دورية أكاديمية

An acute bout of resistance exercise increases BDNF in hippocampus and restores the long-term memory of insulin-resistant rats.

التفاصيل البيبلوغرافية
العنوان: An acute bout of resistance exercise increases BDNF in hippocampus and restores the long-term memory of insulin-resistant rats.
المؤلفون: Berbert-Gomes C; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil., Ramos JS; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil., Silveira-Rodrigues JG; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil., Leite DMM; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil., Melo BP; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil., Soares DD; Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil. danusa56@gmail.com.
المصدر: Experimental brain research [Exp Brain Res] 2024 Apr; Vol. 242 (4), pp. 901-912. Date of Electronic Publication: 2024 Mar 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0043312 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1106 (Electronic) Linking ISSN: 00144819 NLM ISO Abbreviation: Exp Brain Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Verlag
مواضيع طبية MeSH: Brain-Derived Neurotrophic Factor*/metabolism , Diabetes Mellitus, Type 2* , Memory, Long-Term*/physiology , Resistance Training*, Animals ; Humans ; Rats ; Hippocampus/metabolism ; Insulin
مستخلص: A sedentary lifestyle, inadequate diet, and obesity are substantial risk factors for Type 2 diabetes mellitus (T2DM) development. A major picture of T2DM is insulin resistance (IR), which causes many impairments in brain physiology, such as increased proinflammatory state and decreased brain-derived neurotrophic factor (BDNF) concentration, hence reducing cognitive function. Physical exercise is a non-pharmacological tool for managing T2DM/IR and its complications. Thus, this study investigated the effects of IR induction and the acute effects of resistance exercise (RE) on memory, neurotrophic, and inflammatory responses in the hippocampus and prefrontal cortex of insulin-resistant rats. IR was induced by a high-fat diet and fructose-rich beverage. Insulin-resistant rats performed acute resistance exercise (IR.RE; vertical ladder climb at 50-100% of the maximum load) or rest (IR.REST; 20 min). Cognitive parameters were assessed by novel object recognition (NOR) tasks, and biochemical analyses were performed to assess BDNF concentrations and inflammatory profile in the hippocampus and prefrontal cortex. Insulin-resistant rats had 20% worse long-term memory (LTM) (p < 0.01) and lower BDNF concentration in the hippocampus (-14.6%; p < 0.05) when compared to non-insulin-resistant rats (CON). An acute bout of RE restored LTM (-9.7% pre vs. post; p > 0.05) and increased BDNF concentration in the hippocampus (9.1%; p < 0.05) of insulin-resistant rats compared to REST. Thus, an acute bout of RE can attenuate the adverse effects of IR on memory and neurotrophic factors in rats, representing a therapeutic tool to alleviate the IR impact on the brain.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Arazi H, Babaei P, Moghimi M, Asadi A (2021) Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men. BMC Geriatr 21:1–8. https://doi.org/10.1186/s12877-020-01937-6. (PMID: 10.1186/s12877-020-01937-6)
Balkowiec A, Katz DM (2002) Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci 22:10399–10407. https://doi.org/10.1523/jneurosci.22-23-10399.2002. (PMID: 10.1523/jneurosci.22-23-10399.2002124511396758764)
Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study “recognition memory.” Nat Protoc 1:1306–1311. https://doi.org/10.1038/nprot.2006.205. (PMID: 10.1038/nprot.2006.20517406415)
Boitard C, Cavaroc A, Sauvant J et al (2014) Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun 40:9–17. https://doi.org/10.1016/j.bbi.2014.03.005. (PMID: 10.1016/j.bbi.2014.03.00524662056)
Borges Junior M, Tavares LFJ, Nagata GY et al (2023) Impact of strength training intensity on brain-derived neurotrophic factor. Int J Sports Med. https://doi.org/10.1055/a-2197-1201. (PMID: 10.1055/a-2197-120137871642)
Capettini SB, Moraes MFD, Prado VF et al (2011) Vesicular acetylcholine transporter knock-down mice show sexual dimorphism on memory. Brain Res Bull 85:54–57. https://doi.org/10.1016/j.brainresbull.2011.02.005. (PMID: 10.1016/j.brainresbull.2011.02.00521329745)
Cassilhas RC, Lee KS, Fernandes J et al (2012a) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202:309–317. https://doi.org/10.1016/j.neuroscience.2011.11.029. (PMID: 10.1016/j.neuroscience.2011.11.02922155655)
Cassilhas RC, Lee KS, Venâncio DP et al (2012b) Resistance exercise improves hippocampus-dependent memory. Braz J Med Biol Res 45:1215–1220. https://doi.org/10.1590/S0100-879X2012007500138. (PMID: 10.1590/S0100-879X2012007500138229304133854211)
Cavaliere G, Trinchese G, Penna E et al (2019) High-fat diet induces neuroinflammation and mitochondrial impairment in mice cerebral cortex and synaptic fraction. Front Cell Neurosci 13:1–13. https://doi.org/10.3389/fncel.2019.00509. (PMID: 10.3389/fncel.2019.00509)
Cefis M, Chaney R, Wirtz J et al (2023) Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 16:1–18. https://doi.org/10.3389/fnmol.2023.1275924. (PMID: 10.3389/fnmol.2023.1275924)
Chang YK, Etnier JL (2009) Exploring the dose-response relationship between resistance exercise intensity and cognitive function. J Sport Exerc Psychol 31:640–656. https://doi.org/10.1123/jsep.31.5.640. (PMID: 10.1123/jsep.31.5.64020016113)
Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet 389:2239–2251. https://doi.org/10.1016/S0140-6736(17)30058-2. (PMID: 10.1016/S0140-6736(17)30058-228190580)
Chen L, Chen R, Wang H, Liang F (2015) Mechanisms linking inflammation to insulin resistance. Int J Endocrinol 2015:1–9. https://doi.org/10.1155/2015/508409. (PMID: 10.1155/2015/508409)
Choi SH, Bylykbashi E, Chatila ZK et al (2018) Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361(6406):eaan8821. https://doi.org/10.1126/science.aan8821. (PMID: 10.1126/science.aan8821301903796149542)
Church DD, Hoffman JR, Mangine GT et al (2016) Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. J Appl Physiol 121:123–128. https://doi.org/10.1152/japplphysiol.00233.2016. (PMID: 10.1152/japplphysiol.00233.201627231312)
Cirulli F, Berry A, Chiarotti F, Alleva E (2004) Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-maze. Hippocampus 14:802–807. https://doi.org/10.1002/hipo.10220. (PMID: 10.1002/hipo.1022015382250)
Craft S (2007) Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 4:147–152. https://doi.org/10.2174/156720507780362137. (PMID: 10.2174/15672050778036213717430239)
Crunfli F, Mazucanti CH, De Moraes RCM et al (2018) NO-dependent Akt inactivation by S-nitrosylation as a possible mechanism of STZ-induced neuronal insulin resistance. J Alzheimers Dis 65:1427–1443. https://doi.org/10.3233/JAD-180284. (PMID: 10.3233/JAD-18028430149447)
Crunfli F, Vrechi TA, Costa AP, Torrão AS (2019) Cannabinoid receptor type 1 agonist ACEA improves cognitive deficit on STZ-induced neurotoxicity through apoptosis pathway and NO modulation. Neurotox Res 35:516–529. https://doi.org/10.1007/s12640-018-9991-2. (PMID: 10.1007/s12640-018-9991-230607903)
De Sousa RAL, Improta-Caria AC, de Jesus-Silva FM et al (2020) High-intensity resistance training induces changes in cognitive function, but not in locomotor activity or anxious behavior in rats induced to type 2 diabetes. Physiol Behav 223:1–7. https://doi.org/10.1016/j.physbeh.2020.112998. (PMID: 10.1016/j.physbeh.2020.112998)
DeFronzo RA, Ferrannini E, Groop L et al (2015) Type 2 diabetes mellitus. Nat Rev Dis Prim 1:1–23. https://doi.org/10.1038/nrdp.2015.19. (PMID: 10.1038/nrdp.2015.19)
Dinel AL, André C, Aubert A et al (2011) Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS ONE 6:1–10. https://doi.org/10.1371/journal.pone.0024325. (PMID: 10.1371/journal.pone.0024325)
Ding Q, Vaynman S, Akhavan M et al (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140:823–833. https://doi.org/10.1016/j.neuroscience.2006.02.084. (PMID: 10.1016/j.neuroscience.2006.02.08416650607)
Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269. https://doi.org/10.1016/S0092-8674(03)00035-7. (PMID: 10.1016/S0092-8674(03)00035-712553913)
Elsayed NA, Aleppo G, Aroda VR et al (2023a) 2. Classification and diagnosis of diabetes: standards of care in diabetes—2023. Diabetes Care 46:S19–S40. https://doi.org/10.2337/dc23-S002. (PMID: 10.2337/dc23-S00236507649)
Elsayed NA, Aleppo G, Aroda VR et al (2023b) 5. Facilitating positive health behaviors and well-being to improve health outcomes: standards of care in diabetes—2023. Diabetes Care 46:S68–S96. https://doi.org/10.2337/dc23-S005. (PMID: 10.2337/dc23-S00536507648)
Faria MC, Gonçalves GS, Rocha NP et al (2014) Increased plasma levels of BDNF and inflammatory markers in Alzheimer’s disease. J Psychiatr Res 53:166–172. https://doi.org/10.1016/j.jpsychires.2014.01.019. (PMID: 10.1016/j.jpsychires.2014.01.01924576746)
Fonseca VA (2009) Defining and characterizing the progression of type 2 diabetes. Diabetes Care 32(Suppl 2):S151–S156. https://doi.org/10.2337/dc09-s301. (PMID: 10.2337/dc09-s301198755432811457)
Fonseca CS, Gusmão ID, Raslan ACS et al (2013) Object recognition memory and temporal lobe activation after delayed estrogen replacement therapy. Neurobiol Learn Mem 101:19–25. https://doi.org/10.1016/j.nlm.2012.12.016. (PMID: 10.1016/j.nlm.2012.12.01623298786)
Fu Z, Wu J, Nesil T et al (2017) Long-term high-fat diet induces hippocampal microvascular insulin resistance and cognitive dysfunction. Am J Physiol Endocrinol Metab 312:E89–E97. https://doi.org/10.1152/ajpendo.00297.2016. (PMID: 10.1152/ajpendo.00297.201627899343)
Giacco et al (2011) Oxidative stress and diabetic complications Ferdinando NIH Public Access. NIH Public Access Author Manuscr 107:1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545.Oxidative. (PMID: 10.1161/CIRCRESAHA.110.223545.Oxidative)
Jeon BT, Jeong EA, Shin HJ et al (2012) Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes 61:1444–1454. https://doi.org/10.2337/db11-1498. (PMID: 10.2337/db11-1498223621753357272)
Lacerda DR, Serakides R, Ocarino NM et al (2015) Osteopetrosis in obese female rats is site-specifically inhibited by physical training. Exp Physiol 100:44–56. https://doi.org/10.1113/expphysiol.2014.082511. (PMID: 10.1113/expphysiol.2014.08251125557730)
Leal G, Afonso PM, Salazar IL, Duarte CB (2015) Regulation of hippocampal synaptic plasticity by BDNF. Brain Res 1621:82–101. https://doi.org/10.1016/j.brainres.2014.10.019. (PMID: 10.1016/j.brainres.2014.10.01925451089)
Leenders M, Verdijk LB, van der Hoeven L et al (2013) Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc 14:585–592. https://doi.org/10.1016/j.jamda.2013.02.006. (PMID: 10.1016/j.jamda.2013.02.00623537893)
Lina M, Jieyu W, Yun L (2015) Insulin resistance and cognitive dysfunction. Clinica Chimica Acta. https://doi.org/10.1016/j.cca.2015.01.027. (PMID: 10.1016/j.cca.2015.01.027)
Lindqvist A, Mohapel P, Bouter B et al (2006) High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol 13:1385–1388. https://doi.org/10.1111/j.1468-1331.2006.01500.x. (PMID: 10.1111/j.1468-1331.2006.01500.x17116226)
Liu Y, Fu X, Lan N et al (2014) Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res 267:178–188. https://doi.org/10.1016/j.bbr.2014.02.040. (PMID: 10.1016/j.bbr.2014.02.04024667364)
Lodo L, Moreira A, Bacurau RFP et al (2020) Resistance exercise intensity does not influence neurotrophic factors response in equated volume schemes. J Hum Kinet 74:227–236. https://doi.org/10.2478/hukin-2020-0030. (PMID: 10.2478/hukin-2020-0030333122907706651)
Malin SK, Stewart NR, Ude AA, Alderman BL (2022) Brain insulin resistance and cognitive function: influence of exercise. J Appl Physiol 133:1368–1380. https://doi.org/10.1152/japplphysiol.00375.2022. (PMID: 10.1152/japplphysiol.00375.2022362692959744647)
Mehta BK, Singh KK, Banerjee S (2019) Effect of exercise on type 2 diabetes-associated cognitive impairment in rats. Int J Neurosci 129:252–263. https://doi.org/10.1080/00207454.2018.1526795. (PMID: 10.1080/00207454.2018.152679530231786)
Melo BP, Zacarias AC, Oliveira JCC et al (2021) Thirty days of combined consumption of a high-fat diet and fructose-rich beverages promotes insulin resistance and modulates inflammatory response and histomorphometry parameters of liver, pancreas, and adipose tissue in Wistar rats. Nutrition 91–92:1–8. https://doi.org/10.1016/j.nut.2021.111403. (PMID: 10.1016/j.nut.2021.111403)
Mozaffarian D, Kamineni A, Carnethon M, Al E (2009) Lifestyle risk factors and new-onset DM in older adults. Arch Intern Med 169:798–807. https://doi.org/10.1001/archinternmed.2009.21.Lifestyle. (PMID: 10.1001/archinternmed.2009.21.Lifestyle193986922828342)
Mu JS, Li WP, Bin YZ, Zhou XF (1999) Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res 835:259–265. https://doi.org/10.1016/S0006-8993(99)01592-9. (PMID: 10.1016/S0006-8993(99)01592-910415381)
Müller P, Duderstadt Y, Lessmann V, Müller NG (2020) Lactate and BDNF: key mediators of exercise induced neuroplasticity? J Clin Med 9:1–14. https://doi.org/10.3390/jcm9041136. (PMID: 10.3390/jcm9041136)
Neeper SA, Gómez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726:49–56. https://doi.org/10.1016/0006-8993(96)00273-9. (PMID: 10.1016/0006-8993(96)00273-98836544)
Neufer PD, Bamman MM, Muoio DM et al (2015) Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab 22:4–11. https://doi.org/10.1016/j.cmet.2015.05.011. (PMID: 10.1016/j.cmet.2015.05.01126073496)
Neves RVP, Souza MK, Passos CS et al (2016) Resistance training in spontaneously hypertensive rats with severe hypertension. Arq Bras Cardiol 106:201–209. https://doi.org/10.5935/abc.20160019. (PMID: 10.5935/abc.20160019268400544811275)
Nguyen TT, Ta QTH, Nguyen TTD et al (2020) Role of insulin resistance in the Alzheimer’s disease progression. Neurochem Res 45:1481–1491. https://doi.org/10.1007/s11064-020-03031-0. (PMID: 10.1007/s11064-020-03031-032314178)
Nishijima T, Okamoto M, Matsui T et al (2012) Hippocampal functional hyperemia mediated by NMDA receptor/NO signaling in rats during mild exercise. J Appl Physiol 112:197–203. https://doi.org/10.1152/japplphysiol.00763.2011. (PMID: 10.1152/japplphysiol.00763.201121940846)
Padilha CS, Cella PS, Ribeiro AS et al (2019) Moderate vs. high-load resistance training on muscular adaptations in rats. Life Sci 238:116964. https://doi.org/10.1016/j.lfs.2019.116964. (PMID: 10.1016/j.lfs.2019.11696431639398)
Park HR, Park M, Choi J et al (2010) A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett 482:235–239. https://doi.org/10.1016/j.neulet.2010.07.046. (PMID: 10.1016/j.neulet.2010.07.04620670674)
Park HS, Park SS, Kim CJ et al (2019) Exercise alleviates cognitive functions by enhancing hippocampal insulin signaling and neuroplasticity in high-fat diet-induced obesity. Nutrients 11:1–13. https://doi.org/10.3390/nu11071603. (PMID: 10.3390/nu11071603)
Pereira GB, Prestes J, Leite RD et al (2010) Effects of ovariectomy and resistance training on MMP-2 activity in rat calcaneal tendon. Connect Tissue Res 51:459–466. https://doi.org/10.3109/03008201003676330. (PMID: 10.3109/0300820100367633020388014)
Pesta DH, Goncalves RLS, Madiraju AK et al (2017) Resistance training to improve type 2 diabetes: working toward a prescription for the future. Nutr Metab 14:1–10. https://doi.org/10.1186/s12986-017-0173-7. (PMID: 10.1186/s12986-017-0173-7)
Piepmeier AT, Etnier JL (2015) Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. J Sport Heal Sci 4:14–23. https://doi.org/10.1016/j.jshs.2014.11.001. (PMID: 10.1016/j.jshs.2014.11.001)
Piroli GG, Grillo CA, Reznikov LR et al (2007) Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus. Neuroendocrinology 85:71–80. https://doi.org/10.1159/000101694. (PMID: 10.1159/00010169417426391)
Pratchayasakul W, Kerdphoo S, Petsophonsakul P et al (2011) Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci 88:619–627. https://doi.org/10.1016/j.lfs.2011.02.003. (PMID: 10.1016/j.lfs.2011.02.00321315737)
Puig KL, Floden AM, Adhikari R et al (2012) Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. PLoS ONE 7:1–16. https://doi.org/10.1371/journal.pone.0030378. (PMID: 10.1371/journal.pone.0030378)
Rasmussen P, Brassard P, Adser H et al (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94:1062–1069. https://doi.org/10.1113/expphysiol.2009.048512. (PMID: 10.1113/expphysiol.2009.04851219666694)
Rasmussen P, Vedel JC, Olesen J et al (2011) In humans IL-6 is released from the brain during and after exercise and paralleled by enhanced IL-6 mRNA expression in the hippocampus of mice. Acta Physiol 201:475–482. https://doi.org/10.1111/j.1748-1716.2010.02223.x. (PMID: 10.1111/j.1748-1716.2010.02223.x)
Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93:993–1017. https://doi.org/10.1152/physrev.00038.2012. (PMID: 10.1152/physrev.00038.201223899560)
Robertson RP, Harmon J, Tran PO et al (2003) Glucose toxicity in β-Cells: type 2 Diabetes, Good Radicals Gone Bad, and the Glutathione Connection. Diabetes 52:581–587. https://doi.org/10.2337/diabetes.52.3.581. (PMID: 10.2337/diabetes.52.3.58112606496)
Rojas JJ, Deniz BF, Miguel PM et al (2013) Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia-ischemia in the rat. Exp Neurol 241:25–33. https://doi.org/10.1016/j.expneurol.2012.11.026. (PMID: 10.1016/j.expneurol.2012.11.02623219882)
Sharma S (2021) High fat diet and its effects on cognitive health: alterations of neuronal and vascular components of brain. Physiol Behav 240:113528. https://doi.org/10.1016/J.PHYSBEH.2021.113528. (PMID: 10.1016/J.PHYSBEH.2021.11352834260890)
Shekarchian M, Peeri M, Azarbayjani MA (2023) Physical activity in a swimming pool attenuates memory impairment by reducing glutamate and inflammatory cytokines and increasing BDNF in the brain of mice with type 2 diabetes. Brain Res Bull 201:1–14. https://doi.org/10.1016/j.brainresbull.2023.110725. (PMID: 10.1016/j.brainresbull.2023.110725)
Shin HW, Kim H, Lee KJ (2015) Differences in BDNF serum levels in patients with Alzheimer’s disease and mild cognitive impairment. Afr J Psychiatry 18:1–5. https://doi.org/10.4172/Psychiatry.1000245. (PMID: 10.4172/Psychiatry.1000245)
Sigal RJ, Wasserman DH, Kenny GP, Castaneda-Sceppa C (2004) Physical activity/exercise and type 2 diabetes. Diabetes Care 10:2518–2539. https://doi.org/10.2337/diacare.27.10.2518. (PMID: 10.2337/diacare.27.10.2518)
Silveira-Rodrigues JG, Campos BT, de Lima AT et al (2023) Acute bouts of aerobic and resistance exercise similarly alter inhibitory control and response time while inversely modifying plasma BDNF concentrations in middle-aged and older adults with type 2 diabetes. Exp Brain Res. https://doi.org/10.1007/s00221-023-06588-8. (PMID: 10.1007/s00221-023-06588-836912948)
Sylow L, Kleinert M, Richter EA, Jensen TE (2017) Exercise-stimulated glucose uptake-regulation and implications for glycaemic control. Nat Rev Endocrinol 13:133–148. https://doi.org/10.1038/nrendo.2016.162. (PMID: 10.1038/nrendo.2016.16227739515)
Tsai CL, Ukropec J, Ukropcová B, Pai MC (2018) An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. NeuroImage Clin 17:272–284. https://doi.org/10.1016/j.nicl.2017.10.028. (PMID: 10.1016/j.nicl.2017.10.02829527475)
Winocur G, Greenwood CE, Piroli GG et al (2005) Memory impairment in Obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci 119:1389–1395. https://doi.org/10.1037/0735-7044.119.5.1389. (PMID: 10.1037/0735-7044.119.5.138916300445)
Yu M, Huang H, Dong S et al (2019) High mobility group box-1 mediates hippocampal inflammation and contributes to cognitive deficits in high-fat high-fructose diet-induced obese rats. Brain Behav Immun 82:167–177. https://doi.org/10.1016/j.bbi.2019.08.007. (PMID: 10.1016/j.bbi.2019.08.00731430517)
فهرسة مساهمة: Keywords: BDNF; Insulin resistance; Memory; Resistance exercise
المشرفين على المادة: 0 (Brain-Derived Neurotrophic Factor)
0 (Insulin)
تواريخ الأحداث: Date Created: 20240307 Date Completed: 20240329 Latest Revision: 20240409
رمز التحديث: 20240409
DOI: 10.1007/s00221-024-06795-x
PMID: 38453752
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1106
DOI:10.1007/s00221-024-06795-x