دورية أكاديمية

Eloquent noneloquence: redefinition of cortical eloquence based on outcomes of superficial cerebral cavernous malformation resection.

التفاصيل البيبلوغرافية
العنوان: Eloquent noneloquence: redefinition of cortical eloquence based on outcomes of superficial cerebral cavernous malformation resection.
المؤلفون: Hendricks BK; 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona., Scherschinski L; 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona., Jubran JH; 2University of Arizona College of Medicine-Phoenix, Arizona; and., Dadario NB; 3Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey., Karahalios K; 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona., Benner D; 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona., VanBrabant D; 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona., Lawton MT; 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
المصدر: Journal of neurosurgery [J Neurosurg] 2024 Mar 08; Vol. 141 (2), pp. 291-305. Date of Electronic Publication: 2024 Mar 08 (Print Publication: 2024).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Association of Neurological Surgeons Country of Publication: United States NLM ID: 0253357 Publication Model: Electronic-Print Cited Medium: Internet ISSN: 1933-0693 (Electronic) Linking ISSN: 00223085 NLM ISO Abbreviation: J Neurosurg Subsets: MEDLINE
أسماء مطبوعة: Publication: Charlottesville, VA : American Association of Neurological Surgeons
Original Publication: Chicago [etc.]
مواضيع طبية MeSH: Hemangioma, Cavernous, Central Nervous System*/surgery , Cerebral Cortex*/surgery , Cerebral Cortex*/diagnostic imaging, Humans ; Female ; Male ; Adult ; Middle Aged ; Retrospective Studies ; Treatment Outcome ; Neurosurgical Procedures/methods ; Young Adult ; Microsurgery/methods ; Adolescent ; Aged ; Magnetic Resonance Imaging
مستخلص: Objective: Cerebral cavernous malformations (CMs) are pathological lesions that cause discrete cortical disruption with hemorrhage, and their transcortical resections can cause additional iatrogenic disruption. The analysis of microsurgically treated CMs might identify areas of "eloquent noneloquence," or cortex that is associated with unexpected deficits when injured or transgressed.
Methods: Patients from a consecutive microsurgical series of superficial cerebral CMs who presented to the authors' center over a 13-year period were retrospectively analyzed. Neurological outcomes were measured using the modified Rankin Scale (mRS), and new, permanent neurological or cognitive symptoms not detected by changes in mRS scores were measured as additional functional decline. Patients with multiple lesions and surgical encounters for different lesions within the study interval were represented within the cohort as multiple patient entries. Virtual object models for CMs and approach trajectories to subcortical lesions were merged into a template brain model for subtyping and Quicktome connectomic analyses. Parcellation outputs from the models were analyzed for regional cerebral clustering.
Results: Overall, 362 CMs were resected in 346 patients, and convexity subtypes were the most common (132/362, 36.5%). Relative to the preoperative mRS score, 327 of 362 cases (90.3%) were in patients who improved or remained stable, 35 (9.7%) were in patients whose conditions worsened, and 47 (13.0%) were in patients who had additional functional decline. Machine learning analyses of lesion objects and trajectory cylinder mapping identified 7 hotspots of novel eloquence: supplementary motor area (bilateral), anterior cingulate cortex (bilateral), posterior cingulate cortex (bilateral), anterior insula (left), frontal pole (right), mesial temporal lobe (left), and occipital cortex (right).
Conclusions: Transgyral and transsulcal resections that circumvent areas of traditional eloquence and navigate areas of presumed noneloquence may nonetheless result in unfavorable outcomes, demonstrating that brain long considered by neurosurgeons to be noneloquent may be eloquent. Eloquent hotspots within multiple large-scale networks redefine the neurosurgical concept of eloquence and call for more refined dissection techniques that maximize transsulcal dissection, intracapsular resection, and tissue preservation. Human connectomics, awareness of brain networks, and prioritization of cognitive outcomes require that we update our concept of cortical eloquence and incorporate this information into our surgical strategies.
فهرسة مساهمة: Keywords: cavernous malformation; connectome; eloquence; large-scale brain network; machine learning; noneloquence; transgyral approach; transsulcal approach; vascular disorders
تواريخ الأحداث: Date Created: 20240308 Date Completed: 20240801 Latest Revision: 20240801
رمز التحديث: 20240802
DOI: 10.3171/2023.12.JNS232588
PMID: 38457787
قاعدة البيانات: MEDLINE
الوصف
تدمد:1933-0693
DOI:10.3171/2023.12.JNS232588