دورية أكاديمية

A potential link between aromatics-induced oviposition repellency behaviors and specific odorant receptor of Aedes albopictus.

التفاصيل البيبلوغرافية
العنوان: A potential link between aromatics-induced oviposition repellency behaviors and specific odorant receptor of Aedes albopictus.
المؤلفون: Yan R; College of Life Sciences, Zhejiang University, Hangzhou, China., Chen P; Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China., Xu Z; Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China., Qian J; Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China., Zhu G; Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China., Jin Y; College of Life Sciences, Zhejiang University, Hangzhou, China., Chen B; The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China., Chen M; The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China.
المصدر: Pest management science [Pest Manag Sci] 2024 Jul; Vol. 80 (7), pp. 3603-3611. Date of Electronic Publication: 2024 Mar 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Published for SCI by Wiley Country of Publication: England NLM ID: 100898744 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1526-4998 (Electronic) Linking ISSN: 1526498X NLM ISO Abbreviation: Pest Manag Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: West Sussex, UK : Published for SCI by Wiley, c2000-
مواضيع طبية MeSH: Aedes*/drug effects , Aedes*/genetics , Aedes*/physiology , Receptors, Odorant*/genetics , Receptors, Odorant*/metabolism , Oviposition*/drug effects , Insect Repellents*/pharmacology, Animals ; Female ; Male ; Insect Proteins/metabolism ; Insect Proteins/genetics ; Molecular Docking Simulation ; Arthropod Antennae/drug effects ; Arthropod Antennae/physiology
مستخلص: Background: The Asian tiger mosquito, Aedes albopictus, is a competent vector for the spread of several viral arboviruses including dengue, chikungunya, and Zika. Several vital mosquito behaviors linked to survival and reproduction are primarily dependent on a sophisticated olfactory system for semiochemical perception. However, a limited number of studies has hampered our understanding of the relationship between the A. albopictus acute olfactory system and the complex chemical world.
Results: Here, we performed a qRT-PCR assay on antennae from A. albopictus of differing sex, age and physiological states, and found that AalbOr10 was enriched in blood-fed female mosquitoes. We then undertook single sensillum recording to de-orphan AalbOr10 using a panel of physiologically and behaviorally relevant odorants in a Drosophila 'empty neuron' system. The results indicated that AalbOr10 was activated by seven aromatic compounds, all of which hampered egg-laying in blood-fed mosquitoes. Furthermore, using a post-RNA interference oviposition assay, we found that reducing the transcript level of AalbOr10 affected repellent activity mediated by 2-ethylphenol at low concentrations (10 -4 vol/vol). Computational modeling and molecular docking studies suggested that hydrogen bonds to Y68 and Y150 mediated the interaction of 2-ethylphenol with AalbOr10.
Conclusion: We reveal a potential link between aromatics-induced oviposition repellency behaviors and a specific odorant receptor in A. albopictus. Our findings provide a foundation for identifying active semiochemicals for the monitoring or controlling of mosquito populations. © 2024 Society of Chemical Industry.
(© 2024 Society of Chemical Industry.)
References: Gratz NG, Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227 (2004).
Scholte E and Schaffner F, Waiting for the tiger: establishment and spread of the Aedes albopictus mosquito in Europe, in Emerging Pests Vector‐Borne Diseases in Europe, Wageningen Academic Publishers, Wageningen Vol. 1, pp. 241–260 (2007).
Pereira‐dos‐Santos T, Roiz D, Lourenco‐de‐Oliveira R and Paupy C, A systematic review: is Aedes albopictus an efficient bridge vector for zoonotic arboviruses? Pathogens 9:266 (2020).
Bonilauri P, Bellini R, Calzolari M, Angeflni R, Venturi L, Fallacara F et al., Chikungunya virus in Aedes albopictus, Italy. Emerg Infect Dis 14:852–854 (2008).
Grard G, Caron M, Mombo IM, Nkoghe D, Ondo SM, Jiolle D et al., Zika virus in Gabon (Central Africa)‐2007: a new threat from Aedes albopictus? PLoS Neglected Trop Dis 8:e2681 (2014).
Peng HJ, Lai HB, Zhang QL, Xu BY, Zhang H, Liu WH et al., A local outbreak of dengue caused by an imported case in Dongguan China. BMC Public Health 12:8 (2012).
Tsuda Y, Maekawa Y, Ogawa K, Itokawa K, Komagata O, Sasaki T et al., Biting density and distribution of Aedes albopictus during the September 2014 outbreak of dengue fever in Yoyogi Park and the vicinity of Tokyo Metropolis, Japan. Jpn J Infect Dis 69:1–5 (2016).
Vazeille M, Mousson L, Martin E and Failloux AB, Orally co‐infected Aedes albopictus from La Reunion Island, Indian Ocean, can deliver both dengue and chikungunya infectious viral particles in their saliva. PLoS Neglected Trop Dis 4:e707 (2010).
Rezza G, Aedes albopictus and the reemergence of dengue. BMC Public Health 12:72 (2012).
Lutz EK, Lahondere C, Vinauger C and Riffell JA, Olfactory learning and chemical ecology of olfaction in disease vector mosquitoes: a life history perspective. Curr Opin Insect Sci 20:75–83 (2017).
Coutinho‐Abreu IV, Riffell JA and Akbari OS, Human attractive cues and mosquito host‐seeking behavior. Trends Parasitol 38:246–264 (2022).
Schmidt HR and Benton R, Molecular mechanisms of olfactory detection in insects: beyond receptors. Open Biol 10:200252 (2020).
Fleischer J, Pregitzer P, Breer H and Krieger J, Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cell Mol Life Sci 75:485–508 (2018).
Couto A, Alenius M and Dickson BJ, Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15:1535–1547 (2005).
Knaden M, Strutz A, Ahsan J, Sachse S and Hansson BS, Spatial representation of odorant valence in an insect brain. Cell Rep 1:392–399 (2012).
Bohbot JD, Durand NF, Vinyard BT and Dickens JC, Functional development of the octenol response in Aedes aegypti. Front Physiol 4:39 (2013).
Liu HM, Liu T, Xie LH, Wang XM, Deng YH, Chen CH et al., Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus. Parasites Vectors 9:1–10 (2016).
Scialo F, Hansson BS, Giordano E, Polito CL and Digilio FA, Molecular and functional characterization of the odorant receptor 2 (OR2) in the tiger mosquito Aedes albopictus. PLoS One 7:e36538 (2012).
Wang GR, Carey AF, Carlson JR and Zwiebel LJ, Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci USA 107:4418–4423 (2010).
Xu PX, Zeng FF, Bedoukian RH and Leal WS, DEET and other repellents are inhibitors of mosquito odorant receptors for oviposition attractants. Insect Biochem Mol Biol 113:103224 (2019).
McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R et al., Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515:222–227 (2014).
Huff RM and Pitts RJ, Carboxylic acid responses by a conserved odorant receptor in culicine vector mosquitoes. Insect Mol Biol 29:523–530 (2020).
Choo YM, Xu PX, Hwang JK, Zeng FF, Tan KM, Bhagavathy G et al., Reverse chemical ecology approach for the identification of an oviposition attractant for Culex quinquefasciatus. Proc Natl Acad Sci USA 115:714–719 (2018).
Zhu F, Xu P, Barbosa RMR, Choo YM and Leal WS, RNAi‐based demonstration of direct link between specific odorant receptors and mosquito oviposition behavior. Insect Biochem Mol Biol 43:916–923 (2013).
Liu F, Wang Q, Xu P, Andreazza F, Valbon WR, Bandason E et al., A dual‐target molecular mechanism of pyrethrum repellency against mosquitoes. Nat Commun 12:1–9 (2021).
Xu PX, Choo YM, De La Rosa A and Leal WS, Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci USA 111:16592–16597 (2014).
Carey AF, Wang G, Su CY, Zwiebel LJ and Carlson JR, Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464:66–71 (2010).
Gallagher M, Wysocki CJ, Leyden JJ, Spielman AI, Sun X and Preti G, Analyses of volatile organic compounds from human skin. Br J Dermatol 159:780–791 (2008).
Mwingira V, Mboera LEG, Dicke M and Takken W, Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: a review. J Vector Ecol 45:155–179 (2020).
Gonzalez F, Witzgall P and Walker WB, Protocol for heterologous expression of insect Odourant receptors in Drosophila. Front Ecol Evol 4:24 (2016).
Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA and Carlson JR, Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841 (2003).
Stahl K, Graziadei A, Dau T, Brock O and Rappsilber J, Protein structure prediction with in‐cell photo‐crosslinking mass spectrometry and deep learning. Nat Biotechnol 41:1810–1819 (2023).
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T and Hutchison GR, Open babel: an open chemical toolbox. J Chem 3:1–14 (2011).
Trott O and Olson AJ, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461 (2010).
Salentin S, Schreiber S, Haupt VJ, Adasme MF and Schroeder M, PLIP: fully automated protein‐ligand interaction profiler. Nucleic Acids Res 43:W443–W447 (2015).
Marinotti O, Nguyen QK, Calvo E, James AA and Ribeiro JMC, Microarray analysis of genes showing variable expression following a blood meal in Anopheles gambiae. Insect Mol Biol 14:365–373 (2005).
Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JMC and James AA, Genome‐wide analysis of gene expression in adult Anopheles gambiae. Insect Mol Biol 15:1–12 (2006).
Rund SSC, Hou TY, Ward SM, Collins FH and Duffield GE, Genome‐wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA 108:E421–E430 (2011).
Sim CK, Perry S, Tharadra SK, Lipsick JS and Ray A, Epigenetic regulation of olfactory receptor gene expression by the Myb‐MuvB/dREAM complex. Gene Dev 26:2483–2498 (2012).
Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Dimon MT, Marinotti O et al., RNA‐seq analyses of blood‐induced changes in gene expression in the mosquito vector species, Aedes aegypti. BMC Genomics 12:1–13 (2011).
Rinker DC, Zhou XF, Pitts RJ, Rokas A, Zwiebel LJ and Consortium A, Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae. BMC Genomics 14:1–15 (2013a).
Matthews BJ, McBride CS, DeGennaro M, Despo O and Vosshall LB, The neurotranscriptome of the Aedes aegypti mosquito. BMC Genomics 17:32 (2016).
Yan R, Xu ZY, Qian JL, Zhou QL, Wu HM, Liu YH et al., Molecular and functional characterization of a conserved odorant receptor from Aedes albopictus. Parasites Vectors 15:43 (2022).
Rinker DC, Pitts RJ, Zhou XF, Suh E, Rokas A and Zwiebel LJ, Blood meal‐induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae. Proc Natl Acad Sci USA 110:8260–8265 (2013b).
Wang B, Liu Y, He K and Wang G, Comparison of research methods for functional characterization of insect olfactory receptors. Sci Rep 6:32806 (2016).
Franco FP, Xu PX, Harris BJ, Yarov‐Yarovoy V and Leal WS, Single amino acid residue mediates reciprocal specificity in two mosquito odorant receptors. eLife 11:e82922 (2022).
Hughes DT, Pelletier J, Luetje CW and Leal WS, Odorant receptor from the southern house mosquito narrowly tuned to the oviposition attractant skatole. J Chem Ecol 36:797–800 (2010).
Pelletier J, Hughes DT, Luetje CW and Leal WS, An odorant receptor from the southern house mosquito Culex pipiens quinquefasciatus sensitive to oviposition attractants. PLoS One 5:e10090 (2010).
Bohbot JD and Pitts RJ, The narrowing olfactory landscape of insect odorant receptors. Front Ecol Evol 3:e39 (2015).
Ruel DM, Yakir E and Bohbot JD, Supersensitive odorant receptor underscores pleiotropic roles of indoles in mosquito ecology. Front Cell Neurosci 12:533 (2019).
Millar JG, Chaney JD and Mulla MS, Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. J Am Mosq Control Assoc 8:11–17 (1992).
Torres‐Estrada JJ, Meza‐Alvarez RA, Cibrian‐Tovar J, Rodriguez‐Lopez MH, Arredondo‐Jimenez JI, Cruz‐Lopez L et al., Vegetation‐derived cues for the selection of oviposition substrates by Anopheles albimanus under laboratory conditions. J Am Mosq Control Assoc 21:344–349 (2005).
Afify A and Galizia CG, Gravid females of the mosquito Aedes aegypti avoid oviposition on m‐cresol in the presence of the deterrent isomer p‐cresol. Parasites Vectors 7:315 (2014).
Bentley MD, McDaniel IN, Yatagai M, Lee HP and Maynard R, p‐Cresol: an oviposition attractant of Aedes triseriatus. Environ Entomol 8:206209 (1979).
Bentley MD, McDaniel IN, Yatagai M, Lee HP and Maynard R, Oviposition attractants and stimulunts of Aedes triseriatus (say) (Diptera: Culicidae). Environ Entomol 10:186–189 (1981).
Du YJ and Millar JG, Electroantennogram and oviposition bioassay responses of Culex quinquefasciatus and Culex tarsalis (Diptera: Culicidae) to chemicals in odors from Bermuda grass infusions. J Med Entomol 36:158–166 (1999).
Linley JR, Laboratory tests of the effects of p‐cresol and 4‐methylcyclohexanol on oviposition by three species of Toxorhynchites mosquitoes. Med Vet Entomol 3:347–352 (1989).
Trexler JD, Apperson CS, Gemeno C, Perich MJ, Carlson D and Schal C, Field and laboratory evaluations of potential oviposition attractants for Aedes albopictus (Diptera: Culicidae). J Am Mosq Control Assoc 19:228–234 (2003).
Zeng F, Xu P and Leal WS, Odorant receptors from Culex quinquefasciatus and Aedes aegypti sensitive to floral compounds. Insect Biochem Mol Biol 113:103213 (2019).
Tiwari V and Sowdhamini R, Structure modelling of odorant receptor from and identification of potential repellent molecules. Comput Struct Biotechnol 21:2204–2214 (2023).
Shan S, Song X, Khashaveh A, Wang SN, Lu ZY, Dhiloo KH et al., A female‐biased odorant receptor tuned to the lepidopteran sex pheromone in parasitoid Microplitis mediator guiding habitat of host insects. J Adv Res 43:1–12 (2023).
Yuvaraj JK, Roberts RE, Sonntag Y, Hou YQ, Grosse‐Wilde E, Machara A et al., Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol 19:1–21 (2021).
معلومات مُعتمدة: 32300447 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: Aedes albopictus; RNAi; aromatics; odorant receptor; oviposition repellency
المشرفين على المادة: 0 (Receptors, Odorant)
0 (Insect Repellents)
0 (Insect Proteins)
SCR Organism: Aedes albopictus
تواريخ الأحداث: Date Created: 20240308 Date Completed: 20240605 Latest Revision: 20240605
رمز التحديث: 20240605
DOI: 10.1002/ps.8064
PMID: 38458148
قاعدة البيانات: MEDLINE
الوصف
تدمد:1526-4998
DOI:10.1002/ps.8064