دورية أكاديمية

Genome-Based Identification and Characterization of Bacteriocins Selectively Inhibiting Staphylococcus aureus in Fermented Sausages.

التفاصيل البيبلوغرافية
العنوان: Genome-Based Identification and Characterization of Bacteriocins Selectively Inhibiting Staphylococcus aureus in Fermented Sausages.
المؤلفون: Li H; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China., Yang Y; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China., Li L; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China., Zheng H; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China., Xiong Z; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China., Hou J; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China., Wang L; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China. lpwang@shou.edu.cn.; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, 201306, China. lpwang@shou.edu.cn.; Laboratory of Quality and Safety Risk Assessment for Aquatic Products On Storage and Preservation, Shanghai, 201306, China. lpwang@shou.edu.cn.
المصدر: Probiotics and antimicrobial proteins [Probiotics Antimicrob Proteins] 2024 Mar 07. Date of Electronic Publication: 2024 Mar 07.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101484100 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1867-1314 (Electronic) Linking ISSN: 18671306 NLM ISO Abbreviation: Probiotics Antimicrob Proteins Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY. : Springer
مستخلص: The bacteriocin-producing Lactiplantibacillus plantarum SL47 was isolated from conventional fermented sausages, and the bacteriocin SL47 was purified using ethyl acetate, Sephadex G-25 gel chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). Bacteriocin SL47 was identified by HPLC-MS/MS combined with whole-genome sequencing, and the results showed it consisted of plantaricin A, J, K, and N. Further characterization analysis showed that the bacteriocin SL47 was highly thermostable (30 min, 121 °C), pH stable (2-10), sensitive to protease and exhibited broad-spectrum antibacterial ability against Gram-positive and Gram-negative bacteria. The mechanism of action showed that the bacteriocin SL47 increased cell membrane permeability, and 2 × minimum inhibitory concentration (MIC) treatment for 40 min caused apoptosis of Staphylococcus aureus F2. The count of S. aureus in the sausage that was inoculated with L. plantarum SL47 and bacteriocin SL47 decreased by about 64% and 53% of that in the initial stage, respectively. These results indicated the potential of L. plantarum SL47 and bacteriocin SL47 as a bio-preservative in meat products.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Kolozyn-Krajewska D, Dolatowski Z, Zielinska D (2012) Probiotic use in meat products. Fleischwirtschaft 92(4):101–108.
Rouhi M, Sohrabvandi S, Mortazavian AM (2013) Probiotic fermented sausage: viability of probiotic microorganisms and sensory characteristics. Crit Rev Food Sci Nutr 53(4):331–348. https://doi.org/10.1080/10408398.2010.531407. (PMID: 10.1080/10408398.2010.53140723320906)
Villani F, Casaburi A, Pennacchia C, Filosa L, Russo F, Ercolini D (2007) Microbial ecology of the soppressata of Vallo di Diano, a traditional dry fermented sausage from southern Italy, and in vitro and in situ selection of autochthonous starter cultures. Appl Environ Microbiol 73(17):5453–5463. https://doi.org/10.1128/aem.01072-07. (PMID: 10.1128/aem.01072-07176166252042070)
Casaburi A, Di Martino V, Ferranti P, Picariello L, Villani F (2016) Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture. Food Control 59:31–45. https://doi.org/10.1016/j.foodcont.2015.05.016. (PMID: 10.1016/j.foodcont.2015.05.016)
Schubert J, Krakowiak S, Bania J (2018) Production of staphylococcal enterotoxins in food. Med Weter-Vet Med-Sci Pract 74(1):16–22. https://doi.org/10.21521/mw.5837. (PMID: 10.21521/mw.5837)
Sameshima T, Magome C, Takeshita K, Arihara K, Itoh M, Kondo Y (1998) Effect of intestinal Lactobacillus starter cultures on the behaviour of Staphylococcus aureus in fermented sausage. Int J Food Microbiol 41(1):1–7. https://doi.org/10.1016/s0168-1605(98)00038-5. (PMID: 10.1016/s0168-1605(98)00038-59631333)
Lebert I, Leroy S, Giammarinaro P, Lebert A, Chacornac JP, Bover-Cid S et al (2007) Diversity of microorganisms in the environment and dry fermented sausages of small traditional French processing units. Meat Sci 76(1):112–122. https://doi.org/10.1016/j.meatsci.2006.10.019. (PMID: 10.1016/j.meatsci.2006.10.01922064197)
Ferreira V, Barbosa J, Vendeiro S, Mota A, Silva F, Monteiro MJ et al (2006) Chemical and microbiological characterization of alheira: a typical Portuguese fermented sausage with particular reference to factors relating to food safety. Meat Sci 73(4):570–575. https://doi.org/10.1016/j.meatsci.2006.02.011. (PMID: 10.1016/j.meatsci.2006.02.01122062554)
Wang ZL, Wang ZX, Ji LL, Zhang JM, Zhao ZP, Zhang R et al (2021) A review: microbial diversity and function of fermented meat products in China. Front Microbiol. https://doi.org/10.3389/fmicb.2021.645435. (PMID: 10.3389/fmicb.2021.645435354968188751274)
Minj J, Chandra P, Paul C, Sharma RK (2021) Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives. Crit Rev Food Sci Nutr 61(13):2207–2224. https://doi.org/10.1080/10408398.2020.1774496. (PMID: 10.1080/10408398.2020.177449632519883)
Shafique B, Ranjha MMAN, Murtaza MA, Walayat N, Nawaz A, Khalid W et al (2023) Recent trends and applications of nanoencapsulated bacteriocins against microbes in food quality and safety. Microorganisms 11(1). https://doi.org/10.3390/microorganisms11010085.
Fischer SW, Titgemeyer F (2023) Protective cultures in food products: from science to market. Foods 12(7). https://doi.org/10.3390/foods12071541.
Reis JA, Paula AT, Casarotti SN, Penna ALB (2012) Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Eng Rev 4(2):124–140. https://doi.org/10.1007/s12393-012-9051-2. (PMID: 10.1007/s12393-012-9051-2)
Montalban-Lopez M, Sanchez-Hidalgo M, Valdivia E, Martinez-Bueno M, Maqueda M (2011) Are bacteriocins underexploited? Novel applications for old antimicrobials. Curr Pharm Biotechnol 12(8):1205–1220. https://doi.org/10.2174/138920111796117364. (PMID: 10.2174/13892011179611736421470151)
Galvez A, Abriouel H, Benomar N, Lucas R (2010) Microbial antagonists to food-borne pathogens and biocontrol. Curr Opin Biotechnol 21(2):142–148. https://doi.org/10.1016/j.copbio.2010.01.005. (PMID: 10.1016/j.copbio.2010.01.00520149633)
Bhattacharya D, Nanda PK, Pateiro M, Lorenzo JM, Dhar P, Das AK (2022) Lactic acid bacteria and bacteriocins: novel biotechnological approach for biopreservation of meat and meat products. Microorganisms 10(10). https://doi.org/10.3390/microorganisms10102058.
Bangar SP, Chaudhary VP, Singh TP, Ozogul F (2022) Retrospecting the concept and industrial significance of LAB bacteriocins. Food Biosci. https://doi.org/10.1016/j.fbio.2022.101607. (PMID: 10.1016/j.fbio.2022.101607)
Balciunas EM, Castillo Martinez FA, Todorov SD, de Melo Gombossy, Franco BD, Converti A, de Souza Oliveira RP (2013) Novel biotechnological applications of bacteriocins: a review. Food Control 32(1):134–142. https://doi.org/10.1016/j.foodcont.2012.11.025. (PMID: 10.1016/j.foodcont.2012.11.025)
Kaskoniene V, Stankevicius M, Bimbiraite-Surviliene K, Naujokaityte G, Serniene L, Mulkyte K et al (2017) Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Appl Microbiol Biotechnol 101(4):1323–1335. https://doi.org/10.1007/s00253-017-8088-9. (PMID: 10.1007/s00253-017-8088-928070665)
Simons A, Alhanout K, Duval RE (2020) Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 8(5). https://doi.org/10.3390/microorganisms8050639.
Swetwiwathana A, Visessanguan W (2015) Potential of bacteriocin-producing lactic acid bacteria for safety improvements of traditional Thai fermented meat and human health. Meat Sci 109:101–105. https://doi.org/10.1016/j.meatsci.2015.05.030. (PMID: 10.1016/j.meatsci.2015.05.03026100576)
Rivas FP, Castro MP, Vallejo M, Marguet E, Campos CA (2014) Sakacin Q produced by Lactobacillus curvatus ACU-1: functionality characterization and antilisterial activity on cooked meat surface. Meat Sci 97(4):475–479. https://doi.org/10.1016/j.meatsci.2014.03.003. (PMID: 10.1016/j.meatsci.2014.03.00324769146)
Lu X, Hu P, Dang Y, Liu B (2014) Purification and partial characterization of a novel bacteriocin produced by Lactobacillus casei TN-2 isolated from fermented camel milk (Shubat) of Xinjiang Uygur Autonomous region. China. Food Control 43:276–283. https://doi.org/10.1016/j.foodcont.2014.03.020. (PMID: 10.1016/j.foodcont.2014.03.020)
Aljohani AB, Al-Hejin AM, Shori AB (2023) Bacteriocins as promising antimicrobial peptides, definition, classification, and their potential applications in cheeses. Food Sci Technol 43:e1181021. https://doi.org/10.1590/fst.118021. (PMID: 10.1590/fst.118021)
Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacterlocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16(9):1058–1071. https://doi.org/10.1016/j.idairyj.2005.10.026. (PMID: 10.1016/j.idairyj.2005.10.026)
Sharafi H, Maleki H, Ahmadian G, Zahiri HS, Sajedinejad N, Houshmand B et al (2013) Antibacterial activity and probiotic potential of Lactobacillus plantarum HKN01: a new insight into the morphological changes of antibacterial compound-treated Escherichia coli by electron microscopy. J Microbiol Biotechnol 23(2):225–236. https://doi.org/10.4014/jmb.1208.08005. (PMID: 10.4014/jmb.1208.0800523412066)
Lin L, Hu JY, Wu Y, Chen M, Ou J, Yan WL (2018) Assessment of the inhibitory effects of sodium nitrite, nisin, potassium sorbate, and sodium lactate on Staphylococcus aureus growth and staphylococcal enterotoxin A production in cooked pork sausage using a predictive growth model. Food Sci Hum Wellness 7(1):83–90. https://doi.org/10.1016/j.fshw.2017.12.003. (PMID: 10.1016/j.fshw.2017.12.003)
Woraprayote W, Janyaphisan T, Adunphatcharaphon S, Sonhom N, Showpanish K, Rumjuankiat K et al (2023) Bacteriocinogenic lactic acid bacteria from Thai fermented foods: potential food applications. Food Biosci 52:102385. https://doi.org/10.1016/j.fbio.2023.102385. (PMID: 10.1016/j.fbio.2023.102385)
Zhang T, Zhang Y, Li L, Jiang X, Chen Z, Zhao F et al (2022) Biosynthesis and production of class II bacteriocins of food-associated lactic acid bacteria. Fermentation-Basel 8(5). https://doi.org/10.3390/fermentation8050217.
Hu MZ, Zhao HZ, Zhang C, Yu JS, Lu ZX (2013) Purification and characterization of plantaricin 163, a novel bacteriocin produced by Lactobacillus plantarum 163 isolated from traditional Chinese fermented vegetables. J Agric Food Chem 61(47):11676–11682. https://doi.org/10.1021/jf403370y. (PMID: 10.1021/jf403370y24228753)
Ben Ayed H, Maalej H, Hmidet N, Nasri M (2015) Isolation and biochemical characterisation of a bacteriocinlike substance produced by Bacillus amyloliquefaciens An6. J Glob Antimicrob Resist 3(4):255–261. https://doi.org/10.1016/j.jgar.2015.07.001. (PMID: 10.1016/j.jgar.2015.07.001)
Barbosa MS, Todorov SD, Belguesmia Y, Choiset Y, Rabesona H, Ivanova IV et al (2014) Purification and characterization of the bacteriocin produced by Lactobacillus sakei MBSa1 isolated from Brazilian salami. J Appl Microbiol 116(5):1195–1208. https://doi.org/10.1111/jam.12438. (PMID: 10.1111/jam.1243824506656)
Lv XR, Lin Y, Jie Y, Sun MT, Zhang BL, Bai FL et al (2018) Purification, characterization, and action mechanism of plantaricin DL3, a novel bacteriocin against Pseudomonas aeruginosa produced by Lactobacillus plantarum DL3 from Chinese Suan-Tsai. Eur Food Res Technol 244(2):323–331. https://doi.org/10.1007/s00217-017-2958-3. (PMID: 10.1007/s00217-017-2958-3)
Du H, Yang J, Lu X, Lu Z, Bie X, Zhao H et al (2018) Purification, characterization, and mode of action of plantaricin GZ1-27, a novel bacteriocin against Bacillus cereus. J Agric Food Chem 66(18):4716–4724. https://doi.org/10.1021/acs.jafc.8b01124. (PMID: 10.1021/acs.jafc.8b0112429690762)
Li H, Liu T, Zhang X, Xiong Z, Hong Q, Jia S et al (2023) Whole-genome sequencing and bacteriocin purification of Lactiplantibacillus plantarum HY41 confirms bactericidal and probiotic potential. Int Biodeterior Biodegrad 185:105685. https://doi.org/10.1016/j.ibiod.2023.105685. (PMID: 10.1016/j.ibiod.2023.105685)
Ruixiang Z, Yanqing L, Junjian R, Gang L, Shuang L, Yang Z et al (2020) Purification and characterization of bacteriocin produced by Lactobacillus rhamnosus zrx01. Food Biosci 38:100754-. https://doi.org/10.1016/j.fbio.2020.100754. (PMID: 10.1016/j.fbio.2020.100754)
Li H, Guo L, Zhang X, Mu H, Sha S, Lin Y et al (2022) Whole-genome sequencing combined with mass spectrometry to identify bacteriocin and mine silent genes. Lwt-Food Sci Technol. https://doi.org/10.1016/j.lwt.2022.113975. (PMID: 10.1016/j.lwt.2022.113975)
Du RP, Ping WX, Ge JP (2022) Purification, characterization and mechanism of action of enterocin HDX-2, a novel class IIa bacteriocin produced by Enterococcus faecium HDX-2. Lwt-Food Sci Technol. https://doi.org/10.1016/j.lwt.2021.112451. (PMID: 10.1016/j.lwt.2021.112451)
Pei JJ, Huang YG, Ren T, Guo YD, Dang J, Tao YD et al (2022) The antibacterial activity mode of action of plantaricin YKX against Staphylococcus aureus. Molecules 27(13). https://doi.org/10.3390/molecules27134280.
Dzung Bao D, Havarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178(15):4472–4483. (PMID: 10.1128/jb.178.15.4472-4483.1996)
Anderssen EL, Diep DB, Nes IF, Eijsink VGH, Nissen-Meyer J (1998) Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol 64(6):2269–2272. (PMID: 10.1128/AEM.64.6.2269-2272.19989603847106311)
Arief II, Budiman C, Jenie BSL, Andreas E, Yuneni A (2015) Plantaricin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphylococcus aureus. Benef Microbes 6(4):603–613. https://doi.org/10.3920/bm2014.0064. (PMID: 10.3920/bm2014.006425809213)
Wang Y, Qin Y, Xie Q, Zhang Y, Hu J, Li P (2018) Purification and characterization of plantaricin LPL-1, a novel class IIa bacteriocin produced by Lactobacillus plantarum LPL-1 isolated from fermented fish. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02276. (PMID: 10.3389/fmicb.2018.02276307611216309737)
Jinjin P, Xinsheng L, Hao H, Yanduo T (2018) Purification and characterization of plantaricin SLG1, a novel bacteriocin produced by Lb. plantarum isolated from yak cheese. Food Control 84:111–117. https://doi.org/10.1016/j.foodcont.2017.07.034. (PMID: 10.1016/j.foodcont.2017.07.034)
Sheoran P, Tiwari SK (2019) Anti-staphylococcal activity of bacteriocins of food isolates Enterococcus hirae LD3 and Lactobacillus plantarum LD4 in pasteurized milk. 3 Biotech 9(1). https://doi.org/10.1007/s13205-018-1546-y.
Zhao D, Wang Q, Lu F, Bie X, Zhao H, Lu Z et al (2022) A novel plantaricin 827 effectively inhibits Staphylococcus aureus and extends shelf life of skim milk. Lwt-Food Sci Technol. https://doi.org/10.1016/j.lwt.2021.112849. (PMID: 10.1016/j.lwt.2021.112849)
Li Y, Yu S, Weng P, Wu Z, Liu Y (2023) Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactiplantibacillus plantarum FB-2. Lwt-Food Sci Technol. https://doi.org/10.1016/j.lwt.2023.115123. (PMID: 10.1016/j.lwt.2023.115123)
Sidhu PK, Nehra K (2021) Purification and characterization of bacteriocin Bac23 extracted from Lactobacillus plantarum PKLP5 and its interaction with silver nanoparticles for enhanced antimicrobial spectrum against food-borne pathogens. Lwt-Food Sci Technol. https://doi.org/10.1016/j.lwt.2020.110546. (PMID: 10.1016/j.lwt.2020.110546)
Lv X, Miao L, Ma H, Bai F, Lin Y, Sun M et al (2018) Purification, characterization and action mechanism of plantaricin JY22, a novel bacteriocin against Bacillus cereus produced by Lactobacillus plantarum JY22 from golden carp intestine. Food Sci Biotechnol 27(3):695–703. https://doi.org/10.1007/s10068-017-0280-2. (PMID: 10.1007/s10068-017-0280-230263795)
Brookes SJ, Gabe CM (2019) Purification of developing enamel matrix proteins using preparative SDS-PAGE. Methods Mol Biol (Clifton, NJ) 1922:251–265. https://doi.org/10.1007/978-1-4939-9012-2_25. (PMID: 10.1007/978-1-4939-9012-2_25)
Moyer TB, Parsley NC, Sadecki PW, Schug WJ, Hicks LM (2021) Leveraging orthogonal mass spectrometry based strategies for comprehensive sequencing and characterization of ribosomal antimicrobial peptide natural products. Nat Prod Rep 38(3):489–509. https://doi.org/10.1039/d0np00046a. (PMID: 10.1039/d0np00046a32929442)
Wang Z, Zhang Y, Chen C, Fan S, Deng F, Zhao L (2023) A novel bacteriocin isolated from Lactobacillus plantarum W3–2 and its biological characteristics. Front Nutr. https://doi.org/10.3389/fnut.2022.1111880. (PMID: 10.3389/fnut.2022.11118803837098010773879)
Gong HS, Meng XC, Wang H (2010) Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food Control 21(1):89–96. https://doi.org/10.1016/j.foodcont.2009.04.005. (PMID: 10.1016/j.foodcont.2009.04.005)
Hata T, Tanaka R, Ohmomo S (2010) Isolation and characterization of plantaricin ASM1: a new bacteriocin produced by Lactobacillus plantarum A-1. Int J Food Microbiol 137(1):94–99. https://doi.org/10.1016/j.ijfoodmicro.2009.10.021. (PMID: 10.1016/j.ijfoodmicro.2009.10.02119939484)
Pei J, Li X, Han H, Tao Y (2018) Purification and characterization of plantaricin SLG1, a novel bacteriocin produced by Lb. plantarum isolated from yak cheese. Food Control 84:111–117. https://doi.org/10.1016/j.foodcont.2017.07.034. (PMID: 10.1016/j.foodcont.2017.07.034)
Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR (1991) Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl Environ Microbiol 57(12):3613–3615. https://doi.org/10.1128/aem.57.12.3613-3615.1991. (PMID: 10.1128/aem.57.12.3613-3615.19911785933184021)
Jimenez-Diaz R, Rios-Sanchez RM, Desmazeaud M, Ruiz-Barba JL, Piard JC (1993) Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl Environ Microbiol 59(5):1416–1424. (PMID: 10.1128/aem.59.5.1416-1424.199316348933182098)
Gonzalez B, Arca P, Mayo B, Suarez JE (1994) Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl Environ Microbiol 60(6):2158–2163. (PMID: 10.1128/aem.60.6.2158-2163.19948080262201617)
Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF (2001) Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology-Sgm 147:643–651. https://doi.org/10.1099/00221287-147-3-643. (PMID: 10.1099/00221287-147-3-643)
Gong H-S, Meng X-C, Wang H (2010) Mode of action of plantaricin MG, a bacteriocin active against Salmonella typhimurium. J Basic Microbiol 50:S37–S45. https://doi.org/10.1002/jobm.201000130. (PMID: 10.1002/jobm.20100013020967788)
Wang H, Zhang H, Zhang H, Jin J, Xie Y (2021) Outer membrane channel protein TolC regulates Escherichia coli K12 Sensitivity to plantaricin BM-1 via the CpxR/CpxA two-component regulatory system. Probiotics Aniicrob Proteins 13(1):238–248. https://doi.org/10.1007/s12602-020-09671-6. (PMID: 10.1007/s12602-020-09671-6)
Pal G, Srivastava S (2014) Inhibitory effect of plantaricin peptides (Pln E/F and J/K) against Escherichia coli. World J Microbiol Biotechnol 30(11):2829–2837. https://doi.org/10.1007/s11274-014-1708-y. (PMID: 10.1007/s11274-014-1708-y25138074)
Zdolec N, Hadziosmanovic M, Kozacinski L, Cvrtila Z, Filipovic I, Skrivanko M et al (2008) Microbial and physicochemical succession in fermented sausages produced with bacteriocinogenic culture of Lactobacillus sakei and semi-purified bacteriocin mesenterocin Y. Meat Sci 80(2):480–487. https://doi.org/10.1016/j.meatsci.2008.01.012. (PMID: 10.1016/j.meatsci.2008.01.01222063356)
Kozacinski L, Zdolec N, Hadziosmanovic M, Cvrtila Z, Filipovic I, Majic T (2006) Microbial flora of the Croatian traditionally fermented sausage. Archiv Fur Lebensmittelhygiene 57(5):141–147.
فهرسة مساهمة: Keywords: Bacteriocin; Fermented sausage; Mode of action; Purification
تواريخ الأحداث: Date Created: 20240307 Latest Revision: 20240307
رمز التحديث: 20240307
DOI: 10.1007/s12602-024-10240-4
PMID: 38451405
قاعدة البيانات: MEDLINE
الوصف
تدمد:1867-1314
DOI:10.1007/s12602-024-10240-4