دورية أكاديمية

Neuronal deletion of Gtf2i results in developmental microglial alterations in a mouse model related to Williams syndrome.

التفاصيل البيبلوغرافية
العنوان: Neuronal deletion of Gtf2i results in developmental microglial alterations in a mouse model related to Williams syndrome.
المؤلفون: Bar E; The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.; The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel., Fischer I; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel., Rokach M; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel., Elad-Sfadia G; The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel., Shirenova S; The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel.; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel., Ophir O; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel., Trangle SS; The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel., Okun E; The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel.; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel., Barak B; The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
المصدر: Glia [Glia] 2024 Jun; Vol. 72 (6), pp. 1117-1135. Date of Electronic Publication: 2024 Mar 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8806785 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-1136 (Electronic) Linking ISSN: 08941491 NLM ISO Abbreviation: Glia Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: New York : Alan R. Liss, Inc., c1988-
مواضيع طبية MeSH: Williams Syndrome*/genetics , Transcription Factors, TFIII*/metabolism , Transcription Factors, TFII*/genetics , Transcription Factors, TFII*/metabolism, Mice ; Animals ; Microglia ; Neurons/metabolism ; Disease Models, Animal
مستخلص: Williams syndrome (WS) is a genetic neurodevelopmental disorder caused by a heterozygous microdeletion, characterized by hypersociability and unique neurocognitive abnormalities. Of the deleted genes, GTF2I has been linked to hypersociability in WS. We have recently shown that Gtf2i deletion from forebrain excitatory neurons, referred to as Gtf2i conditional knockout (cKO) mice leads to multi-faceted myelination deficits associated with the social behaviors affected in WS. These deficits were potentially mediated also by microglia, as they present a close relationship with oligodendrocytes. To study the impact of altered myelination, we characterized these mice in terms of microglia over the course of development. In postnatal day 30 (P30) Gtf2i cKO mice, cortical microglia displayed a more ramified state, as compared with wild type (controls). However, postnatal day 4 (P4) microglia exhibited high proliferation rates and an elevated activation state, demonstrating altered properties related to activation and inflammation in Gtf2i cKO mice compared with control. Intriguingly, P4 Gtf2i cKO-derived microglial cells exhibited significantly elevated myelin phagocytosis in vitro compared to control mice. Lastly, systemic injection of clemastine to P4 Gtf2i cKO and control mice until P30, led to a significant interaction between genotypes and treatments on the expression levels of the phagocytic marker CD68, and a significant reduction of the macrophage/microglial marker Iba1 transcript levels in the cortex of the Gtf2i cKO treated mice. Our data thus implicate microglia as important players in WS, and that early postnatal manipulation of microglia might be beneficial in treating inflammatory and myelin-related pathologies.
(© 2024 The Authors. GLIA published by Wiley Periodicals LLC.)
References: Acharjee, S., & Pittman, Q. J. (2019). Unexpected microglial "De‐activation" associated with altered synaptic transmission in the early stages of an animal model of multiple sclerosis. Journal of Experimental Neuroscience, 13, 1179069519825882. https://doi.org/10.1177/1179069519825882.
Akiyoshi, R., Wake, H., Kato, D., Horiuchi, H., Ono, R., Ikegami, A., Haruwaka, K., Omori, T., Tachibana, Y., Moorhouse, A. J., & Nabekura, J. (2018). Microglia enhance synapse activity to promote local network synchronization. eNeuro, 5, 0088. https://doi.org/10.1523/ENEURO.0088-18.2018.
Aloisi, F. (2001). Immune function of microglia. GLIA, 36, 165–179. https://doi.org/10.1002/glia.1106.
Amor, S., McNamara, N. B., Gerrits, E., Marzin, M. C., Kooistra, S. M., Miron, V. E., & Nutma, E. (2022). White matter microglia heterogeneity in the CNS. Acta Neuropathologica, 143, 125–141. https://doi.org/10.1007/s00401-021-02389-x.
Anand, D., Colpo, G. D., Zeni, G., Zeni, C. P., & Teixeira, A. L. (2017). Attention‐deficit/hyperactivity disorder and inflammation: What does current knowledge tell us? A systematic review. Frontiers in Psychiatry, 8, 228. https://doi.org/10.3389/fpsyt.2017.00228.
Apolloni, S., Fabbrizio, P., Amadio, S., & Volonte, C. (2016). Actions of the antihistaminergic clemastine on presymptomatic SOD1‐G93A mice ameliorate ALS disease progression. Journal of Neuroinflammation, 13, 191. https://doi.org/10.1186/s12974-016-0658-8.
Arnoux, I., & Audinat, E. (2015). Fractalkine signaling and microglia functions in the developing brain. Neural Plasticity, 2015, 689404. https://doi.org/10.1155/2015/689404.
Arreola, M. A., Soni, N., Crapser, J. D., Hohsfield, L. A., Elmore, M. R. P., Matheos, D. P., Wood, M. A., Swarup, V., Mortazavi, A., & Green, K. N. (2021). Microglial dyshomeostasis drives perineuronal net and synaptic loss in a CSF1R(+/−) mouse model of ALSP, which can be rescued via CSF1R inhibitors. Science Advances, 7, eabg1601. https://doi.org/10.1126/sciadv.abg1601.
Bar, E., & Barak, B. (2019). Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. GLIA, 67, 2125–2141. https://doi.org/10.1002/glia.23637.
Barak, B., & Feng, G. (2016). Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nature Neuroscience, 19, 647–655. https://doi.org/10.1038/nn.4276.
Barak, B., Zhang, Z., Liu, Y., Nir, A., Trangle, S. S., Ennis, M., Levandowski, K. M., Wang, D., Quast, K., Boulting, G. L., Li, Y., Bayarsaihan, D., He, Z., & Feng, G. (2019). Neuronal deletion of Gtf2i, associated with Williams syndrome, causes behavioral and myelin alterations rescuable by a remyelinating drug. Nature Neuroscience, 22, 700–708. https://doi.org/10.1038/s41593-019-0380-9.
Baxter, R. C. (2000). Insulin‐like growth factor (IGF)‐binding proteins: Interactions with IGFs and intrinsic bioactivities. American Journal of Physiology. Endocrinology and Metabolism, 278, E967–E976. https://doi.org/10.1152/ajpendo.2000.278.6.E967.
Bechade, C., Cantaut‐Belarif, Y., & Bessis, A. (2013). Microglial control of neuronal activity. Frontiers in Cellular Neuroscience, 7, 32. https://doi.org/10.3389/fncel.2013.00032.
Bennett, M. L., & Barres, B. A. (2017). A genetically distinct microglial subset promotes myelination. The EMBO Journal, 36, 3269–3271. https://doi.org/10.15252/embj.201798389.
Biber, K., Neumann, H., Inoue, K., & Boddeke, H. W. (2007). Neuronal ‘On’ and ‘Off’ signals control microglia. Trends in Neurosciences, 30, 596–602. https://doi.org/10.1016/j.tins.2007.08.007.
Brown, G. C., & Neher, J. J. (2014). Microglial phagocytosis of live neurons. Nature Reviews. Neuroscience, 15, 209–216. https://doi.org/10.1038/nrn3710.
Capuano, A. W., Wilson, R. S., Honer, W. G., Petyuk, V. A., Leurgans, S. E., Yu, L., Gatchel, J. R., Arnold, S., Bennett, D. A., & Arvanitakis, Z. (2019). Brain IGFBP‐5 modifies the relation of depressive symptoms to decline in cognition in older persons. Journal of Affective Disorders, 250, 313–318. https://doi.org/10.1016/j.jad.2019.03.051.
Cardona, A. E., Pioro, E. P., Sasse, M. E., Kostenko, V., Cardona, S. M., Dijkstra, I. M., Huang, D. R., Kidd, G., Dombrowski, S., Dutta, R. J., Lee, J. C., Cook, D. N., Jung, S., Lira, S. A., Littman, D. R., & Ransohoff, R. M. (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 9, 917–924. https://doi.org/10.1038/nn1715.
Chailangkarn, T., Noree, C., & Muotri, A. R. (2018). The contribution of GTF2I haploinsufficiency to Williams syndrome. Molecular and Cellular Probes, 40, 45–51. https://doi.org/10.1016/j.mcp.2017.12.005.
Choi, H. M., Beck, V. A., & Pierce, N. A. (2014). Next‐generation in situ hybridization chain reaction: Higher gain, lower cost, greater durability. ACS Nano, 8, 4284–4294. https://doi.org/10.1021/nn405717p.
Colton, C. A. (2009). Heterogeneity of microglial activation in the innate immune response in the brain. Journal of Neuroimmune Pharmacology, 4, 399–418. https://doi.org/10.1007/s11481-009-9164-4.
Derecki, N. C., Cronk, J. C., Lu, Z., Xu, E., Abbott, S. B. G., Guyenet, P. G., & Kipnis, J. (2012). Wild‐type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 484, 105–109. https://doi.org/10.1038/nature10907.
Domingues, H. S., Portugal, C. C., Socodato, R., & Relvas, J. B. (2016). Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Frontiers in Cell and Development Biology, 4, 71. https://doi.org/10.3389/fcell.2016.00071.
Enkhmandakh, B., Stoddard, C., Mack, K., He, W., Kaback, D., Yee, S. P., & Bayarsaihan, D. (2016). Generation of a mouse model for a conditional inactivation of Gtf2i allele. Genesis, 54, 407–412. https://doi.org/10.1002/dvg.22948.
Erwig, M. S., Hesse, D., Jung, R. B., Uecker, M., Kusch, K., Tenzer, S., Jahn, O., & Werner, H. B. (2019). Myelin: Methods for purification and proteome analysis. Methods in Molecular Biology, 1936, 37–63. https://doi.org/10.1007/978-1-4939-9072-6_3.
Ferger, A. I., Campanelli, L., Reimer, V., Muth, K. N., Merdian, I., Ludolph, A. C., & Witting, A. (2010). Effects of mitochondrial dysfunction on the immunological properties of microglia. Journal of Neuroinflammation, 7, 45. https://doi.org/10.1186/1742-2094-7-45.
Frick, L., & Pittenger, C. (2016). Microglial dysregulation in OCD, Tourette syndrome, and PANDAS. Journal of Immunology Research, 2016, 8606057. https://doi.org/10.1155/2016/8606057.
Garey, L. (2010). When cortical development goes wrong: Schizophrenia as a neurodevelopmental disease of microcircuits. Journal of Anatomy, 217, 324–333. https://doi.org/10.1111/j.1469-7580.2010.01231.x.
Giulian, D., & Baker, T. J. (1986). Characterization of ameboid microglia isolated from developing mammalian brain. The Journal of Neuroscience, 6, 2163–2178. https://doi.org/10.1523/JNEUROSCI.06-08-02163.1986.
Goebbels, S., Bormuth, I., Bode, U., Hermanson, O., Schwab, M. H., & Nave, K. A. (2006). Genetic targeting of principal neurons in neocortex and hippocampus of NEX‐Cre mice. Genesis, 44, 611–621. https://doi.org/10.1002/dvg.20256.
Grabert, K., Michoel, T., Karavolos, M. H., Clohisey, S., Baillie, J. K., Stevens, M. P., Freeman, T. C., Summers, K. M., & McColl, B. W. (2016). Microglial brain region‐dependent diversity and selective regional sensitivities to aging. Nature Neuroscience, 19, 504–516. https://doi.org/10.1038/nn.4222.
Grad, M., Nir, A., Levy, G., Trangle, S. S., Shapira, G., Shomron, N., Assaf, Y., & Barak, B. (2022). Altered White matter and microRNA expression in a murine model related to Williams syndrome suggests that miR‐34b/c affects brain development via Ptpru and dcx modulation. Cell, 11, 158. https://doi.org/10.3390/cells11010158.
Grajchen, E., Wouters, E., van de Haterd, B., Haidar, M., Hardonnière, K., Dierckx, T., van Broeckhoven, J., Erens, C., Hendrix, S., Kerdine‐Römer, S., Hendriks, J. J. A., & Bogie, J. F. J. (2020). CD36‐mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation. Journal of Neuroinflammation, 17, 224. https://doi.org/10.1186/s12974-020-01899-x.
Green, T. R. F., Murphy, S. M., Moreno‐Montano, M. P., Audinat, E., & Rowe, R. K. (2022). Reactive morphology of dividing microglia following kainic acid administration. Frontiers in Neuroscience, 16, 972138. https://doi.org/10.3389/fnins.2022.972138.
Gupta, S., Ellis, S. E., Ashar, F. N., Moes, A., Bader, J. S., Zhan, J., West, A. B., & Arking, D. E. (2014). Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity‐dependent genes in autism. Nature Communications, 5, 5748. https://doi.org/10.1038/ncomms6748.
Hamilton, S. P., & Rome, L. H. (1994). Stimulation of in vitro myelin synthesis by microglia. GLIA, 11, 326–335. https://doi.org/10.1002/glia.440110405.
Hopperton, K. E., Mohammad, D., Trepanier, M. O., Giuliano, V., & Bazinet, R. P. (2018). Markers of microglia in post‐mortem brain samples from patients with Alzheimer's disease: A systematic review. Molecular Psychiatry, 23, 177–198. https://doi.org/10.1038/mp.2017.246.
Imai, Y., & Kohsaka, S. (2002). Intracellular signaling in M‐CSF‐induced microglia activation: Role of Iba1. GLIA, 40, 164–174. https://doi.org/10.1002/glia.10149.
Jeon, S. B., Yoon, H. J., Park, S. H., Kim, I. H., & Park, E. J. (2008). Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain‐resident immune cells. Journal of Immunology, 181, 8077–8087. https://doi.org/10.4049/jimmunol.181.11.8077.
Jurga, A. M., Paleczna, M., & Kuter, K. Z. (2020). Overview of general and discriminating markers of differential microglia phenotypes. Frontiers in Cellular Neuroscience, 14, 198. https://doi.org/10.3389/fncel.2020.00198.
Kierdorf, K., Erny, D., Goldmann, T., Sander, V., Schulz, C., Perdiguero, E. G., Wieghofer, P., Heinrich, A., Riemke, P., Hölscher, C., Müller, D. N., Luckow, B., Brocker, T., Debowski, K., Fritz, G., Opdenakker, G., Diefenbach, A., Biber, K., Heikenwalder, M., … Prinz, M. (2013). Microglia emerge from erythromyeloid precursors via Pu.1‐ and Irf8‐dependent pathways. Nature Neuroscience, 16, 273–280. https://doi.org/10.1038/nn.3318.
Kim, H. J., Cho, M. H., Shim, W. H., Kim, J. K., Jeon, E. Y., Kim, D. H., & Yoon, S. Y. (2017). Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Molecular Psychiatry, 22, 1576–1584. https://doi.org/10.1038/mp.2016.103.
Konishi, H., Kobayashi, M., Kunisawa, T., Imai, K., Sayo, A., Malissen, B., Crocker, P. R., Sato, K., & Kiyama, H. (2017). Siglec‐H is a microglia‐specific marker that discriminates microglia from CNS‐associated macrophages and CNS‐infiltrating monocytes. GLIA, 65, 1927–1943. https://doi.org/10.1002/glia.23204.
Kopatz, J., Beutner, C., Welle, K., Bodea, L. G., Reinhardt, J., Claude, J., Linnartz‐Gerlach, B., & Neumann, H. (2013). Siglec‐h on activated microglia for recognition and engulfment of glioma cells. GLIA, 61, 1122–1133. https://doi.org/10.1002/glia.22501.
Kopper, T. A.‐O., & Gensel, J. C. (2018). Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury. Journal of Neuroscience Research, 96, 969–977. https://doi.org/10.1002/jnr.24114.
Kozel, B. A., Barak, B., Kim, C. A., Mervis, C. B., Osborne, L. R., Porter, M., & Pober, B. R. (2021). Williams syndrome. Nature Reviews. Disease Primers, 7, 42. https://doi.org/10.1038/s41572-021-00276-z.
Lau, S. F., Wu, W., Seo, H., Fu, A. K. Y., & Ip, N. Y. (2021). Quantitative in vivo assessment of amyloid‐beta phagocytic capacity in an Alzheimer's disease mouse model. STAR Protocols, 2, 100265. https://doi.org/10.1016/j.xpro.2020.100265.
Lawson, L. J., Perry, V. H., Dri, P., & Gordon, S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience, 39, 151–170. https://doi.org/10.1016/0306-4522(90)90229-W.
Lee, J., Lee, S., Ryu, Y. J., Lee, D., Kim, S., Seo, J. Y., Oh, E., Paek, S. H., Kim, S. U., Ha, C. M., Choi, S. Y., & Kim, K. T. (2019). Vaccinia‐related kinase 2 plays a critical role in microglia‐mediated synapse elimination during neurodevelopment. GLIA, 67, 1667–1679. https://doi.org/10.1002/glia.23638.
Lee, W. H., Wang, G. M., Seaman, L. B., & Vannucci, S. J. (1996). Coordinate IGF‐I and IGFBP5 gene expression in perinatal rat brain after hypoxia‐ischemia. Journal of Cerebral Blood Flow and Metabolism, 16, 227–236. https://doi.org/10.1097/00004647-199603000-00007.
Lennington, J. B., Coppola, G., Kataoka‐Sasaki, Y., Fernandez, T. V., Palejev, D., Li, Y., Huttner, A., Pletikos, M., Sestan, N., Leckman, J. F., & Vaccarino, F. M. (2016). Transcriptome analysis of the human striatum in Tourette syndrome. Biological Psychiatry, 79, 372–382. https://doi.org/10.1016/j.biopsych.2014.07.018.
Li, Q., Cheng, Z., Zhou, L., Darmanis, S., Neff, N. F., Okamoto, J., Gulati, G., Bennett, M. L., Sun, L. O., Clarke, L. E., Marschallinger, J., Yu, G., Quake, S. R., Wyss‐Coray, T., & Barres, B. A. (2019). Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single‐cell RNA sequencing. Neuron, 101, 207–223e10. https://doi.org/10.1016/j.neuron.2018.12.006.
Lichanska, A. M., & Hume, D. A. (2000). Origins and functions of phagocytes in the embryo. Experimental Hematology, 28, 601–611. https://doi.org/10.1016/S0301-472X(00)00157-0.
Lier, J., Streit, W. J., & Bechmann, I. (2021). Beyond activation: Characterizing microglial functional phenotypes. Cell, 10, 2236. https://doi.org/10.3390/cells10092236.
Limatola, C., & Ransohoff, R. M. (2014). Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Frontiers in Cellular Neuroscience, 8, 229. https://doi.org/10.3389/fncel.2014.00229.
Liu, H., Sun, Y., Zhang, Q., Jin, W., Gordon, R. E., Zhang, Y., Wang, J., Sun, C., Wang, Z. J., Qi, X., Zhang, J., Huang, B., Gui, Q., Yuan, H., Chen, L., Ma, X., Fang, C., Liu, Y. Q., Yu, X., & Feng, S. (2021). Pro‐inflammatory and proliferative microglia drive progression of glioblastoma. Cell Reports, 36, 109718. https://doi.org/10.1016/j.celrep.2021.109718.
Liu, J., Dupree, J. L., Gacias, M., Frawley, R., Sikder, T., Naik, P., & Casaccia, P. (2016). Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice. The Journal of Neuroscience, 36, 957–962. https://doi.org/10.1523/jneurosci.3608-15.2016.
Lloyd, A. F., & Miron, V. E. (2019). The pro‐remyelination properties of microglia in the central nervous system. Nature reviews. Neurology, 15, 447–458. https://doi.org/10.1038/s41582-019-0184-2.
Marshman, E., Green, K. A., Flint, D. J., White, A., Streuli, C. H., & Westwood, M. (2003). Insulin‐like growth factor binding protein 5 and apoptosis in mammary epithelial cells. Journal of Cell Science, 116, 675–682. https://doi.org/10.1242/jcs.00263.
Masuda, T., Sankowski, R., Staszewski, O., Böttcher, C., Amann, L., Sagar, Scheiwe, C., Nessler, S., Kunz, P., van Loo, G., Arnd Coenen, V., Christoph Reinacher, P., Michel, A., Sure, U., Gold, R., Grün, D., Priller, J., Stadelmann, C., & Prinz, M. (2019). Spatial and temporal heterogeneity of mouse and human microglia at single‐cell resolution. Nature, 566, 388–392. https://doi.org/10.1038/s41586-019-0924-x.
McNamara, N. B., Munro, D. A. D., Bestard‐Cuche, N., Uyeda, A., Bogie, J. F. J., Hoffmann, A., Holloway, R. K., Molina‐Gonzalez, I., Askew, K. E., Mitchell, S., Mungall, W., Dodds, M., Dittmayer, C., Moss, J., Rose, J., Szymkowiak, S., Amann, L., McColl, B. W., Prinz, M., … Miron, V. E. (2022). Microglia regulate central nervous system myelin growth and integrity. Nature, 613, 120–129. https://doi.org/10.1038/s41586-022-05534-y.
Morgan, J. T., Chana, G., Pardo, C. A., Achim, C., Semendeferi, K., Buckwalter, J., Courchesne, E., & Everall, I. P. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biological Psychiatry, 68, 368–376. https://doi.org/10.1016/j.biopsych.2010.05.024.
Morris, G. P., Clark, I. A., Zinn, R., & Vissel, B. (2013). Microglia: A new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiology of Learning and Memory, 105, 40–53. https://doi.org/10.1016/j.nlm.2013.07.002.
Moussaud, S., & Draheim, H. J. (2010). A new method to isolate microglia from adult mice and culture them for an extended period of time. Journal of Neuroscience Methods, 187, 243–253. https://doi.org/10.1016/j.jneumeth.2010.01.017.
Nayak, D., Roth, T. L., & McGavern, D. B. (2014). Microglia development and function. Annual Review of Immunology, 32, 367–402. https://doi.org/10.1146/annurev-immunol-032713-120240.
Nicola, R., Madar, R., & Okun, E. (2022). HCAR1‐mediated L‐lactate signaling suppresses microglial phagocytosis. Neuromolecular Medicine, 24, 399–404. https://doi.org/10.1007/s12017-022-08710-5.
Nir, A., & Barak, B. (2021). White matter alterations in Williams syndrome related to behavioral and motor impairments. GLIA, 69, 5–19. https://doi.org/10.1002/glia.23868.
Nir Sade, A., Levy, G., Schokoroy Trangle, S., Elad Sfadia, G., Bar, E., Ophir, O., Fischer, I., Rokach, M., Atzmon, A., Parnas, H., Rosenberg, T., Marco, A., Elroy Stein, O., & Barak, B. (2023). Neuronal Gtf2i deletion alters mitochondrial and autophagic properties. Communications Biology, 6, 1269. https://doi.org/10.1038/s42003-023-05612-5.
Norden, D. M., Trojanowski, P. J., Villanueva, E., Navarro, E., & Godbout, J. P. (2016). Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba‐1 or GFAP immunoreactivity following systemic immune challenge. GLIA, 64, 300–316. https://doi.org/10.1002/glia.22930.
O'Kusky, J., & Ye, P. (2012). Neurodevelopmental effects of insulin‐like growth factor signaling. Frontiers in Neuroendocrinology, 33, 230–251. https://doi.org/10.1016/j.yfrne.2012.06.002.
Olah, M., Amor, S., Brouwer, N., Vinet, J., Eggen, B., Biber, K., & Boddeke, H. W. G. M. (2012). Identification of a microglia phenotype supportive of remyelination. GLIA, 60, 306–321. https://doi.org/10.1002/glia.21266.
Olson, J. K., & Miller, S. D. (2004). Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. Journal of Immunology, 173, 3916–3924. https://doi.org/10.4049/jimmunol.173.6.3916.
Ophir, O., Levy, G., Bar, E., Kimchi Feldhorn, O., Rokach, M., Elad Sfadia, G., & Barak, B. (2023). Deletion of Gtf2i via systemic administration of AAV‐PHP.eB virus increases social behavior in a mouse model of a neurodevelopmental disorder. Biomedicine, 11, 2273. https://doi.org/10.3390/biomedicines11082273.
Ortiz‐Romero, P., Gonzalez‐Simon, A., Egea, G., Perez‐Jurado, L. A., & Campuzano, V. (2021). Co‐treatment with verapamil and curcumin attenuates the behavioral alterations observed in Williams‐Beuren syndrome mice by regulation of MAPK pathway and microglia overexpression. Frontiers in Pharmacology, 12, 670785. https://doi.org/10.3389/fphar.2021.670785.
Palma, A., Chara, J. C., Montilla, A., Otxoa‐de‐Amezaga, A., Ruíz‐Jaén, F., Planas, A. M., Matute, C., Pérez‐Samartín, A., & Domercq, M. (2022). Clemastine induces an impairment in developmental myelination. Frontiers in Cell and Development Biology, 10, 841548. https://doi.org/10.3389/fcell.2022.841548.
Paloneva, J., Autti, T., Raininko, R., Partanen, J., Salonen, O., Puranen, M., Hakola, P., & Haltia, M. (2001). CNS manifestations of Nasu‐Hakola disease: A frontal dementia with bone cysts. Neurology, 56, 1552–1558. https://doi.org/10.1212/WNL.56.11.1552.
Paolicelli, R. C., Bisht, K., & Tremblay, M. E. (2014). Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Frontiers in Cellular Neuroscience, 8, 129. https://doi.org/10.3389/fncel.2014.00129.
Paolicelli, R. C., Sierra, A., Stevens, B., Tremblay, M. E., Aguzzi, A., Ajami, B., Amit, I., Audinat, E., Bechmann, I., Bennett, M., Bennett, F., Bessis, A., Biber, K., Bilbo, S., Blurton‐Jones, M., Boddeke, E., Brites, D., Brône, B., Brown, G. C., … Wyss‐Coray, T. (2022). Microglia states and nomenclature: A field at its crossroads. Neuron, 110, 3458–3483. https://doi.org/10.1016/j.neuron.2022.10.020.
Park, S. E., Dantzer, R., Kelley, K. W., & McCusker, R. H. (2011). Central administration of insulin‐like growth factor‐I decreases depressive‐like behavior and brain cytokine expression in mice. Journal of Neuroinflammation, 8, 12. https://doi.org/10.1186/1742-2094-8-12.
Pepe, G., de Maglie, M., Minoli, L., Villa, A., Maggi, A., & Vegeto, E. (2017). Selective proliferative response of microglia to alternative polarization signals. Journal of Neuroinflammation, 14, 236. https://doi.org/10.1186/s12974-017-1011-6.
Pluvinage, J. V., Haney, M. S., Smith, B. A. H., Sun, J., Iram, T., Bonanno, L., Li, L., Lee, D. P., Morgens, D. W., Yang, A. C., Shuken, S. R., Gate, D., Scott, M., Khatri, P., Luo, J., Bertozzi, C. R., Bassik, M. C., & Wyss‐Coray, T. (2019). CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature, 568, 187–192. https://doi.org/10.1038/s41586-019-1088-4.
Poliani, P. L., Wang, Y., Fontana, E., Robinette, M. L., Yamanishi, Y., Gilfillan, S., & Colonna, M. (2015). TREM2 sustains microglial expansion during aging and response to demyelination. The Journal of Clinical Investigation, 125, 2161–2170. https://doi.org/10.1172/JCI77983.
Procyshyn, T. L., Spence, J., Read, S., Watson, N. V., & Crespi, B. J. (2017). The Williams syndrome prosociality gene GTF2I mediates oxytocin reactivity and social anxiety in a healthy population. Biology Letters, 13, 20170051. https://doi.org/10.1098/rsbl.2017.0051.
Rangaraju, S., Dammer, E. B., Raza, S. A., Rathakrishnan, P., Xiao, H., Gao, T., Duong, D. M., Pennington, M. W., Lah, J. J., Seyfried, N. T., & Levey, A. I. (2018). Identification and therapeutic modulation of a pro‐inflammatory subset of disease‐associated‐microglia in Alzheimer's disease. Molecular Neurodegeneration, 13, 24. https://doi.org/10.1186/s13024-018-0254-8.
Ransohoff, R. M., & Cardona, A. E. (2010). The myeloid cells of the central nervous system parenchyma. Nature, 468, 253–262. https://doi.org/10.1038/nature09615.
Remington, L. T., Babcock, A. A., Zehntner, S. P., & Owens, T. (2007). Microglial recruitment, activation, and proliferation in response to primary demyelination. The American Journal of Pathology, 170, 1713–1724. https://doi.org/10.2353/ajpath.2007.060783.
Roschier, M., Kuusisto, E., Suuronen, T., Korhonen, P., Kyrylenko, S., & Salminen, A. (2001). Insulin‐like growth factor binding protein 5 and type‐1 insulin‐like growth factor receptor are differentially regulated during apoptosis in cerebellar granule cells. Journal of Neurochemistry, 76, 11–20. https://doi.org/10.1046/j.1471-4159.2001.00002.x.
Roy, A., Jana, A., Yatish, K., Freidt, M. B., Fung, Y. K., Martinson, J. A., & Pahan, K. (2008). Reactive oxygen species up‐regulate CD11b in microglia via nitric oxide: Implications for neurodegenerative diseases. Free Radical Biology & Medicine, 45, 686–699. https://doi.org/10.1016/j.freeradbiomed.2008.05.026.
Sakurai, T., Dorr, N. P., Takahashi, N., McInnes, L. A., Elder, G. A., & Buxbaum, J. D. (2011). Haploinsufficiency of Gtf2i, a gene deleted in Williams syndrome, leads to increases in social interactions. Autism Research, 4, 28–39. https://doi.org/10.1002/aur.169.
Santos, E. N., & Fields, R. D. (2021). Regulation of myelination by microglia. Science Advances, 7, eabk1131. https://doi.org/10.1126/sciadv.abk1131.
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real‐time PCR data by the comparative C(T) method. Nature Protocols, 3, 1101–1108. https://doi.org/10.1038/nprot.2008.73.
Schwarzkopf, M., Liu, M. C., Schulte, S. J., Ives, R., Husain, N., Choi, H. M. T., & Pierce, N. A. (2021). Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high‐resolution immunohistochemistry and in situ hybridization. Development, 148, 22. https://doi.org/10.1242/dev.199847.
Seabrook, T. J., Jiang, L., Maier, M., & Lemere, C. A. (2006). Minocycline affects microglia activation, Abeta deposition, and behavior in APP‐tg mice. GLIA, 53, 776–782. https://doi.org/10.1002/glia.20338.
Sekar, A., Bialas, A. R., de Rivera, H., Davis, A., Hammond, T. R., Kamitaki, N., Tooley, K., Presumey, J., Baum, M., van Doren, V., Genovese, G., Rose, S. A., Handsaker, R. E., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Daly, M. J., Carroll, M. C., Stevens, B., & McCarroll, S. A. (2016). Schizophrenia risk from complex variation of complement component 4. Nature, 530, 177–183. https://doi.org/10.1038/nature16549.
Steiner, J., Bielau, H., Brisch, R., Danos, P., Ullrich, O., Mawrin, C., Bernstein, H. G., & Bogerts, B. (2008). Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. Journal of Psychiatric Research, 42, 151–157. https://doi.org/10.1016/j.jpsychires.2006.10.013.
Su, W. J., Zhang, T., Jiang, C. L., & Wang, W. (2018). Clemastine alleviates depressive‐like behavior through reversing the imbalance of microglia‐related pro‐inflammatory state in mouse hippocampus. Frontiers in Cellular Neuroscience, 12, 412. https://doi.org/10.3389/fncel.2018.00412.
Tan, Y. L., Yuan, Y., & Tian, L. (2020). Microglial regional heterogeneity and its role in the brain. Molecular Psychiatry, 25, 351–367. https://doi.org/10.1038/s41380-019-0609-8.
Tarozzo, G., Bortolazzi, S., Crochemore, C., Chen, S. C., Lira, A. S., Abrams, J. S., & Beltramo, M. (2003). Fractalkine protein localization and gene expression in mouse brain. Journal of Neuroscience Research, 73, 81–88. https://doi.org/10.1002/jnr.10645.
Tetreault, N. A., Hakeem, A. Y., Jiang, S., Williams, B. A., Allman, E., Wold, B. J., & Allman, J. M. (2012). Microglia in the cerebral cortex in autism. Journal of Autism and Developmental Disorders, 42, 2569–2584. https://doi.org/10.1007/s10803-012-1513-0.
Trangle, S. S., Rosenberg, T., Parnas, H., Levy, G., Bar, E., Marco, A., & Barak, B. (2023). In individuals with Williams syndrome, dysregulation of methylation in non‐coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development. Molecular Psychiatry, 28, 1112–1127. https://doi.org/10.1038/s41380-022-01921-z.
Tremblay, M. È., & Sierra, A. (2014). Microglia in health and disease (p. 486). Springer‐Verlag. https://doi.org/10.1007/978-1-4939-1429-6.
Tunster, S. J. (2017). Genetic sex determination of mice by simplex PCR. Biology of Sex Differences, 8, 31. https://doi.org/10.1186/s13293-017-0154-6.
Vidal‐Itriago, A., Radford, R. A. W., Aramideh, J. A., Maurel, C., Scherer, N. M., Don, E. K., Lee, A., Chung, R. S., Graeber, M. B., & Morsch, M. (2022). Microglia morphophysiological diversity and its implications for the CNS. Frontiers in Immunology, 13, 997786. https://doi.org/10.3389/fimmu.2022.997786.
Wang, J., Wang, J., Wang, J., Yang, B., Weng, Q., & He, Q. (2019). Targeting microglia and macrophages: A potential treatment strategy for multiple sclerosis. Frontiers in Pharmacology, 10, 286. https://doi.org/10.3389/fphar.2019.00286.
Wes, P. D., Holtman, I. R., Boddeke, E. W., Moller, T., & Eggen, B. J. (2016). Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. GLIA, 64, 197–213. https://doi.org/10.1002/glia.22866.
Wilder, L., Hanson, K. L., Lew, C. H., Bellugi, U., & Semendeferi, K. (2018). Decreased neuron density and increased glia density in the ventromedial prefrontal cortex (Brodmann area 25) in Williams syndrome. Brain Sciences, 8, 209. https://doi.org/10.3390/brainsci8120209.
Wlodarczyk, A., Benmamar‐Badel, A., Cédile, O., Jensen, K. N., Kramer, I., Elsborg, N. B., & Owens, T. (2018). CSF1R stimulation promotes increased neuroprotection by CD11c+ microglia in EAE. Frontiers in Cellular Neuroscience, 12, 523. https://doi.org/10.3389/fncel.2018.00523.
Wlodarczyk, A., Cédile, O., Jensen, K. N., Jasson, A., Mony, J. T., Khorooshi, R., & Owens, T. (2015). Pathologic and protective roles for microglial subsets and bone marrow‐ and blood‐derived myeloid cells in central nervous system inflammation. Frontiers in Immunology, 6, 463. https://doi.org/10.3389/fimmu.2015.00463.
Wlodarczyk, A., Holtman, I. R., Krueger, M., Yogev, N., Bruttger, J., Khorooshi, R., Benmamar‐Badel, A., de Boer‐Bergsma, J. J., Martin, N. A., Karram, K., Kramer, I., Boddeke, E. W. G. M., Waisman, A., Eggen, B. J. L., & Owens, T. (2017). A novel microglial subset plays a key role in myelinogenesis in developing brain. The EMBO Journal, 36, 3292–3308. https://doi.org/10.15252/embj.201696056.
Xie, D., Ge, X., Ma, Y., Tang, J., Wang, Y., Zhu, Y., Gao, C., & Pan, S. (2020). Clemastine improves hypomyelination in rats with hypoxic‐ischemic brain injury by reducing microglia‐derived IL‐1beta via P38 signaling pathway. Journal of Neuroinflammation, 17, 57. https://doi.org/10.1186/s12974-019-1662-6.
York, E. M., LeDue, J. M., Bernier, L.‐P., & MacVicar, B. A. (2018). 3DMorph automatic analysis of microglial morphology in three dimensions from ex vivo and in vivo imaging. Eneuro, 5, ENEURO.0266‐18. https://doi.org/10.1523/ENEURO.0266-18.2018.
Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F., Vyssotski, A. L., Bifone, A., Gozzi, A., Ragozzino, D., & Gross, C. T. (2014). Deficient neuron‐microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neuroscience, 17, 400–406. https://doi.org/10.1038/nn.3641.
Zusso, M., Methot, L., Lo, R., Greenhalgh, A. D., David, S., & Stifani, S. (2012). Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. The Journal of Neuroscience, 32, 11285–11298. https://doi.org/10.1523/JNEUROSCI.6182-11.2012.
معلومات مُعتمدة: The National institute for psychobiology in Israel; Autour des Williams; Williams France Federation; 2305/20 Israel Science Foundation
فهرسة مساهمة: Keywords: Gtf2i; Williams syndrome; clemastine; microglia; microglial activation; myelin; neurodevelopmental disorders
المشرفين على المادة: 0 (Transcription Factors, TFIII)
0 (Gtf2i protein, mouse)
0 (Transcription Factors, TFII)
تواريخ الأحداث: Date Created: 20240307 Date Completed: 20240412 Latest Revision: 20240412
رمز التحديث: 20240412
DOI: 10.1002/glia.24519
PMID: 38450767
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-1136
DOI:10.1002/glia.24519