دورية أكاديمية

Phosphorus fractions and speciation in an alkaline, manured soil amended with alum, gypsum, and Epsom salt.

التفاصيل البيبلوغرافية
العنوان: Phosphorus fractions and speciation in an alkaline, manured soil amended with alum, gypsum, and Epsom salt.
المؤلفون: Kumaragamage D; Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada.; Department of Agronomy, Kansas State University, Manhattan, Kansas, USA., Hettiarachchi GM; Department of Agronomy, Kansas State University, Manhattan, Kansas, USA., Amarakoon I; Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada., Goltz D; Department of Chemistry, The University of Winnipeg, Winnipeg, Manitoba, Canada., Indraratne S; Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada.
المصدر: Journal of environmental quality [J Environ Qual] 2024 May-Jun; Vol. 53 (3), pp. 314-326. Date of Electronic Publication: 2024 Mar 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 0330666 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1537-2537 (Electronic) Linking ISSN: 00472425 NLM ISO Abbreviation: J Environ Qual Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : [Hoboken, NJ] : Wiley
Original Publication: Madison, WI : Published cooperatively by American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America
مواضيع طبية MeSH: Calcium Sulfate*/chemistry , Calcium Sulfate*/analysis , Soil*/chemistry , Phosphorus*/analysis , Phosphorus*/chemistry , Alum Compounds*/chemistry, Fertilizers/analysis ; Manure/analysis ; Agriculture/methods
مستخلص: Snowmelt runoff is a dominant pathway of phosphorus (P) losses from agricultural lands in cold climatic regions. Soil amendments effectively reduce P losses from soils by converting P to less soluble forms; however, changes in P speciation in cold climatic regions with fall-applied amendments have not been investigated. This study evaluated P composition in soils from a manured field with fall-amended alum (Al 2 (SO 4 ) 3 ·18H 2 O), gypsum (CaSO 4 ·2H 2 O), or Epsom salt (MgSO 4 ·7H 2 O) using three complementary methods: sequential P fractionation, scanning electron microscopy with energy-dispersive X-rays (SEM-EDX) spectroscopy, and P K-edge X-ray absorption near-edge structure spectroscopy (XANES). Plots were established in an annual crop field in southern Manitoba, Canada, with unamended and amended (2.5 Mg ha -1 ) treatments having four replicates in 2020 fall. Soil samples (0-10 cm) taken from each plot soon after spring snowmelt in 2021 were subjected to P fractionation. A composite soil sample for each treatment was analyzed using SEM-EDX and XANES. Alum- and Epsom salt-treated soils had significantly greater residual P fraction with a higher proportion of apatite-like P and a correspondingly lower proportion of P sorbed to calcite (CaCO 3 ) than unamended and gypsum-amended soils. Backscattered electron imaging of SEM-EDX revealed that alum- and Epsom salt-amended treatments had P-enriched microsites frequently associated with aluminum (Al), iron (Fe), magnesium (Mg), and calcium (Ca), which was not observed in other treatments. Induced precipitation of apatite-like species may have been responsible for reduced P loss to snowmelt previously reported with fall application of amendments.
(© 2024 The Authors. Journal of Environmental Quality published by Wiley Periodicals LLC on behalf of American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.)
References: Adhami, E., Maftoun, M., Ronaghi, A., Karimian, N., Yasrebi, J., & Assad, M. T. (2006). Inorganic phosphorus fractionation of highly calcareous soils of Iran. Communications in Soil Science and Plant Analysis, 37, 1877–1888. https://doi.org/10.1080/00103620600767116.
Akinremi, O. O., Armisen, N., Kashem, A., & Janzen, H. H. (2003). Evaluation of analytical methods for total P in organic amendments. Communications in Soil Science and Plant Analysis, 34, 2987–2997. https://doi.org/10.1081/CSS‐120025220.
Al‐Barrak, K., & Rowell, D. L. (2006). The solubility of gypsum in calcareous soils. Geoderma, 136, 830–837. https://doi.org/10.1016/j.geoderma.2006.06.011.
Amarawansha, E. A. G. S., Kumaragamage, D., Flaten, D., Zvomuya, F., & Tenuta, M. (2015). Phosphorus mobilization from manure‐amended and unamended alkaline soils to overlying water during simulated flooding. Journal of Environmental Quality, 44, 1252–1262. https://doi.org/10.2134/jeq2014.10.0457.
Anderson, D. L., Tuovinen, O. H., Faber, A., & Ostrokowski, I. (1995). Use of soil amendments to reduce soluble phosphorus in dairy soils. Ecological Engineering, 5, 229–246. https://doi.org/10.1016/0925‐8574(95)00025‐9.
Ann, Y., Reddy, K. R., & Delfino, J. J. (2000). Influence of chemical amendments on phosphorus immobilization in soils from a constructed wetland. Ecological Engineering, 14, 157–167. https://doi.org/10.1016/S0925‐8574(99)00026‐9.
Attanayake, C. P., Dharmakeerthi, R. S., Kumaragamage, D., Indraratne, S. P., & Goltz, D. (2022). Flooding‐induced inorganic phosphorus transformations in two soils, with and without gypsum amendment. Journal of Environmental Quality, 51, 90–100. https://doi.org/10.1002/jeq2.20319.
Attanayake, C. P., Kumaragamage, D., Amarawansha, G., Hettiarachchi, G. M., Indraratne, S. P., & Goltz, D. M. (2022). Phosphorus release and speciation in manganese (IV) oxide and zeolite‐amended flooded soils. Environmental Science & Technology, 56, 8082–8093. https://doi.org/10.1021/acs.est.2c01185.
Audette, Y., O'Halloran, I. P., Evans, L. J., & Voroney, R. P. (2016). Preliminary validation of a sequential fractionation method to study phosphorus chemistry in a calcareous soil. Chemosphere, 152, 369–375. https://doi.org/10.1016/j.chemosphere.2016.03.014.
Baligar, V. C., Clark, R. B., Korcak, R. F., & Wright, R. J. (2011). Flue gas desulfurization product use on agricultural land. Advances in Agronomy, 111, 51–86. https://doi.org/10.1016/B978‐0‐12‐387689‐8.00005‐9.
Beauchemin, S., Hesterberg, D., Chou, J., Beauchemin, M., Simard, R. R., & Sayers, D. E. (2003). Speciation of phosphorus in phosphorus‐enriched agricultural soils using X‐ray absorption near‐edge structure spectroscopy and chemical fractionation. Journal of Environmental Quality, 32, 1809–1819. https://doi.org/10.2134/jeq2003.1809.
Borch, T., & Fendorf, S. (2007). Phosphate interactions with iron (hydr) oxides: Mineralization pathways and phosphorus retention upon bioreduction. Developments in Earth and Environmental Sciences, 7, 321–348. https://doi.org/10.1016/S1571‐9197(07)07012‐7.
Condron, L. M., & Newman, S. (2011). Revisiting the fundamentals of phosphorus fractionation of sediments and soils. Journal of Soils and Sediments, 11, 830–840. https://doi.org/10.1007/s11368‐011‐0363‐2.
Dharmakeerthi, R. S., Kumaragamage, D., Goltz, D., & Indraratne, S. P. (2019). Phosphorus Release from unamended and gypsum‐ or biochar‐amended soils under simulated snowmelt and summer flooding conditions. Journal of Environmental Quality, 48, 822–830. https://doi.org/10.2134/jeq2019.02.0091.
Dharmakeerthi, R. S., Kumaragamage, D., Indraratne, S. P., & Goltz, D. (2019). Gypsum amendment reduces redox‐induced phosphorous release from freshly manured, flooded soils to floodwater. Journal of Environmental Quality, 48, 127–135. https://www.ncbi.nlm.nih.gov/pubmed/30640341.
Eltaif, N. I., & Gharaibeh, M. A. (2008). Impact of alum on crust prevention and aggregation of calcareous soil: Laboratory studies. Soil Use and Management, 24, 424–426. https://doi.org/10.1111/j.1475‐2743.2008.00177.x.
Fan, B., Ding, J., Fenton, O., Daly, K., & Chen, Q. (2020). Understanding phosphate sorption characteristics of mineral amendments in relation to stabilising high legacy P calcareous soil. Environmental Pollution, 261, 114175. https://doi.org/10.1016/j.envpol.2020.114175.
Fan, B., Fenton, O., Daly, K., Ding, J., Chen, S., & Chen, Q. (2021). Alum split applications strengthened phosphorus fixation and phosphate sorption in high legacy phosphorus calcareous soil. Journal of Environmental Sciences, 101, 87–97. https://doi.org/10.1016/j.jes.2020.08.007.
Favaretto, N., Norton, L. D., Joern, B. C., & Brouder, S. M. (2006). Gypsum amendment and exchangeable calcium and magnesium affecting phosphorus and nitrogen in runoff. Soil Science Society of America Journal, 70, 1788–1796. https://doi.org/10.2136/sssaj2005.0228.
Fulmer, M. T., Ison, I. C., Hankermayer, C. R., Constantz, B. R., & Ross, J. (2002). Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials, 23, 751–755. https://doi.org/10.1016/S0142‐9612(01)00180‐6.
Gustafsson, J. P., Braun, S., Tuyishime, J. R. M., Adediran, G. A., Warrinnier, R., & Hesterberg, D. (2020). A probabilistic approach to phosphorus speciation of soils using P K‐edge XANES spectroscopy with linear combination fitting. Soil Systems, 4, 26. https://doi.org/10.3390/soilsystems4020026.
He, K., Li, X., & Dong, L. (2018). The effects of flue gas desulfurization gypsum (FGD gypsum) on P fractions in a coastal plain soil. Journal of Soils and Sediments, 18, 804–815. https://doi.org/10.1007/s11368‐017‐1821‐2.
Jarvie, H. P., Johnson, L. T., Sharpley, A. N., Smith, D. R., Baker, D. B., Bruulsema, T. W., & Confesor, R. (2017). Increased soluble phosphorus loads to Lake Erie: Unintended consequences of conservation practices? Journal of Environmental Quality, 46, 123–132. https://doi.org/10.2134/jeq2016.07.0248.
Jiang, B., & Gu, Y. (1989). A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Fertilizer Research, 20, 159–165. https://doi.org/10.1007/BF01054551.
Joose, P. J., & Baker, D. B. (2011). Context for re‐evaluating agricultural source phosphorus loadings to the Great Lakes. Canadian Journal of Soil Science, 91, 317–327. https://doi.org/10.4141/cjss10005.
Keren, R., & Kauschansky, P. (1981). Coating of calcium carbonate on gypsum particle surfaces. Soil Science Society of America Journal, 45, 1242–1244. https://doi.org/10.2136/sssaj1981.03615995004500060049x.
Khatiwada, R., Hettiarachchi, G. M., Mengel, D. B., & Fei, M. (2012). Speciation of phosphorus in a fertilized, reduced‐till soil system: In‐field treatment incubation study. Soil Science Society of America Journal, 76, 2006–2018. https://doi.org/10.2136/sssaj2011.0299.
Khatiwada, R., Hettiarachchi, G. M., Mengel, D. B., & Fei, M. (2014). Placement and source effects of phosphate fertilizers on phosphorus availability and reaction products in two reduced‐till soils: A greenhouse study. Soil Science, 179, 141–152. https://doi.org/10.1097/SS.0000000000000055.
Khorasgani, M. N., Shariatmadari, H., & Atarodi, B. (2009). Interrelation of inorganic phosphorus fractions and sorghum‐available phosphorus in calcareous soils of southern Khorasan. Communications in Soil Science and Plant Analysis, 40, 2460–2473. https://doi.org/10.1080/00103620903111343.
King, T., Schoenau, J., & Elliott, J. (2017). Relationship between manure management application practices and phosphorus and nitrogen export in snowmelt run‐off water from a Black Chernozem Saskatchewan soil. Sustainable Agriculture Research, 6, 93–114. https://doi.org/10.5539/sar.v6n2p93.
Kleinman, P. J., Sharpley, A. N., McDowell, R. W., Flaten, D. N., Buda, A. R., Tao, L., Bergstrom, L., & Zhu, Q. (2011). Managing agricultural phosphorus for water quality protection: Principles for progress. Plant and Soil, 349, 169–182. https://doi.org/10.1007/s11104‐011‐0832‐9.
Kröger, R., Dunne, E. J., Novak, J., King, K. W., McLellan, E., Smith, D. R., Strock, J., Boomer, K., Tomer, M., & Noe, G. B. (2013). Downstream approaches to phosphorus management in agricultural landscapes: Regional applicability and use. Science of the Total Environment, 442, 263–274. https://doi.org/10.1016/j.scitotenv.2012.10.038.
Kumaragamage, D., & Akinremi, O. O. (2018). Manure phosphorus: Mobility in soils and management strategies to minimize losses. Current Pollution Reports, 4, 162–174. https://doi.org/10.1007/s40726‐018‐0084‐x.
Kumaragamage, D., Concepcion, A., Gregory, C., Goltz, D., Indraratne, S., & Amarawansha, G. (2020). Temperature and freezing effects on phosphorus release from soils to overlying floodwater under flooded‐anaerobic conditions. Journal of Environmental Quality, 49, 700–711. https://doi.org/10.1002/jeq2.20062.
Kumaragamage, D., Weerasekara, C. S., Perry, M., Akinremi, O. O., & Goltz, D. (2022). Alum and gypsum amendments decrease phosphorus losses from soil monoliths to overlying floodwater under simulated snowmelt flooding. Water, 14, 559. https://doi.org/10.3390/w14040559.
Lasisi, A., Kumaragamage, D., Casson, N., Amarakoon, I., Indraratne, S., Wilson, H., & Goltz, D. (2023). Evaluating fall application of soil amendments to mitigate phosphorus losses during spring snowmelt. Catena, 223, 106908.
Lasisi, A. A., Weerasekara, C. S., Kumaragamage, D., & Akinremi, O. O. (2023). Alum reduced phosphorus release from flooded soils under cold spring weather conditions. Journal of Environmental Quality, 52, 718–729. https://doi.org/10.1002/jeq2.20469.
Liu, J., Han, C., Zhao, Y., Yang, J., Cade‐Menun, B. J., Hu, Y., Li, J., Liu, H., Sui, P., Chen, Y., & Ma, Y. (2020). The chemical nature of soil phosphorus in response to long‐term fertilization practices: Implications for sustainable phosphorus management. Journal of Cleaner Production, 272, 123093. https://doi.org/10.1016/j.jclepro.2020.123093.
Lizarralde, C. A., McDowell, R. W., Condron, L. M., Brown, J., & Whelan, M. (2021). Amending soils of different pH to decrease phosphorus losses. Soil Research, 60, 114–123. https://doi.org/10.1071/SR21012.
Maranguit, D., Guillaume, T., & Kuzyakov, Y. (2017). Effects of flooding on phosphorus and iron mobilization in highly weathered soils under different land‐use types: Short‐term effects and mechanisms. Catena, 158, 161–170. https://doi.org/10.1016/j.catena.2017.06.023.
Marion, G. M., & Farren, R. E. (1997). Gypsum solubility at subzero temperatures. Soil Science Society of America Journal, 61, 1666–1671. https://doi.org/10.2136/sssaj1997.03615995006100060018x.
McCullough, G. K., Page, S. J., Hesslein, R. H., Stainton, M. P., Kling, H. J., Salki, A. G., & Barber, D. G. (2012). Hydrological forcing of a recent trophic surge in Lake Winnipeg. Journal of Great Lakes Research, 38, 95–105. https://doi.org/10.1016/j.jglr.2011.12.012.
McDowell, R. W., & Norris, M. (2014). The use of alum to decrease phosphorus losses in runoff from grassland soils. Journal of Environmental Quality, 43, 1635–1643. https://doi.org/10.2134/jeq2013.12.0479.
Peak, D., Sims, J. T., & Sparks, D. L. (2002). Solid‐state speciation of natural and alum‐amended poultry litter using XANES spectroscopy. Environmental Science & Technology, 36, 4253–4261. https://doi.org/10.1021/es025660d.
Penha, H. G. V., Menezes, J. F. S., Silva, C. A., Lopes, G., de Andrade Carvalho, C., Ramos, S. J., & Guilherme, L. R. G. (2015). Nutrient accumulation and availability and crop yields following long‐term application of pig slurry in a Brazilian Cerrado soil. Nutrient Cycling in Agroecosystems, 101, 259–269. https://doi.org/10.1007/s10705‐015‐9677‐6.
Prietzel, J., Harrington, G., Häusler, W., Heister, K., Werner, F., & Klysubun, W. (2016). Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron‐based K‐edge XANES spectroscopy. Journal of Synchrotron Radiation, 23, 532–544. https://doi.org/10.1107/S1600577515023085.
Rattan, K. J., Corriveau, J. C., Brua, R. B., Culp, J. M., Yates, A. G., & Chambers, P. A. (2017). Quantifying seasonal variation in total phosphorus and nitrogen from prairie streams in the Red River Basin, Manitoba Canada. Science of the Total Environment, 575, 649–659. https://doi.org/10.1016/j.scitotenv.2016.09.073.
Ravel, B., & Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X‐ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–541. https://doi.org/10.1107/S0909049505012719.
Ruiz‐Agudo, E., Putnis, C. V., Jiménez‐López, C., & Rodriguez‐Navarro, C. (2009). An atomic force microscopy study of calcite dissolution in saline solutions: The role of magnesium ions. Geochimica et Cosmochimica Acta, 73, 3201–3217. https://doi.org/10.1016/j.gca.2009.03.016.
SAS Institute Inc. (2014). SAS/STAT 13.2 user's guide(Version 9.4). SAS Institute Inc.
Schindler, D. W. (2006). Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51, 356–363. https://doi.org/10.4319/lo.2006.51.1_part_2.0356.
Schindler, D. W., Hecky, R. E., & McCullough, G. K. (2012). The rapid eutrophication of Lake Winnipeg: Greening under global change. Journal of Great Lakes Research, 38, 6–13. https://doi.org/10.1016/j.jglr.2012.04.003.
Schneider, K. D., McConkey, B. G., Thiagarajan, A., Elliott, J. A., & Reid, D. K. (2019). Nutrient loss in snowmelt runoff: Results from a long‐term study in a dryland cropping system. Journal of Environmental Quality, 48, 831–840.
Schoenau, J. J., & Davis, J. G. (2006). Optimizing soil and plant responses to land‐applied manure nutrients in the Great Plains of North America. Canadian Journal of Soil Science, 86, 587–595. https://doi.org/10.4141/S05‐115.
Tiessen, K. H. D., Elliott, J. A., Yarotski, J., Lobb, D. A., Flaten, D. N., & Glozier, N. E. (2010). Conventional and conservation tillage: Influence on seasonal runoff, sediment, and nutrient losses in the Canadian Prairies. Journal of Environmental Quality, 39, 964–980. https://doi.org/10.2134/jeq2009.0219.
Van, E., Kumaragamage, D., Amarawansha, G., & Goltz, D. (2022). Ferric chloride amendment reduces phosphorus losses from flooded soil monoliths. Canadian Journal of Soil Science, 102, 707–718. https://doi.org/10.1139/CJSS‐2021‐013.
Vitharana, U. W. A., Kumaragamage, D., Balasooriya, B. L. W. K., Indraratne, S. P., & Goltz, D. (2021). Phosphorus mobilization in unamended and magnesium sulfate‐amended soil monoliths under simulated snowmelt flooding. Environmental Pollution, 287, 117619. https://doi.org/10.1016/j.envpol.2021.117619.
Watts, D. B., & Torbert, H. A. (2016). Influence of flue gas desulfurization gypsum on reducing soluble phosphorus in successive runoff events from a coastal plain bermudagrass pasture. Journal of Environmental Quality, 45, 1071–1079. https://doi.org/10.2134/jeq2015.04.0203.
Weeks, J. J., & Hettiarachchi, G. M. (2020). Source and formulation matter: New insights into phosphorus fertilizer fate and transport in mildly calcareous soils. Soil Science Society of America Journal, 84, 731–746. https://doi.org/10.1002/saj2.20054.
Weerasekara, C., Kumaragamage, D., Akinremi, W., Indraratne, S., & Goltz, D. (2021). Phosphorus mobilization from intact soil monoliths flooded under simulated summer versus spring snowmelt with intermittent freeze‐thaw conditions. Journal of Environmental Quality, 50, 215–227. https://doi.org/10.1002/jeq2.20182.
Werner, F., & Prietzel, J. (2015). Standard protocol and quality assessment of soil phosphorus speciation by P K‐edge XANES spectroscopy. Environmental Science & Technology, 49, 10521–10528. https://doi.org/10.1021/acs.est.5b03096.
Wigley, T. M. (1973). Chemical evolution of the system calcite–gypsum–water. Canadian Journal of Earth Sciences, 10, 306–315. https://doi.org/10.1139/e73‐027.
Wilson, H., Elliott, J., Macrae, M., & Glenn, A. (2019). Near‐surface soils as a source of phosphorus in snowmelt runoff from cropland. Journal of Environmental Quality, 48, 921–930. https://doi.org/10.2134/jeq2019.04.0155.
Wu, Z., Wang, S., & Ji, N. (2019). Phosphorus (P) release risk in lake sediment evaluated by DIFS model and sediment properties: A new sediment P release risk index (SPRRI). Environmental Pollution, 255, 113279. https://doi.org/10.1016/j.envpol.2019.113279.
Xu, N., Yin, H., Chen, Z., Liu, S., Chen, M., & Zhang, J. (2014). Mechanisms of phosphate retention by calcite: Effects of magnesium and pH. Journal of Soils and Sediments, 14, 495–503. https://doi.org/10.1007/s11368‐013‐0807‐y.
Yi, Q., Sun, P., Niu, S., & Kim, Y. (2015). Potential for sediment phosphorus release in coal mine subsidence lakes in China: Perspectives from fractionation of phosphorous, iron and aluminum. Biogeochemistry, 126, 315–327. https://doi.org/10.1007/s10533‐015‐0158‐4.
معلومات مُعتمدة: Environment and Climate Change Canada; RGPIN-2016-05283 Natural Sciences and Engineering Research Council of Canada
المشرفين على المادة: WAT0DDB505 (Calcium Sulfate)
0 (Soil)
27YLU75U4W (Phosphorus)
0 (Alum Compounds)
34S289N54E (aluminum sulfate)
0 (Fertilizers)
0 (Manure)
تواريخ الأحداث: Date Created: 20240307 Date Completed: 20240507 Latest Revision: 20240507
رمز التحديث: 20240508
DOI: 10.1002/jeq2.20554
PMID: 38453693
قاعدة البيانات: MEDLINE
الوصف
تدمد:1537-2537
DOI:10.1002/jeq2.20554