دورية أكاديمية

Malaria blood stage infection suppresses liver stage infection via host-induced interferons but not hepcidin.

التفاصيل البيبلوغرافية
العنوان: Malaria blood stage infection suppresses liver stage infection via host-induced interferons but not hepcidin.
المؤلفون: Patel H; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA., Minkah NK; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.; Department of Pediatrics, University of Washington, Seattle, WA, USA., Kumar S; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA., Zanghi G; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA., Schepis A; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA., Goswami D; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA., Armstrong J; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA., Abatiyow BA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA., Betz W; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA., Reynolds L; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA., Camargo N; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA., Sheikh AA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA., Kappe SHI; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA. stefan.kappe@seattlechildrens.org.; Department of Pediatrics, University of Washington, Seattle, WA, USA. stefan.kappe@seattlechildrens.org.; Department of Global Health, University of Washington, Seattle, WA, USA. stefan.kappe@seattlechildrens.org.
المصدر: Nature communications [Nat Commun] 2024 Mar 07; Vol. 15 (1), pp. 2104. Date of Electronic Publication: 2024 Mar 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Malaria Vaccines* , Malaria*/parasitology , Plasmodium* , Liver Diseases*, Female ; Humans ; Hepcidins ; Liver
مستخلص: Malaria-causing Plasmodium parasites first replicate as liver stages (LS), which then seed symptomatic blood stage (BS) infection. Emerging evidence suggests that these stages impact each other via perturbation of host responses, and this influences the outcome of natural infection. We sought to understand whether the parasite stage interplay would affect live-attenuated whole parasite vaccination, since the efficacy of whole parasite vaccines strongly correlates with their extend of development in the liver. We thus investigated the impact of BS infection on LS development of genetically attenuated and wildtype parasites in female rodent malaria models and observed that for both, LS infection suffered severe suppression during concurrent BS infection. Strikingly and in contrast to previously published studies, we find that the BS-induced iron-regulating hormone hepcidin is not mediating suppression of LS development. Instead, we demonstrate that BS-induced host interferons are the main mediators of LS developmental suppression. The type of interferon involved depended on the BS-causing parasite species. Our study provides important mechanistic insights into the BS-mediated suppression of LS development. This has direct implications for understanding the outcomes of live-attenuated Plasmodium parasite vaccination in malaria-endemic areas and might impact the epidemiology of natural malaria infection.
(© 2024. The Author(s).)
References: Organization W. H. World Malaria Report 2021 (World Health Organisation, 2021).
Chora, Â. F., Mota, M. M. & Prudêncio, M. The reciprocal influence of the liver and blood stages of the malaria parasite’s life cycle. Int. J. Parasitol. 52, 711–715 (2022).
Sato, Y., Ries, S., Stenzel, W., Fillatreau, S. & Matuschewski, K. The liver-stage plasmodium infection is a critical checkpoint for development of experimental cerebral malaria. Front Immunol. 10, 2554 (2019). (PMID: 10.3389/fimmu.2019.02554317369706837997)
Chora, Â. F. et al. Interplay between liver and blood stages of Plasmodium infection dictates malaria severity via γδ T cells and IL-17-promoted stress erythropoiesis. Immunity 56, 592–605.e598 (2023). (PMID: 10.1016/j.immuni.2023.01.03136804959)
Portugal, S. et al. Host-mediated regulation of superinfection in malaria. Nat. Med. 17, 732–737 (2011). (PMID: 10.1038/nm.2368215724274200394)
Portugal, S., Armitage, A. E., Newbold, C. I., Drakesmith, H. & Mota, M. M. Reply to: Hepcidin in malaria superinfection: can findings be translated to humans? Nat. Med. 17, 1341–1342 (2011). (PMID: 10.1038/nm.2511)
Portugal, S., Drakesmith, H. & Mota, M. M. Superinfection in malaria: Plasmodium shows its iron will. EMBO Rep. 12, 1233–1242 (2011). (PMID: 10.1038/embor.2011.213220811423245699)
Mwakingwe-Omari, A. et al. Two chemoattenuated PfSPZ malaria vaccines induce sterile hepatic immunity. Nature 595, 289–294 (2021). (PMID: 10.1038/s41586-021-03684-z34194041)
Butler, N. S. et al. Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. Cell Host Microbe 9, 451–462 (2011). (PMID: 10.1016/j.chom.2011.05.008216693943117254)
Murphy, S. C. et al. PfSPZ-CVac efficacy against malaria increases from 0% to 75% when administered in the absence of erythrocyte stage parasitemia: a randomized, placebo-controlled trial with controlled human malaria infection. PLoS Pathog. 17, e1009594 (2021). (PMID: 10.1371/journal.ppat.1009594340485048191919)
Vaughan, A. M. et al. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol. 11, 506–520 (2009). (PMID: 10.1111/j.1462-5822.2008.01270.x19068099)
Wang, H. Z., He, Y. X., Yang, C. J., Zhou, W. & Zou, C. G. Hepcidin is regulated during blood-stage malaria and plays a protective role in malaria infection. J. Immunol. 187, 6410–6416 (2011). (PMID: 10.4049/jimmunol.110143622084434)
Steinbicker, A. U. et al. Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation. Blood 117, 4915–4923 (2011). (PMID: 10.1182/blood-2010-10-313064213934793100698)
Nemeth, E. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Invest 113, 1271–1276 (2004). (PMID: 10.1172/JCI20042094515124018398432)
Gun, S. Y., Claser, C., Tan, K. S. & Rénia, L. Interferons and interferon regulatory factors in malaria. Mediators Inflamm. 2014, 243713 (2014). (PMID: 10.1155/2014/243713251572024124246)
Mandala, W. L. et al. Cytokine profiles in Malawian children presenting with uncomplicated malaria, severe malarial anemia, and cerebral malaria. Clin. Vaccin. Immunol. 24, e00533–00516 (2017). (PMID: 10.1128/CVI.00533-16)
Sun, T. et al. A Plasmodium-encoded cytokine suppresses T-cell immunity during malaria. Proc. Natl Acad. Sci. USA 109, E2117–2126 (2012). (PMID: 10.1073/pnas.1206573109227784133411961)
Miller, J. L., Sack, B. K., Baldwin, M., Vaughan, A. M. & Kappe, S. H. Interferon-mediated innate immune responses against malaria parasite liver stages. Cell Rep. 7, 436–447 (2014). (PMID: 10.1016/j.celrep.2014.03.01824703850)
Liehl, P. et al. Innate immunity induced by Plasmodium liver infection inhibits malaria reinfections. Infect. Immun. 83, 1172–1180 (2015). (PMID: 10.1128/IAI.02796-14255835244333462)
Ferreira, A. et al. Inhibition of development of exoerythrocytic forms of malaria parasites by gamma-interferon. Science 232, 881–884 (1986). (PMID: 10.1126/science.30852183085218)
Silvie, O. et al. Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species. Cell Microbiol. 8, 1134–1146 (2006). (PMID: 10.1111/j.1462-5822.2006.00697.x16819966)
Nussler, A. et al. TNF inhibits malaria hepatic stages in vitro via synthesis of IL-6. Int. Immunol. 3, 317–321 (1991). (PMID: 10.1093/intimm/3.4.3171878339)
Mathieu, C. et al. Plasmodium berghei histamine-releasing factor favours liver-stage development via inhibition of IL-6 production and associates with a severe outcome of disease. Cell Microbiol. 17, 542–558 (2015). (PMID: 10.1111/cmi.1238225329441)
de Menezes, M. N. et al. IL-1α promotes liver inflammation and necrosis during blood-stage Plasmodium chabaudi malaria. Sci. Rep. 9, 7575 (2019). (PMID: 10.1038/s41598-019-44125-2311102856527574)
Gehrke, N. et al. Hepatocyte-specific deletion of IL1-RI attenuates liver injury by blocking IL-1 driven autoinflammation. J. Hepatol. 68, 986–995 (2018). (PMID: 10.1016/j.jhep.2018.01.00829366909)
Adachi, K. et al. Plasmodium berghei infection in mice induces liver injury by an IL-12- and toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J. Immunol. 167, 5928–5934 (2001). (PMID: 10.4049/jimmunol.167.10.592811698470)
Yoshimoto, T. et al. A pathogenic role of IL-12 in blood-stage murine malaria lethal strain Plasmodium berghei NK65 infection. J. Immunol. 160, 5500–5505 (1998). (PMID: 10.4049/jimmunol.160.11.55009605153)
Drewry, L. L. & Harty, J. T. Balancing in a black box: potential immunomodulatory roles for TGF-β signaling during blood-stage malaria. Virulence 11, 159–169 (2020). (PMID: 10.1080/21505594.2020.1726569320434157051139)
Robert, V. et al. Malaria transmission in urban sub-Saharan Africa. Am. J. Trop. Med. Hyg. 68, 169–176 (2003). (PMID: 10.4269/ajtmh.2003.68.16912641407)
Djoufounna, J. et al. High prevalence of asymptomatic Plasmodium falciparum malaria in Makenene, a locality in the forest-savannah transition zone, Centre Region of Cameroon. Curr. Res. Parasitol. Vector Borne Dis. 2, 100104 (2022). (PMID: 10.1016/j.crpvbd.2022.100104365045979731883)
Bousema, T., Okell, L., Felger, I. & Drakeley, C. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat. Rev. Microbiol. 12, 833–840 (2014). (PMID: 10.1038/nrmicro336425329408)
Nussler, A. K. et al. In vivo induction of the nitric oxide pathway in hepatocytes after injection with irradiated malaria sporozoites, malaria blood parasites or adjuvants. Eur. J. Immunol. 23, 882–887 (1993). (PMID: 10.1002/eji.18302304178458376)
Sangkhae, V. & Nemeth, E. Regulation of the iron homeostatic hormone hepcidin. Adv. Nutr. 8, 126–136 (2017). (PMID: 10.3945/an.116.013961280961335227985)
Michels, K., Nemeth, E., Ganz, T. & Mehrad, B. Hepcidin and host defense against infectious diseases. PLoS Pathog. 11, e1004998 (2015). (PMID: 10.1371/journal.ppat.1004998262913194546197)
Atkinson, S. H. et al. Malaria and age variably but critically control hepcidin throughout childhood in Kenya. EBioMedicine 2, 1478–1486 (2015). (PMID: 10.1016/j.ebiom.2015.08.016266295424634196)
Platanias, L. C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5, 375–386 (2005). (PMID: 10.1038/nri160415864272)
Stempelj, M., Kedinger, M., Augenlicht, L. & Klampfer, L. Essential role of the JAK/STAT1 signaling pathway in the expression of inducible nitric-oxide synthase in intestinal epithelial cells and its regulation by butyrate. J. Biol. Chem. 282, 9797–9804 (2007). (PMID: 10.1074/jbc.M60942620017251186)
Zhu, S. et al. Inhibiting autophagy potentiates the anticancer activity of IFN1@/IFNα in chronic myeloid leukemia cells. Autophagy 9, 317–327 (2013). (PMID: 10.4161/auto.22923232422063590253)
Lelliott, P. M. & Coban, C. IFN-γ protects hepatocytes against Plasmodium vivax infection via LAP-like degradation of sporozoites. Proc. Natl Acad. Sci. USA 113, 6813–6815 (2016). (PMID: 10.1073/pnas.1607007113272868234922169)
Mellouk, S. et al. Nitric oxide-mediated antiplasmodial activity in human and murine hepatocytes induced by gamma interferon and the parasite itself: enhancement by exogenous tetrahydrobiopterin. Infect. Immun. 62, 4043–4046 (1994). (PMID: 10.1128/iai.62.9.4043-4046.19948063424303065)
Seguin, M. C. et al. Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: involvement of interferon gamma and CD8+ T cells. J. Exp. Med. 180, 353–358 (1994). (PMID: 10.1084/jem.180.1.3537516412)
Mellouk, S., Green, S. J., Nacy, C. A. & Hoffman, S. L. IFN-gamma inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism. J. Immunol. 146, 3971–3976 (1991). (PMID: 10.4049/jimmunol.146.11.39711903415)
Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004). (PMID: 10.1189/jlb.060325214525967)
Darnell, J. E. Jr. STATs and gene regulation. Science 277, 1630–1635 (1997). (PMID: 10.1126/science.277.5332.16309287210)
Platanias, L. C. & Fish, E. N. Signaling pathways activated by interferons. Exp. Hematol. 27, 1583–1592 (1999). (PMID: 10.1016/S0301-472X(99)00109-510560905)
Sack, B. K. et al. Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites. PLoS Pathog. 11, e1004855 (2015). (PMID: 10.1371/journal.ppat.1004855259740764431720)
Mordmuller, B. et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature 542, 445–449 (2017). (PMID: 10.1038/nature210602819930510906480)
Goswami, D., Minkah, N. K. & Kappe, S. H. I. Malaria parasite liver stages. J. Hepatol. 76, 735–737 (2022). (PMID: 10.1016/j.jhep.2021.05.03434711453)
Slater, A. F. G. Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharm. Ther. 57, 203–235 (1993). (PMID: 10.1016/0163-7258(93)90056-J)
Minkah, N. K. et al. Innate immunity limits protective adaptive immune responses against pre-erythrocytic malaria parasites. Nat. Commun. 10, 3950 (2019). (PMID: 10.1038/s41467-019-11819-0314777046718385)
Badovinac, V. P., Tvinnereim, A. R. & Harty, J. T. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. Science 290, 1354–1358 (2000). (PMID: 10.1126/science.290.5495.135411082062)
Prabhu, N. et al. Gamma interferon regulates contraction of the influenza virus-specific CD8 T cell response and limits the size of the memory population. J. Virol. 87, 12510–12522 (2013). (PMID: 10.1128/JVI.01776-13240273343838152)
Iriemenam, N. C. et al. Cytokine profiles and antibody responses to Plasmodium falciparum malaria infection in individuals living in Ibadan, southwest Nigeria. Afr. Health Sci. 9, 66–74 (2009). (PMID: 196527392707050)
Robinson, L. J. et al. Cellular tumor necrosis factor, gamma interferon, and interleukin-6 responses as correlates of immunity and risk of clinical Plasmodium falciparum malaria in children from Papua New Guinea. Infect. Immun. 77, 3033–3043 (2009). (PMID: 10.1128/IAI.00211-09193804682708537)
Luty, A. J. et al. Interferon-gamma responses are associated with resistance to reinfection with Plasmodium falciparum in young African children. J. Infect. Dis. 179, 980–988 (1999). (PMID: 10.1086/31468910068595)
D’Ombrain, M. C. et al. Association of early interferon-gamma production with immunity to clinical malaria: a longitudinal study among Papua New Guinean children. Clin. Infect. Dis. 47, 1380–1387 (2008). (PMID: 10.1086/59297118947328)
Deloron, P., Chougnet, C., Lepers, J. P., Tallet, S. & Coulanges, P. Protective value of elevated levels of gamma interferon in serum against exoerythrocytic stages of Plasmodium falciparum. J. Clin. Microbiol. 29, 1757–1760 (1991). (PMID: 10.1128/jcm.29.9.1757-1760.19911774292270205)
Belnoue, E. et al. Vaccination with live Plasmodium yoelii blood stage parasites under chloroquine cover induces cross-stage immunity against malaria liver stage. J. Immunol. 181, 8552–8558 (2008). (PMID: 10.4049/jimmunol.181.12.855219050274)
Parmar, R. et al. Infectious sporozoites of Plasmodium berghei effectively activate liver CD8α+ dendritic cells. Front. Immunol. 9, 192 (2018).
Patel, H. et al. Frequent inoculations with radiation attenuated sporozoite is essential for inducing sterile protection that correlates with a threshold level of Plasmodia liver-stage specific CD8+ T cells. Cell Immunol. 317, 48–54 (2017). (PMID: 10.1016/j.cellimm.2017.05.00128499490)
Yadav, N., Parmar, R., Patel, H., Patidar, M. & Dalai, S. K. Infectious sporozoite challenge modulates radiation attenuated sporozoite vaccine–induced memory CD8+ T cells for better survival characteristics. Microbiol. Immunol. 66, 41–51 (2022). (PMID: 10.1111/1348-0421.1294834674290)
Yadav, N., Patel, H., Parmar, R., Patidar, M. & Dalai, S. K. TCR-signals downstream adversely correlate with the survival signals of memory CD8(+) T cells under homeostasis. Immunobiology 228, 152354 (2023). (PMID: 10.1016/j.imbio.2023.15235436854249)
Miller, J. L. et al. Quantitative bioluminescent imaging of pre-erythrocytic malaria parasite infection using luciferase-expressing Plasmodium yoelii. PLoS ONE 8, e60820 (2013). (PMID: 10.1371/journal.pone.0060820235933163623966)
Gutschow, P. et al. A competitive enzyme-linked immunosorbent assay specific for murine hepcidin-1: correlation with hepatic mRNA expression in established and novel models of dysregulated iron homeostasis. Haematologica 100, 167–177 (2015). (PMID: 10.3324/haematol.2014.116723254256864803145)
Vigdorovich, V. et al. Coimmunization with preerythrocytic antigens alongside circumsporozoite protein can enhance sterile protection against Plasmodium sporozoite infection. Microbiol Spectr. 11, e0379122 (2023). (PMID: 10.1128/spectrum.03791-2236847573)
Patel, H. et al. Parasite load stemming from immunization route determines the duration of liver-stage immunity. Parasite Immunol. 41, e12622 (2019). (PMID: 10.1111/pim.12622308546556584043)
Schepis, A., Kumar, S. & Kappe, S. H. I. Malaria parasites harness Rho GTPase signaling and host cell membrane ruffling for productive invasion of hepatocytes. Cell Rep. 42, 111927 (2023). (PMID: 10.1016/j.celrep.2022.11192736640315)
Lehmann, J. S., Rughwani, P., Kolenovic, M., Ji, S. & Sun, B. LEGENDplex™: bead-assisted multiplex cytokine profiling by flow cytometry. Methods Enzymol. 629, 151–176 (2019). (PMID: 10.1016/bs.mie.2019.06.00131727238)
المشرفين على المادة: 0 (Malaria Vaccines)
0 (Hepcidins)
تواريخ الأحداث: Date Created: 20240307 Date Completed: 20240311 Latest Revision: 20240311
رمز التحديث: 20240311
مُعرف محوري في PubMed: PMC10920859
DOI: 10.1038/s41467-024-46270-3
PMID: 38453916
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-46270-3