دورية أكاديمية

Unlocking the potential of tumor-derived DNA in urine for cancer detection: methodological challenges and opportunities.

التفاصيل البيبلوغرافية
العنوان: Unlocking the potential of tumor-derived DNA in urine for cancer detection: methodological challenges and opportunities.
المؤلفون: Wever BMM; Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, The Netherlands.; Imaging and Biomarkers, Cancer Center Amsterdam, The Netherlands., Steenbergen RDM; Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, The Netherlands.; Imaging and Biomarkers, Cancer Center Amsterdam, The Netherlands.
المصدر: Molecular oncology [Mol Oncol] 2024 Mar 10. Date of Electronic Publication: 2024 Mar 10.
Publication Model: Ahead of Print
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons, Inc Country of Publication: United States NLM ID: 101308230 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1878-0261 (Electronic) Linking ISSN: 15747891 NLM ISO Abbreviation: Mol Oncol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2017- : Hoboken, New Jersey : John Wiley & Sons, Inc.
Original Publication: Amsterdam : Elsevier
مستخلص: High cancer mortality rates and the rising cancer burden worldwide drive the development of innovative methods in order to advance cancer diagnostics. Urine contains a viable source of tumor material and allows for self-collection from home. Biomarker testing in this liquid biopsy represents a novel approach that is convenient for patients and can be effective in detecting cancer at a curable stage. Here, we set out to provide a detailed overview of the rationale behind urine-based cancer detection, with a focus on non-urological cancers, and its potential for cancer diagnostics. Moreover, evolving methodological challenges and untapped opportunities for urine biomarker testing are discussed, particularly emphasizing DNA methylation of tumor-derived cell-free DNA. We also provide future recommendations for technical advancements in urine-based cancer detection and elaborate on potential mechanisms involved in the transrenal transport of cell-free DNA.
(© 2024 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.)
References: Brennan P, Davey-Smith G. Identifying novel causes of cancers to enhance cancer prevention: new strategies are needed. J Natl Cancer Inst. 2022;114(3):353-360.
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48.
Pashayan N, Pharoah PDP. The challenge of early detection in cancer. Science. 2020;368(6491):589-590.
Tran KB, Lang JJ, Compton K, Xu R, Acheson AR, Henrikson HJ, et al. The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the global burden of disease study 2019. Lancet. 2022;400(10352):563-591.
Maas M, Todenhöfer T, Black PC. Urine biomarkers in bladder cancer - current status and future perspectives. Nat Rev Urol. 2023;20(10):597-614.
Tomiyama E, Fujita K, Hashimoto M, Uemura H, Nonomura N. Urinary markers for bladder cancer diagnosis: a review of current status and future challenges. Int J Urol. 2023. https://doi.org/10.1111/iju.15338.
Wang G, Jin W, Xu Z, Ju L, Shan D, Li S, et al. Urine-based liquid biopsy in bladder cancer: opportunities and challenges. Clin Transll Discov. 2023;3(1):e176.
Rodríguez J, Avila J, Rolfo C, Ruíz-Patiño A, Russo A, Ricaurte L, et al. When tissue is an issue the liquid biopsy is nonissue: a review. Oncol Ther. 2021;9(1):89-110.
Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease-latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16(7):409-424.
Siravegna G, Mussolin B, Venesio T, Marsoni S, Seoane J, Dive C, et al. How liquid biopsies can change clinical practice in oncology. Ann Oncol. 2019;30(10):1580-1590.
Tivey A, Church M, Rothwell D, Dive C, Cook N. Circulating tumour DNA - looking beyond the blood. Nat Rev Clin Oncol. 2022;19(9):600-612.
Grabuschnig S, Bronkhorst AJ, Holdenrieder S, Rosales Rodriguez I, Schliep KP, Schwendenwein D, et al. Putative origins of cell-free DNA in humans: a review of active and passive nucleic acid release mechanisms. Int J Mol Sci. 2020;21(21):8062.
Wyatt AW, Annala M, Aggarwal R, Beja K, Feng F, Youngren J, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. J Natl Cancer Inst. 2017;109(12):djx118.
Schmiegel W, Scott RJ, Dooley S, Lewis W, Meldrum CJ, Pockney P, et al. Blood-based detection of RAS mutations to guide anti-EGFR therapy in colorectal cancer patients: concordance of results from circulating tumor DNA and tissue-based RAS testing. Mol Oncol. 2017;11(2):208-219.
Stejskal P, Goodarzi H, Srovnal J, Hajdúch M, van 't Veer LJ, Magbanua MJM. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance. Mol Cancer. 2023;22(1):15.
Heitzer E, Haque IS, Roberts CE, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71-88.
Moser T, Kühberger S, Lazzeri I, Vlachos G, Heitzer E. Bridging biological cfDNA features and machine learning approaches. Trends Genet. 2023;39:285-307.
Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164(1-2):57-68.
Ulz P, Thallinger GG, Auer M, Graf R, Kashofer K, Jahn SW, et al. Inferring expressed genes by whole-genome sequencing of plasma DNA. Nat Genet. 2016;48(10):1273-1278.
Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10(466):eaat4921.
Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426-437.
Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther. 2019;20(8):1057-1067.
Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS One. 2015;10(10):e0140712.
Schwarzenbach H, Stoehlmacher J, Pantel K, Goekkurt E. Detection and monitoring of cell-free DNA in blood of patients with colorectal cancer. Ann N Y Acad Sci. 2008;1137(1):190-196.
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019;17:100087.
Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985-990.
Han DSC, Lo YMD. The nexus of cfDNA and nuclease biology. Trends Genet. 2021;37(8):758-770.
Gauthier VJ, Tyler LN, Mannik M. Blood clearance kinetics and liver uptake of mononucleosomes in mice. J Immunol. 1996;156(3):1151-1156.
Gao Q, Zeng Q, Wang Z, Li C, Xu Y, Cui P, et al. Circulating cell-free DNA for cancer early detection. Innovations. 2022;3(4):100259.
Du Clos T, Volzer MA, Hahn FF, Xiao R, Mold C, Searles RP. Chromatin clearance in C57Bl/10 mice: interaction with heparan sulphate proteoglycans and receptors on Kupffer cells. Clin Exp Immunol. 1999;117(2):403-411.
Botezatu I, Serdyuk O, Potapova G, Shelepov V, Alechina R, Molyaka Y, et al. Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem. 2000;46(8):1078-1084.
Dermody SM, Bhambhani C, Swiecicki PL, Brenner JC, Tewari M. Trans-renal cell-free tumor DNA for urine-based liquid biopsy of cancer. Front Genet. 2022;13:879108.
Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer. 2022;21(1):79.
Cohen SA, Liu MC, Aleshin A. Practical recommendations for using ctDNA in clinical decision making. Nature. 2023;619(7969):259-268.
Heider K, Wan JCM, Hall J, Belic J, Boyle S, Hudecova I, et al. Detection of ctDNA from dried blood spots after DNA size selection. Clin Chem. 2020;66(5):697-705.
Schaafsma M, van den Helder R, Bleeker MCG, Rosier-van Dunné F, van der Avoort IAM, Steenbergen RDM, et al. Experiences and preferences towards collecting a urine and cervicovaginal self-sample among women attending a colposcopy clinic. Prev Med Rep. 2022;26:101749.
Lin SY, Linehan JA, Wilson TG, Hoon DS. Emerging utility of urinary cell-free nucleic acid biomarkers for prostate, bladder, and renal cancers. Eur Urol Focus. 2017;3(2-3):265-272.
Chauhan PS, Shiang A, Alahi I, Sundby RT, Feng W, Gungoren B, et al. Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients. Npj precision. Oncology. 2023;7(1):6.
Chaudhuri AA, Pellini B, Pejovic N, Chauhan PS, Harris PK, Szymanski JJ, et al. Emerging roles of urine-based tumor DNA analysis in bladder cancer management. JCO Precis Oncol. 2020;4:806-817.
Hentschel AE, Beijert IJ, Bosschieter J, Kauer PC, Vis AN, Lissenberg-Witte BI, et al. Bladder cancer detection in urine using DNA methylation markers: a technical and prospective preclinical validation. Clin Epigenetics. 2022;14(1):19.
Snoek BC, Splunter AP, Bleeker MCG, Ruiten MC, Heideman DAM, Rurup WF, et al. Cervical cancer detection by DNA methylation analysis in urine. Sci Rep. 2019;9(1):3088.
van den Helder R, Steenbergen RDM, van Splunter AP, Mom CH, Tjiong MY, Martin I, et al. HPV and DNA methylation testing in urine for cervical intraepithelial neoplasia and cervical cancer detection. Clin Cancer Res. 2022;28(10):2061-2068.
Van Keer S, van Splunter AP, Pattyn J, De Smet A, Herzog SA, Van Ostade X, et al. Triage of human papillomavirus infected women by methylation analysis in first-void urine. Sci Rep. 2021;11(1):7862.
Alahdal M, Perera RA, Moschovas MC, Patel V, Perera RJ. Current advances of liquid biopsies in prostate cancer: molecular biomarkers. Mol Ther Oncolytics. 2023;30:27-38.
O'Flynn H, Ryan NAJ, Narine N, Shelton D, Rana D, Crosbie EJ. Diagnostic accuracy of cytology for the detection of endometrial cancer in urine and vaginal samples. Nat Commun. 2021;12(1):952.
van den Helder R, van Trommel NE, van Splunter AP, Lissenberg-Witte BI, Bleeker MCG, Steenbergen RDM. Methylation analysis in urine fractions for optimal CIN3 and cervical cancer detection. Papillomavirus Res. 2020;9:100193.
van den Helder R, Wever BMM, van Trommel NE, van Splunter AP, Mom CH, Kasius JC, et al. Non-invasive detection of endometrial cancer by DNA methylation analysis in urine. Clin Epigenetics. 2020;12(1):165.
Wever BMM, van den Helder R, van Splunter AP, van Gent MDJM, Kasius JC, Trum JW, et al. DNA methylation testing for endometrial cancer detection in urine, cervicovaginal self-samples and cervical scrapes. Int J Cancer. 2023;153(2):341-351.
Van Keer S, Pattyn J, Tjalma WAA, Van Ostade X, Ieven M, Van Damme P, et al. First-void urine: a potential biomarker source for triage of high-risk human papillomavirus infected women. Eur J Obstet Gynecol Reprod Biol. 2017;216:1-11.
Hentschel AE, van den Helder R, van Trommel NE, van Splunter AP, van Boerdonk RAA, van Gent MDJM, et al. The origin of tumor DNA in urine of urogenital cancer patients: local shedding and Transrenal excretion. Cancers (Basel). 2021;13(3):535.
Amiot A, Mansour H, Baumgaertner I, Delchier JC, Tournigand C, Furet JP, et al. The detection of the methylated Wif-1 gene is more accurate than a fecal occult blood test for colorectal cancer screening. PLoS One. 2014;9(7):e99233.
Bach S, Paulis I, Sluiter NR, Tibbesma M, Martin I, van de Wiel MA, et al. Detection of colorectal cancer in urine using DNA methylation analysis. Sci Rep. 2021;11(1):2363.
Goldman JW, Karlovich C, Sequist LV, Melnikova V, Franovic A, Gadgeel SM, et al. EGFR genotyping of matched urine, plasma, and tumor tissue in patients with non-small-cell lung cancer treated with rociletinib, an EGFR tyrosine kinase inhibitor. JCO Precis Oncol. 2018;2:1-13.
Hann HW, Jain S, Park G, Steffen JD, Song W, Su YH. Detection of urine DNA markers for monitoring recurrent hepatocellular carcinoma. Hepatoma Res. 2017;3:105-111.
Hoffstetter R, Riquelme I, Andana A, Ili CG, Buchegger K, Vargas H, et al. Evaluation of DNA methylation in promoter regions of SFRP4 and ZAR1 in urine and plasma of women with cervical lesions. Transl Cancer Res. 2017;6(1):157-168.
Hu T, Shen H, Huang H, Song M, Yang Z, Zhou Y, et al. Urinary circulating DNA profiling in non-small cell lung cancer patients following treatment shows prognostic potential. J Thorac Dis. 2018;10(7):4137-4146.
Husain H, Melnikova VO, Kosco K, Woodward B, More S, Pingle SC, et al. Monitoring daily dynamics of early tumor response to targeted therapy by detecting circulating tumor DNA in urine. Clin Cancer Res. 2017;23(16):4716-4723.
Liu B, Ricarte Filho J, Mallisetty A, Villani C, Kottorou A, Rodgers K, et al. Detection of promoter DNA methylation in urine and plasma aids the detection of non-Small cell lung cancer. Clin Cancer Res. 2020;26(16):4339-4348.
Reckamp KL, Melnikova VO, Karlovich C, Sequist LV, Camidge DR, Wakelee H, et al. A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. J Thorac Oncol. 2016;11(10):1690-1700.
Song BP, Jain S, Lin SY, Chen Q, Block TM, Song W, et al. Detection of hypermethylated vimentin in urine of patients with colorectal cancer. J Mol Diagn. 2012;14(2):112-119.
Wever BMM, Bach S, Tibbesma M, ter Braak TJ, Wajon D, Dickhoff C, et al. Detection of non-metastatic non-small-cell lung cancer in urine by methylation-specific PCR analysis: A feasibility study. Lung Cancer. 2022;170:156-164.
Wever BMM, Schaafsma M, Bleeker MCG, van den Burgt Y, van den Helder R, Lok CAR, et al. Molecular analysis for ovarian cancer detection in patient-friendly samples. medRxiv. 2023. https://doi.org/10.1101/2023.09.28.23296279.
Xiao W, Zhao H, Dong W, Li Q, Zhu J, Li G, et al. Quantitative detection of methylated NDRG4 gene as a candidate biomarker for diagnosis of colorectal cancer. Oncol Lett. 2015;9(3):1383-1387.
Yu H, Liu M, Qiu H, Yang K. Urinary and plasma cell-free DNA comparison for lung cancer patients treated with epidermal growth factor receptor-thyroxine kinase inhibitors. Am J Med Sci. 2019;357(1):29-36.
Jain S, Lin SY, Song W, Su YH. Urine-based liquid biopsy for nonurological cancers. Genet Test Mol Biomarkers. 2019;23(4):277-283.
Jordaens S, Zwaenepoel K, Tjalma W, Deben C, Beyers K, Vankerckhoven V, et al. Urine biomarkers in cancer detection: a systematic review of preanalytical parameters and applied methods. Int J Cancer. 2023;152:2186-2205.
Bryzgunova O, Laktionov P. Extracellular nucleic acids in urine: sources, structure, diagnostic potential. Acta Naturae. 2015;7(3):48-54.
Hentschel AE, Nieuwenhuijzen JA, Bosschieter J, van Splunter AP, Lissenberg-Witte BI, van der Voorn JP, et al. Comparative analysis of urine fractions for optimal bladder cancer detection using DNA methylation markers. Cancer. 2020;12(4):859.
van der Pol Y, Mouliere F. Toward the early detection of cancer by decoding the epigenetic and environmental fingerprints of cell-free DNA. Cancer Cell. 2019;36(4):350-368.
Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early-and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.
Zill OA, Banks KC, Fairclough SR, Mortimer SA, Vowles JV, Mokhtari R, et al. The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced cancer PatientsSomatic genomic landscape of circulating tumor DNA. Clin Cancer Res. 2018;24(15):3528-3538.
Rostami A, Lambie M, Yu CW, Stambolic V, Waldron JN, Bratman SV. Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics. Cell Rep. 2020;31(13):107830.
Augustus E, van Casteren K, Sorber L, van Dam P, Roeyen G, Peeters M, et al. The art of obtaining a high yield of cell-free DNA from urine. PLoS One. 2020;15(4):e0231058.
Thierry AR, el Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35(3):347-376.
Bach S, Wever BMM, van de Wiel MA, Veltman JD, Hashemi SMS, Kazemier G, et al. Dynamics of methylated cell-free DNA in the urine of non-small cell lung cancer patients. Epigenetics. 2022;17(10):1057-1069.
Vorsters A, van den Bergh J, Micalessi I, Biesmans S, Bogers J, Hens A, et al. Optimization of HPV DNA detection in urine by improving collection, storage, and extraction. Eur J Clin Microbiol Infect Dis. 2014;33(11):2005-2014.
Oreskovic A, Brault ND, Panpradist N, Lai JJ, Lutz BR. Analytical comparison of methods for extraction of short cell-free DNA from urine. J Mol Diagn. 2019;21(6):1067-1078.
Mouliere F, Smith CG, Heider K, Su J, van der Pol Y, Thompson M, et al. Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients. EMBO Mol Med. 2021;13(8):e12881.
Hudecova I, Smith CG, Hänsel-Hertsch R, Chilamakuri CS, Morris JA, Vijayaraghavan A, et al. Characteristics, origin, and potential for cancer diagnostics of ultrashort plasma cell-free DNA. Genome Res. 2022;32(2):215-227.
Lee EY, Lee EJ, Yoon H, Lee DH, Kim KH. Comparison of four commercial kits for isolation of urinary cell-free DNA and sample storage conditions. Diagnostics (Basel). 2020;10(4):234.
Streleckiene G, Reid HM, Arnold N, Bauerschlag D, Forster M. Quantifying cell free DNA in urine: comparison between commercial kits, impact of gender and inter-individual variation. Biotechniques. 2018;64(5):225-230.
Zymo Research. Quick-DNA Urine Kit product page. [cited 2023 Oct 11]. Available from: https://zymoresearch.eu/collections/urine-collection/products/quick-dna-urine-kit.
Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349(21):2042-2054.
Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22(22):4632-4642.
van der Zee RP, Richel O, van Noesel CJM, Novianti PW, Ciocanea-Teodorescu I, van Splunter AP, et al. Host cell deoxyribonucleic acid methylation markers for the detection of high-grade anal intraepithelial neoplasia and anal cancer. Clin Infect Dis. 2018;68(7):1110-1117.
Cassinotti E, Melson J, Liggett T, Melnikov A, Yi Q, Replogle C, et al. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int J Cancer. 2012;131(5):1153-1157.
Abe M, Yamashita S, Mori Y, Abe T, Saijo H, Hoshi K, et al. High-risk oral leukoplakia is associated with aberrant promoter methylation of multiple genes. BMC Cancer. 2016;16(1):350.
Thuijs NB, Berkhof J, Özer M, Duin S, van Splunter AP, Snoek BC, et al. DNA methylation markers for cancer risk prediction of vulvar intraepithelial neoplasia. Int J Cancer. 2021;148(10):2481-2488.
Locke WJ, Guanzon D, Ma C, Liew YJ, Duesing KR, Fung KYC, et al. DNA methylation cancer biomarkers: translation to the clinic. Front Genet. 2019;10:1150.
Bock C, Halbritter F, Carmona FJ, Tierling S, Datlinger P, Assenov Y, et al. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol. 2016;34(7):726-737.
Valle BL, Rodriguez-Torres S, Kuhn E, Díaz-Montes T, Parrilla-Castellar E, Lawson FP, et al. HIST1H2BB and MAGI2 methylation and somatic mutations as precision medicine biomarkers for diagnosis and prognosis of high-grade serous ovarian cancer. Cancer Prev Res (Phila). 2020;13(9):783-794.
Weng J, Kisiel J, Slettedahl S, Mahoney D, Cao X, Foote P, et al. 42/#466 tissue-specific methylated DNA marker discriminate among endometrial, ovarian, and cervical cancers. Int J Gynecol Cancer. 2022;32(Suppl 3):A44-A45.
Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N, Korach A, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun. 2018;9(1):5068.
Ibrahim J, op de Beeck K, Fransen E, Peeters M, van Camp G. Genome-wide DNA methylation profiling and identification of potential pan-cancer and tumor-specific biomarkers. Mol Oncol. 2022;16(12):2432-2447.
Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalhães JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012;15(5):483-494.
Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J, Klochendler A, et al. A DNA methylation atlas of normal human cell types. Nature. 2023;613(7943):355-364.
Zeilinger S, Kühnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C, et al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One. 2013;8(5):e63812.
Feng Q, Hawes SE, Stern JE, Dem A, Sow PS, Dembele B, et al. Promoter hypermethylation of tumor suppressor genes in urine from patients with cervical neoplasia. Cancer Epidemiol Biomarkers Prev. 2007;16(6):1178-1184.
Guerrero-Preston R, Valle BL, Jedlicka A, Turaga N, Folawiyo O, Pirini F, et al. Molecular triage of premalignant lesions in liquid-based cervical cytology and circulating cell-free DNA from urine, using a panel of methylated human papilloma virus and host genes. Cancer Prev Res (Phila). 2016;9(12):915-924.
Kandimalla R, van Tilborg AAG, Kompier LC, Stumpel DJPM, Stam RW, Bangma CH, et al. Genome-wide analysis of CpG Island methylation in bladder cancer identified TBX2, TBX3, GATA2, and ZIC4 as pTa-specific prognostic markers. Eur Urol. 2012;61(6):1245-1256.
Martin EM, Fry RC. Environmental influences on the epigenome: exposure- associated DNA methylation in human populations. Annu Rev Public Health. 2018;39(1):309-333.
Tanaka K, Okamoto A. Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett. 2007;17(7):1912-1915.
Tivey A, Church M, Rothwell D, Dive C, Cook N. Circulating tumour DNA - looking beyond the blood. Nat Rev Clin Oncol. 2022;19(9):600-612.
Deger T, Boers RG, de Weerd V, Angus L, van der Put MMJ, Boers JB, et al. High-throughput and affordable genome-wide methylation profiling of circulating cell-free DNA by methylated DNA sequencing (MeD-seq) of LpnPI digested fragments. Clin Epigenetics. 2021;13(1):196.
Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, Guan S, et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 2021;31(7):1280-1289.
Yuen ZW-S, Srivastava A, Daniel R, McNevin D, Jack C, Eyras E. Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing. Nat Commun. 2021;12(1):3438.
van der Pol Y, Tantyo NA, Evander N, Hentschel AE, Wever BM, Ramaker J, et al. Real-time analysis of the cancer genome and fragmentome from plasma and urine cell-free DNA using nanopore sequencing. EMBO Mol Med. 2023;15:e17282.
Koch A, Joosten SC, Feng Z, de Ruijter TC, Draht MX, Melotte V, et al. Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol. 2018;15(7):459-466.
Massen M, Lommen K, Wouters KAD, Vandersmissen J, van Criekinge W, Herman JG, et al. Technical considerations in PCR-based assay design for diagnostic DNA methylation cancer biomarkers. Clin Epigenetics. 2022;14(1):56.
Snellenberg S, Strooper LMAD, Hesselink AT, Meijer CJLM, Snijders PJF, Heideman DAM, et al. Development of a multiplex methylation-specific PCR as candidate triage test for women with an HPV-positive cervical scrape. BMC Cancer. 2012;12(1):551.
Koch A, De Meyer T, Jeschke J, Van Criekinge W. MEXPRESS: visualizing expression, DNA methylation and clinical TCGA data. BMC Genomics. 2015;16(1):636.
Shen SY, Burgener JM, Bratman SV, De Carvalho DD. Preparation of cfMeDIP-seq libraries for methylome profiling of plasma cell-free DNA. Nat Protoc. 2019;14(10):2749-2780.
Serre D, Lee BH, Ting AH. MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 2010;38(2):391-399.
Brinkman AB, Simmer F, Ma K, Kaan A, Zhu J, Stunnenberg HG. Whole-genome DNA methylation profiling using MethylCap-seq. Methods. 2010;52(3):232-236.
Kolkman RW, Segerink LI, Huskens J. Selective enrichment of hypermethylated DNA by a multivalent binding platform. Adv Mater Interfaces. 2022;9(35):2201557.
Wang Y, Douville C, Cohen JD, Mattox A, Curtis S, Silliman N, et al. Detection of rare mutations, copy number alterations, and methylation in the same template DNA molecules. Proc Natl Acad Sci U S A. 2023;120(15):e2220704120.
Cheng THT, Jiang P, Teoh JYC, Heung MMS, Tam JCW, Sun X, et al. Noninvasive detection of bladder cancer by shallow-depth genome-wide bisulfite sequencing of urinary cell-free DNA for methylation and copy number profiling. Clin Chem. 2019;65(7):927-936.
Sangtani A, Wang C, Weaver A, Hoppman NL, Kerr SE, Abyzov A, et al. Combining copy number, methylation markers, and mutations as a panel for endometrial cancer detection via intravaginal tampon collection. Gynecol Oncol. 2020;156(2):387-392.
Füllgrabe J, Gosal WS, Creed P, Liu S, Lumby CK, Morley DJ, et al. Simultaneous sequencing of genetic and epigenetic bases in DNA. Nat Biotechnol. 2023;41:1457-1464.
Li W, Zhang X, Lu X, You L, Song Y, Luo Z, et al. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Res. 2017;27(10):1243-1257.
Cao F, Wei A, Hu X, He Y, Zhang J, Xia L, et al. Integrated epigenetic biomarkers in circulating cell-free DNA as a robust classifier for pancreatic cancer. Clin Epigenetics. 2020;12(1):112.
Markus H, Zhao J, Contente-Cuomo T, Stephens MD, Raupach E, Odenheimer-Bergman A, et al. Analysis of recurrently protected genomic regions in cell-free DNA found in urine. Sci Transl Med. 2021;13(581):eaaz3088.
Zhou Z, Ma MJL, Chan RWY, Lam WKJ, Peng W, Gai W, et al. Fragmentation landscape of cell-free DNA revealed by deconvolutional analysis of end motifs. Proc Natl Acad Sci. 2023;120(17):e2220982120.
Ding SC, Lo YMD. Cell-free DNA Fragmentomics in liquid biopsy. Diagnostics (Basel). 2022;12(4):978.
Crisafulli G, Mussolin B, Cassingena A, Montone M, Bartolini A, Barault L, et al. Whole exome sequencing analysis of urine trans-renal tumour DNA in metastatic colorectal cancer patients. ESMO Open. 2019;4(6):e000572.
Mouliere F, Smith CG, Heider K, Su J, van der Pol Y, Thompson M, et al. Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients. EMBO Mol Med. 2021;13(8):e12881.
van der Pol Y, Tantyo NA, Evander N, Hentschel AE, Wever BM, Ramaker J, et al. Real-time analysis of the cancer genome and fragmentome from plasma and urine short and long cell-free DNA using Nanopore sequencing. medRxiv. 2022. https://doi.org/10.1101/2022.08.11.22278674.
Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019;570(7761):385-389.
Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164(1):57-68.
Bian B, Li L, Ke X, Chen H, Liu Y, Zheng N, et al. Urinary exosomal long non-coding RNAs as noninvasive biomarkers for diagnosis of bladder cancer by RNA sequencing. Front Oncol. 2022;12:976329.
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981-984.
Haese A, Trooskens G, Steyaert S, Hessels D, Brawer M, Vlaeminck-Guillem V, et al. Multicenter optimization and validation of a 2-gene mRNA urine test for detection of clinically significant prostate cancer before initial prostate biopsy. J Urol. 2019;202(2):256-263.
McKiernan J, Donovan MJ, O'Neill V, Bentink S, Noerholm M, Belzer S, et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2016;2(7):882-889.
Donkers H, Hirschfeld M, Weiß D, Erbes T, Jäger M, Pijnenborg J, et al. Detection of microRNA in urine to identify patients with endometrial cancer: a feasibility study. Int J Gynecol Cancer. 2021;31(6):868-874.
Záveský L, Jandáková E, Turyna R, Langmeierová L, Weinberger V, Záveská Drábková L, et al. Evaluation of cell-free urine microRNAs expression for the use in diagnosis of ovarian and endometrial cancers. A pilot study. Pathol Oncol Res. 2015;21:1027-1035.
He Y-D, Tao W, He T, Wang BY, Tang XM, Zhang LM, et al. A urine extracellular vesicle circRNA classifier for detection of high-grade prostate cancer in patients with prostate-specific antigen 2-10 ng/mL at initial biopsy. Mol Cancer. 2021;20(1):96.
Li Y, Ji J, Lyu J, Jin X, He X, Mo S, et al. A novel urine Exosomal lncRNA assay to improve the detection of prostate cancer at initial biopsy: A retrospective multicenter diagnostic feasibility study. Cancer. 2021;13:4075. https://doi.org/10.3390/cancers13164075.
Connell SP, O'Reilly E, Tuzova A, Webb M, Hurst R, Mills R, et al. Development of a multivariable risk model integrating urinary cell DNA methylation and cell-free RNA data for the detection of significant prostate cancer. Prostate. 2020;80(7):547-558.
Albitar M, Zhang H, Charifa A, Ip A, Ma W, McCloskey J, et al. Combining cell-free RNA with cell-free DNA in liquid biopsy for hematologic and solid tumors. Heliyon. 2023;9(5):e16261.
Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926-930.
Thomas CE, Sexton W, Benson K, Sutphen R, Koomen J. Urine collection and processing for protein biomarker discovery and quantification. Cancer Epidemiol Biomarkers Prev. 2010;19(4):953-959.
Behrouzi R, Barr CE, Crosbie EJ. HE4 as a biomarker for endometrial cancer. Cancers (Basel). 2021;13(19):4764.
Enroth S, Berggrund M, Lycke M, Lundberg M, Assarsson E, Olovsson M, et al. A two-step strategy for identification of plasma protein biomarkers for endometrial and ovarian cancer. Clin Proteomics. 2018;15:38.
Njoku K, Pierce A, Geary B, Campbell AE, Kelsall J, Reed R, et al. Quantitative SWATH-based proteomic profiling of urine for the identification of endometrial cancer biomarkers in symptomatic women. Br J Cancer. 2023;128(9):1723-1732.
Gasparri R, Sedda G, Caminiti V, Maisonneuve P, Prisciandaro E, Spaggiari L. Urinary biomarkers for early diagnosis of lung cancer. J Clin Med. 2021;10(8):1723.
Barr CE, Njoku K, Owens GL, Crosbie EJ. Urine CA125 and HE4 for the detection of ovarian cancer in symptomatic women. Cancers (Basel). 2023;15(4):1256.
Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31-46.
Bratulic S, Limeta A, Dabestani S, Birgisson H, Enblad G, Stålberg K, et al. Noninvasive detection of any-stage cancer using free glycosaminoglycans. Proc Natl Acad Sci U S A. 2022;119(50):e2115328119.
Gatto F, Volpi N, Nilsson H, Nookaew I, Maruzzo M, Roma A, et al. Glycosaminoglycan profiling in Patients' plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep. 2016;15(8):1822-1836.
Flaig TW, Spiess PE, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, et al. Bladder cancer, version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18(3):329-354.
Halling KC, Kipp BR. Bladder cancer detection using FISH (UroVysion assay). Adv Anat Pathol. 2008;15(5):279-286.
Pfister C, Chautard D, Devonec M, Perrin P, Chopin D, Rischmann P, et al. Immunocyt test improves the diagnostic accuracy of urinary cytology: results of a French multicenter study. J Urol. 2003;169(3):921-924.
Wang Z, Chen J, Yang L, Cao M, Yu Y, Zhang R, et al. Single-cell sequencing-enabled hexokinase 2 assay for noninvasive bladder cancer diagnosis and screening by detecting rare malignant cells in urine. Anal Chem. 2020;92(24):16284-16292.
van der Pol Y, Moldovan N, Verkuijlen S, Ramaker J, Boers D, Onstenk W, et al. The effect of preanalytical and physiological variables on cell-free DNA fragmentation. Clin Chem. 2022;68(6):803-813.
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, et al. New perspectives on the importance of cell-free DNA biology. Diagnostics (Basel). 2022;12(9):2147.
Heitzer E, Auinger L, Speicher MR. Cell-free DNA and apoptosis: how dead cells inform about the living. Trends Mol Med. 2020;26(5):519-528.
de Gennes P-G. Passive entry of a DNA molecule into a small pore. Proc Natl Acad Sci U S A. 1999;96(13):7262-7264.
Lichtenstein AV, Melkonyan HS, Tomei LD, Umansky SR. Circulating nucleic acids and apoptosis. Ann N Y Acad Sci. 2001;945:239-249.
Chua EY, Vogirala VK, Inian O, Wong AS, Nordenskiöld L, Plitzko JM, et al. 3.9 Å structure of the nucleosome core particle determined by phase-plate cryo-EM. Nucleic Acids Res. 2016;44(17):8013-8019.
Zhang A, Huang S. Progress in pathogenesis of proteinuria. Int J Nephrol. 2012;2012:314251.
Miner JH. The glomerular basement membrane. Exp Cell Res. 2012;318(9):973-978.
Tencer J, Frick IM, Öquist BW, Alm P, Rippe B. Size-selectivity of the glomerular barrier to high molecular weight proteins: upper size limitations of shunt pathways. Kidney Int. 1998;53(3):709-715.
Comper WD, Vuchkova J, McCarthy KJ. New insights into proteinuria/albuminuria. Front Physiol. 2022;13:991756.
Pepys MB, Butler PJ. Serum amyloid P component is the major calcium-dependent specific DNA binding protein of the serum. Biochem Biophys Res Commun. 1987;148(1):308-313.
Morioka T, Joh K, Shimizu F, Oite T. Nucleosome core particles and DNA bind to the human glomerular basement membrane (GBM): role of the amyloid P component of the GBM. Clin Exp Nephrol. 2000;4(1):43-48.
Muralidharan-Chari V, Clancy JW, Sedgwick A, D'Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123(Pt 10):1603-1611.
Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent MicroRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707-721.
Fernando MR, Jiang C, Krzyzanowski GD, Ryan WL. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One. 2017;12(8):e0183915.
García-Silva S, Gallardo M, Peinado H. DNA-loaded extracellular vesicles in liquid biopsy: tiny players with big potential? Front Cell Dev Biol. 2021;8:622579.
Neuberger EWI, Hillen B, Mayr K, Simon P, Krämer-Albers EM, Brahmer A. Kinetics and topology of DNA associated with circulating extracellular vesicles released during exercise. Gene. 2021;12(4):522.
Vagner T, Spinelli C, Minciacchi VR, Balaj L, Zandian M, Conley A, et al. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J Extracell Vesicles. 2018;7(1):1505403.
Lázaro-Ibáñez E, Lässer C, Shelke GV, Crescitelli R, Jang SC, Cvjetkovic A, et al. DNA analysis of low-and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology. J Extracell Vesicles. 2019;8(1):1656993.
Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, Borràs FE, Burger D, Bussolati B, et al. Urinary extracellular vesicles: a position paper by the urine task Force of the International Society for Extracellular Vesicles. J Extracell Vesicles. 2021;10(7):e12093.
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 2008;3(5):703-717.
Patrakka J, Lahdenkari AT, Koskimies O, Holmberg C, Wartiovaara J, Jalanko H. The number of podocyte slit diaphragms is decreased in minimal change nephrotic syndrome. Pediatr Res. 2002;52(3):349-355.
Londono I, Bendayan M. Glomerular handling of native albumin in the presence of circulating modified albumins by the normal rat kidney. Am J Physiol Renal Physiol. 2005;289(6):F1201-F1209.
Kerjaschki D, Schulze M, Binder S, Kain R, Ojha PP, Susani M, et al. Transcellular transport and membrane insertion of the C5b-9 membrane attack complex of complement by glomerular epithelial cells in experimental membranous nephropathy. J Immunol. 1989;143(2):546-552.
Poursharif S, Hamza S, Braam B. Changes in proximal tubular reabsorption modulate microvascular regulation via the TGF system. Int J Mol Sci. 2022;23(19):11203.
معلومات مُعتمدة: Biomed02 Stichting NEXTGEN HIGHTECH Program
فهرسة مساهمة: Keywords: biomarker; cancer; cfDNA; liquid biopsy; oncology; urine
تواريخ الأحداث: Date Created: 20240311 Latest Revision: 20240311
رمز التحديث: 20240311
DOI: 10.1002/1878-0261.13628
PMID: 38462745
قاعدة البيانات: MEDLINE
الوصف
تدمد:1878-0261
DOI:10.1002/1878-0261.13628