Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015). (PMID: 26632588484312810.1038/nature15765)
Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323 (2009). (PMID: 19888218279547610.1038/msb.2009.82)
Adadi, R., Volkmer, B., Milo, R., Heinemann, M. & Shlomi, T. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS Comput. Biol. 8, e1002575 (2012). (PMID: 22792053339039810.1371/journal.pcbi.1002575)
O’Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. & Palsson, B. Ø. Genome‐scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol. 9, 693 (2013). (PMID: 24084808381740210.1038/msb.2013.52)
Mori, M., Hwa, T., Martin, O. C., De Martino, A. & Marinari, E. Constrained allocation flux balance analysis. PLoS Comput. Biol. 12, e1004913 (2016). (PMID: 27355325492711810.1371/journal.pcbi.1004913)
Salvy, P. & Hatzimanikatis, V. The ETFL formulation allows multi-omics integration in thermodynamics-compliant metabolism and expression models. Nat. Commun. 11, 30 (2020). (PMID: 31937763695936310.1038/s41467-019-13818-7)
Wortel, M. T., Noor, E., Ferris, M., Bruggeman, F. J. & Liebermeister, W. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield. PLoS Comput. Biol. 14, e1006010 (2018). (PMID: 29451895584731210.1371/journal.pcbi.1006010)
Sánchez, B. J. et al. Improving the phenotype predictions of a yeast genome‐scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol. 13, 935 (2017). (PMID: 28779005557239710.15252/msb.20167411)
Oftadeh, O. et al. A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics. Nat. Commun. 12, 4790 (2021). (PMID: 34373465835297810.1038/s41467-021-25158-6)
Elsemman, I. E. et al. Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies. Nat. Commun. 13, 801 (2022). (PMID: 35145105883164910.1038/s41467-022-28467-6)
Chen, Y. & Nielsen, J. Energy metabolism controls phenotypes by protein efficiency and allocation. Proc. Natl Acad. Sci. USA 116, 17592–17597 (2019). (PMID: 31405984671726410.1073/pnas.1906569116)
Szenk, M., Dill, K. A. & de Graff, A. M. R. Why do fast-growing bacteria enter overflow metabolism? Testing the membrane real estate hypothesis. Cell Syst. 5, 95–104 (2017). (PMID: 2875595810.1016/j.cels.2017.06.005)
Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl Acad. Sci. USA 104, 12663–12668 (2007). (PMID: 17652176193752310.1073/pnas.0609845104)
Radecka, D. et al. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res. 15, fov053 (2015). (PMID: 2612652410.1093/femsyr/fov053)
Fatma, Z., Schultz, J. C. & Zhao, H. Recent advances in domesticating non‐model microorganisms. Biotechnol. Prog. 36, e3008 (2020). (PMID: 3232921310.1002/btpr.3008)
Xiao, H., Shao, Z., Jiang, Y., Dole, S. & Zhao, H. Exploiting Issatchenkia orientalis SD108 for succinic acid production. Microb. Cell Fact. 13, 121 (2014). (PMID: 25159171424406010.1186/s12934-014-0121-4)
Suthers, P. F. et al. Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production. Metab. Eng. Commun. 11, e00148 (2020). (PMID: 33134082758613210.1016/j.mec.2020.e00148)
Cao, M. et al. A genetic toolbox for metabolic engineering of Issatchenkia orientalis. Metab. Eng. 59, 87–97 (2020). (PMID: 3200761510.1016/j.ymben.2020.01.005)
Douglass, A. P. et al. Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: one species, four names. PLoS Pathog. 14, e1007138 (2018). (PMID: 30024981605324610.1371/journal.ppat.1007138)
Shen, X.-X. et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175, 1533–1545 (2018). (PMID: 30415838629121010.1016/j.cell.2018.10.023)
Gopalakrishnan, S. & Maranas, C. D. 13 C metabolic flux analysis at a genome-scale. Metab. Eng. 32, 12–22 (2015). (PMID: 2635884010.1016/j.ymben.2015.08.006)
King, Z. A. et al. Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput. Biol. 11, e1004321 (2015). (PMID: 26313928455246810.1371/journal.pcbi.1004321)
Luttik, M. A. H. et al. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J. Biol. Chem. 273, 24529–24534 (1998). (PMID: 973374710.1074/jbc.273.38.24529)
Kaymak, I. et al. Carbon source availability drives nutrient utilization in CD8 + T cells. Cell Metab. 34, 1298–1311 (2022). (PMID: 359815451006880810.1016/j.cmet.2022.07.012)
Li, W. et al. Cellular redox homeostasis maintained by malic enzyme 2 is essential for MYC-driven T cell lymphomagenesis. Proc. Natl Acad. Sci. USA 120, e2217869120 (2023). (PMID: 372530161026600910.1073/pnas.2217869120)
Li, J. et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 17, 399–404 (2020). (PMID: 32203386730242110.1038/s41592-020-0781-4)
Wolf, T. et al. Dynamics in protein translation sustaining T cell preparedness. Nat. Immunol. 21, 927–937 (2020). (PMID: 32632289761036510.1038/s41590-020-0714-5)
Jacobs, S. R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated AKT-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008). (PMID: 1835416910.4049/jimmunol.180.7.4476)
Zielinski, D. C. et al. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci. Rep. 7, 41241 (2017). (PMID: 28120890526416310.1038/srep41241)
Gholami, A. M. et al. Global proteome analysis of the NCI-60 cell line panel. Cell Rep. 4, 609–620 (2013). (PMID: 2393326110.1016/j.celrep.2013.07.018)
Bartman, C. R. et al. Slow TCA flux and ATP production in primary solid tumours but not metastases. Nature 614, 349–357 (2023). (PMID: 367259301028850210.1038/s41586-022-05661-6)
Kierans, S. J. & Taylor, C. T. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J. Physiol. 599, 23–37 (2021). (PMID: 3300616010.1113/JP280572)
Malina, C., Yu, R., Björkeroth, J., Kerkhoven, E. J. & Nielsen, J. Adaptations in metabolism and protein translation give rise to the Crabtree effect in yeast. Proc. Natl Acad. Sci. USA 118, e2112836118 (2021). (PMID: 34903663871381310.1073/pnas.2112836118)
Luengo, A. et al. Increased demand for NAD + relative to ATP drives aerobic glycolysis. Mol. Cell 81, 691–707 (2021). (PMID: 3338298510.1016/j.molcel.2020.12.012)
Niebel, B., Leupold, S. & Heinemann, M. An upper limit on Gibbs energy dissipation governs cellular metabolism. Nat. Metab. 1, 125–132 (2019). (PMID: 3269481010.1038/s42255-018-0006-7)
Bachmann, H. et al. Availability of public goods shapes the evolution of competing metabolic strategies. Proc. Natl Acad. Sci. USA 110, 14302–14307 (2013). (PMID: 23940318376157210.1073/pnas.1308523110)
MacLean, R. C. & Gudelj, I. Resource competition and social conflict in experimental populations of yeast. Nature 441, 498–501 (2006). (PMID: 1672406410.1038/nature04624)
Zhou, N. et al. Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri. PLoS ONE 12, e0173318 (2017). (PMID: 28282411534580510.1371/journal.pone.0173318)
Dashko, S., Zhou, N., Compagno, C. & Piškur, J. Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res. 14, 826–832 (2014). (PMID: 2482483610.1111/1567-1364.12161)
Dekker, W. J. C., Wiersma, S. J., Bouwknegt, J., Mooiman, C. & Pronk, J. T. Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids. FEMS Yeast Res. 19, foz060 (2019). (PMID: 31425603675016910.1093/femsyr/foz060)
Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W. & Milo, R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl Acad. Sci. USA 110, 10039–10044 (2013). (PMID: 23630264368374910.1073/pnas.1215283110)
Noor, E. et al. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput. Biol. 10, e1003483 (2014). (PMID: 24586134393049210.1371/journal.pcbi.1003483)
Park, J. O. et al. Near-equilibrium glycolysis supports metabolic homeostasis and energy yield. Nat. Chem. Biol. 15, 1001–1008 (2019). (PMID: 315486931018405210.1038/s41589-019-0364-9)
Marcus, R. A. Transfer reactions in chemistry. Theory and experiment. Pure Appl. Chem. 69, 13–30 (1997). (PMID: 10.1351/pac199769010013)
Wang, M., Herrmann, C. J., Simonovic, M., Szklarczyk, D. & Mering, C. Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell‐lines. Proteomics 15, 3163–3168 (2015). (PMID: 25656970668023810.1002/pmic.201400441)
Winston, F., Dollard, C. & Ricupero-Hovasse, S. L. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11, 53–55 (1995). (PMID: 776230110.1002/yea.320110107)
Gaisne, M., Bécam, A.-M., Verdière, J. & Herbert, C. J. A ‘natural’ mutation in Saccharomyces cerevisiae strains derived from S288C affects the complex regulatory gene HAP1 (CYP1). Curr. Genet. 36, 195–200 (1999). (PMID: 1054185610.1007/s002940050490)
Tran, V. G., Cao, M., Fatma, Z., Song, X. & Zhao, H. Development of a CRISPR/Cas9-based tool for gene deletion in Issatchenkia orientalis. mSphere 4, e00345-19 (2019). (PMID: 31243078659514910.1128/mSphere.00345-19)
Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699–D704 (2014). (PMID: 2429725310.1093/nar/gkt1183)
Boer, V. M., Crutchfield, C. A., Bradley, P. H., Botstein, D. & Rabinowitz, J. D. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol. Biol. Cell 21, 198–211 (2010). (PMID: 19889834280171410.1091/mbc.e09-07-0597)
Miller, A. W., Befort, C., Kerr, E. O. & Dunham, M. J. Design and use of multiplexed chemostat arrays. J. Vis. Exp. 23, 50262 (2013).
Ghergurovich, J. M. et al. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat. Chem. Biol. 16, 731–739 (2020). (PMID: 32393898731127110.1038/s41589-020-0533-x)
García-Cañaveras, J. C. et al. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 35, 377–388 (2021). (PMID: 3238208110.1038/s41375-020-0845-6)
Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012). (PMID: 23051804347167410.1038/nbt.2377)
Su, X., Lu, W. & Rabinowitz, J. D. Metabolite spectral accuracy on Orbitraps. Anal. Chem. 89, 5940–5948 (2017). (PMID: 28471646574889110.1021/acs.analchem.7b00396)
Park, J. O. et al. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nat. Chem. Biol. 12, 482–489 (2016). (PMID: 27159581491243010.1038/nchembio.2077)
van der Windt, G. J. W., Chang, C. & Pearce, E. L. Measuring bioenergetics in T cells using a Seahorse extracellular flux analyzer. Curr. Protoc. Immunol. 113, 3.16B.1–3.16B.14 (2016). (PMID: 27038461)
Lu, H. et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat. Commun. 10, 3586 (2019). (PMID: 31395883668777710.1038/s41467-019-11581-3)
Dinh, H. V. et al. A comprehensive genome-scale model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data. Metab. Eng. Commun. 9, e00101 (2019). (PMID: 31720216683854410.1016/j.mec.2019.e00101)
Mahadevan, R. & Schilling, C. H. H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003). (PMID: 1464235410.1016/j.ymben.2003.09.002)
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 44, D471–D480 (2016). (PMID: 2652773210.1093/nar/gkv1164)
Wang, H. et al. Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proc. Natl Acad. Sci. USA 118, e2102344118 (2021). (PMID: 34282017832524410.1073/pnas.2102344118)
Blake, J. A. et al. Mouse Genome Database (MGD): knowledgebase for mouse–human comparative biology. Nucleic Acids Res. 49, D981–D987 (2021). (PMID: 3323164210.1093/nar/gkaa1083)
Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016). (PMID: 27789795548479510.1126/science.aaf2807)
Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab. Eng. 9, 68–86 (2007). (PMID: 1708809210.1016/j.ymben.2006.09.001)
Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab. Eng. 8, 324–337 (2006). (PMID: 1663140210.1016/j.ymben.2006.01.004)
Leighty, R. W. & Antoniewicz, M. R. COMPLETE-MFA: complementary parallel labeling experiments technique for metabolic flux analysis. Metab. Eng. 20, 49–55 (2013). (PMID: 2402193610.1016/j.ymben.2013.08.006)
Symersky, J. et al. Structure of the C10 ring of the yeast mitochondrial ATP synthase in the open conformation. Nat. Struct. Mol. Biol. 19, 485–491 (2012). (PMID: 22504883334322710.1038/nsmb.2284)
Gupta, M., Sonnett, M., Ryazanova, L., Presler, M. & Wühr, M. in Xenopus Vol. 1865 (ed. Vleminckx, K.) 175–194 (Springer New York, 2018).
Johnson, A., Stadlmeier, M. & Wühr, M. TMTpro complementary ion quantification increases plexing and sensitivity for accurate multiplexed proteomics at the MS 2 level. J. Proteome Res. 20, 3043–3052 (2021). (PMID: 33929851833040510.1021/acs.jproteome.0c00813)
Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14, 68–85 (2019). (PMID: 3046421410.1038/s41596-018-0082-x)
Edwards, A. & Haas, W. in Proteomics in Systems Biology Vol. 1394 (ed. Reinders, J.) 1–13 (Springer New York, 2016).
Elias, J. E. & Gygi, S. P. Target–decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007). (PMID: 1732784710.1038/nmeth1019)
Savitski, M. M., Wilhelm, M., Hahne, H., Kuster, B. & Bantscheff, M. A scalable approach for protein false discovery rate estimation in large proteomic data sets. Mol. Cell. Proteom. 14, 2394–2404 (2015). (PMID: 10.1074/mcp.M114.046995)
Chvatal, V. A greedy heuristic for the set-covering problem. Math. Oper. Res. 4, 233–235 (1979). (PMID: 10.1287/moor.4.3.233)
Liebermeister, W. et al. Visual account of protein investment in cellular functions. Proc. Natl Acad. Sci. USA 111, 8488–8493 (2014). (PMID: 24889604406065510.1073/pnas.1314810111)
Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251–D1257 (2016). (PMID: 2645096110.1093/nar/gkv1003)
Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012). (PMID: 22628656352618910.1126/science.1218595)
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022). (PMID: 3472331910.1093/nar/gkab1038)
معلومات مُعتمدة: R35 GM128813 United States GM NIGMS NIH HHS
تواريخ الأحداث: Date Created: 20240306 Latest Revision: 20240312
رمز التحديث: 20240312
DOI: 10.1038/s41589-024-01571-y
PMID: 38448734
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4469
DOI:10.1038/s41589-024-01571-y