دورية أكاديمية

Computer-aided design to enhance the stability of aldo-keto reductase KdAKR.

التفاصيل البيبلوغرافية
العنوان: Computer-aided design to enhance the stability of aldo-keto reductase KdAKR.
المؤلفون: Dai C; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China., Tian JX; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China., Chen YF; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China., Ni YH; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China., Cui L; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China., Cao HX; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China., Song LL; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China., Xu SY; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China., Wang YJ; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China., Zheng YG; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China.
المصدر: Biotechnology journal [Biotechnol J] 2024 Mar; Vol. 19 (3), pp. e2300637.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Verlag Country of Publication: Germany NLM ID: 101265833 Publication Model: Print Cited Medium: Internet ISSN: 1860-7314 (Electronic) Linking ISSN: 18606768 NLM ISO Abbreviation: Biotechnol J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim : Wiley-VCH Verlag, c2006-
مواضيع طبية MeSH: Caproates*/chemistry , Aldehyde Reductase*, Aldo-Keto Reductases/chemistry ; Aldo-Keto Reductases/genetics
مستخلص: The aldo-keto reductase (AKR) KdAKR from Kluyvermyces dobzhanskii can reduce t-butyl 6-chloro-(5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) to t-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate ((3R,5S)-CDHH), which is the key chiral intermediate of rosuvastatin. Herein, a computer-aided design that combined the use of PROSS platform and consensus design was employed to improve the stability of a previously constructed mutant KdAKR M6 . Experimental verification revealed that S196C, T232A, V264I and V45L produced improved thermostability and activity. The "best" mutant KdAKR M10 (KdAKR M6 -S196C/T232A/V264I/V45L) was constructed by combining the four beneficial mutations, which displayed enhanced thermostability. Its T 50 15 and T m values were increased by 10.2 and 10.0°C, respectively, and half-life (t 1/2 ) at 40°C was increased by 17.6 h. Additionally, KdAKR M10 demonstrated improved resistance to organic solvents compared to that of KdAKR M6 . Structural analysis revealed that the increased number of hydrogen bonds and stabilized hydrophobic core contributed to the rigidity of KdAKR M10 , thus improving its stability. The results validated the feasibility of the computer-aided design strategy in improving the stability of AKRs.
(© 2024 Wiley-VCH GmbH.)
References: Sirtori, C. R. (2014). The pharmacology of statins. Pharmacological Research, 88, 3-11. https://doi.org/10.1016/j.phrs.2014.03.002.
Yu, D., & Liao, J. K. (2022). Emerging views of statin pleiotropy and cholesterol lowering. Cardiovascular Research, 118(2), 413-423. https://doi.org/10.1093/cvr/cvab032.
Müller, M. (2005). Chemoenzymatic synthesis of building blocks for statin side chains. Angewandte Chemie International Edition, 44(3), 362-365. https://doi.org/10.1002/anie.200460852.
Xiong, F.-J., Li, J., Chen, X.-F., Chen, W.-X., & Chen, F.-E. (2014). An improved process for chiron synthesis of the atorvastatin side chain. Tetrahedron: Asymmetry, 25(16-17), 1205-1208. https://doi.org/10.1016/j.tetasy.2014.07.002.
Wu, Y., Xiong, F.-J., & Chen, F.-E. (2015). Stereoselective synthesis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. Tetrahedron, 71(45), 8487-8510. https://doi.org/10.1016/j.tet.2015.07.059.
Dai, C., Cao, H. X., Tian, J. X., Gao, Y. C., Liu, H. T., Xu, S. Y., Wang, Y. J., & Zheng, Y. G. (2023). Structural-guided design to improve the catalytic performance of aldo-keto reductase KdAKR. Biotechnology and Bioengineering, 120, 3543-3556. https://doi.org/10.1002/bit.28535.
Zhang, W., Zhu, T., Li, H., Qin, F., Zhang, F., Zhang, R., Jia, X., Qin, B., & You, S. (2019). Key sites insight on the stereoselectivity of four mined aldo-keto reductases toward α-keto esters and halogen-substituted acetophenones. Applied Microbiology and Biotechnology, 103(15), 6119-6128. https://doi.org/10.1007/s00253-019-09932-7.
Kim, T., Flick, R., Brunzelle, J., Singer, A., Evdokimova, E., Brown, G., Joo, J. C., Minasov, G. A., Anderson, W. F., Mahadevan, R., Savchenko, A., & Yakunin, A. F. (2017). Novel aldo-keto reductases for the biocatalytic conversion of 3-hydroxybutanal to 1,3-butanediol: Structural and biochemical studies. Applied and environmental microbiology, 83(7), e03172-e03216. https://doi.org/10.1128/AEM.03172-16.
Badenhorst, C. P. S., & Bornscheuer, U. T. (2018). Getting momentum: From biocatalysis to advanced synthetic biology. Trends in Biochemical Sciences, 43(3), 180-198. https://doi.org/10.1016/j.tibs.2018.01.003.
Rigoldi, F., Donini, S., Redaelli, A., Parisini, E., & Gautieri, A. (2018). Review: Engineering of thermostable enzymes for industrial applications. APL Bioengineering, 2(1), 011501. https://doi.org/10.1063/1.4997367.
Ghahremani, N., Rahman, R., Normi, Y., Oslan, S., Mohd Shariff, F., & Leow, T. (2022). Thermostability engineering of industrial enzymes through structure modification. Applied Microbiology and Biotechnology, 106, 1-22. https://doi.org/10.1007/s00253-022-12067-x.
Liu, Q., Xun, G., & Feng, Y. (2019). The state-of-the-art strategies of protein engineering for enzyme stabilization. Biotechnology Advances, 37(4), 530-537. https://doi.org/10.1016/j.biotechadv.2018.10.011.
Xu, S. Y., Zhou, L., Xu, Y., Hong, H. Y., Dai, C., Wang, Y. J., & Zheng, Y. G. (2023). Recent advances in structure-based enzyme engineering for functional reconstruction. Biotechnology and Bioengineering, 120(12), 3427-3445. https://doi.org/10.1002/bit.28540.
Guo, J., Gao, W., Zhang, X., Pan, W., Zhang, X., Man, Z., & Cai, Z. (2023). Enhancing the thermostability and catalytic activity of Bacillus subtilis chitosanase by saturation mutagenesis of Lys242. Biotechnology Journal, 19(1), e230001. https://doi.org/10.1002/biot.202300010.
Sternke, M., Tripp, K. W., & Barrick, D. (2019). Consensus sequence design as a general strategy to create hyperstable, biologically active proteins. Proceedings of the National Academy of Sciences of the United States of America, 116(23), 11275-11284. https://doi.org/10.1073/pnas.1816707116.
Cheng, M., Huang, Z., Zhang, W., Kim, B. G., & Mu, W. (2022). Thermostability engineering of an inulin fructotransferase for the biosynthesis of difructose anhydride I. Enzyme and Microbial Technology, 160, 110097. https://doi.org/10.1016/j.enzmictec.2022.110097.
Chi, H., Zhu, X., Shen, J., Lu, Z., Lu, F., Lyu, Y., & Zhu, P. (2023). Thermostability enhancement and insight of L-asparaginase from Mycobacterium sp. via consensus-guided engineering. Applied Microbiology and Biotechnology, 107(7-8), 2321-2333. https://doi.org/10.1007/s00253-023-12443-1.
Xiong, N., Lv, P.-J., Song, J.-W., Shen, Q., Xue, Y.-P., & Zheng, Y.-G. (2022). Engineering of a nitrilase through consensus sequence analysis and conserved site substitution to improve its thermostability and activity. Biochemical Engineering Journal, 184, 108475. https://doi.org/10.1016/j.bej.2022.108475.
Qian, H., Zhang, C., Lu, Z., Xia, B., Bie, X., Zhao, H., Lu, F., & Yang, G.-Y. (2018). Consensus design for improved thermostability of lipoxygenase from Anabaena sp. PCC 7120. BMC Biotechnology, 18(1), 57. https://doi.org/10.1186/s12896-018-0468-4.
Goldenzweig, A., Goldsmith, M., Hill, S. E., Gertman, O., Laurino, P., Ashani, Y., Dym, O., Unger, T., Albeck, S., Prilusky, J., Lieberman, R. L., Aharoni, A., Silman, I., Sussman, J. L., Tawfik, D. S., & Fleishman, S. J. (2016). Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Molecular Cell, 63(2), 337-346. https://doi.org/10.1016/j.molcel.2016.06.012.
Weinstein, J. J., Goldenzweig, A., Hoch, S., Fleishman, S. J., & Ponty, Y. (2021). PROSS 2: A new server for the design of stable and highly expressed protein variants. Bioinformatics, 37(1), 123-125. https://doi.org/10.1093/bioinformatics/btaa1071.
Kriegel, M., Wiederanders, H. J., Alkhashrom, S., Eichler, J., & Muller, Y. A. (2021). A PROSS-designed extensively mutated estrogen receptor α variant displays enhanced thermal stability while retaining native allosteric regulation and structure. Scientific Reports, 11(1), 10509. https://doi.org/10.1038/s41598-021-89785-1.
Yu, Z., Yu, H., Xu, J., Wang, Z., Wang, Z., Kang, T., Chen, K., Pu, Z., Wu, J., Yang, L., & Xu, G. (2022). Enhancing thermostability of lipase from Pseudomonas alcaligenes for producing l-menthol by the CREATE strategy. Catalysis Science & Technology, 12(8), 2531-2541. https://doi.org/10.1039/d2cy00082b.
Wu, H., Yi, M., Wu, X., Ding, Y., Pu, M., Wen, L., Cheng, Y., Zhang, W., & Mu, W. (2023). Engineering the thermostability of D-lyxose isomerase from Caldanaerobius polysaccharolyticus via multiple computer-aided rational design for efficient synthesis of D-mannose. Synthetic and Systems Biotechnology, 8(2), 323-330. https://doi.org/10.1016/j.synbio.2023.04.003.
Zhang, W., Ren, H., Wang, X., Dai, Q., Liu, X., Ni, D., Zhu, Y., Xu, W., & Mu, W. (2023). Rational design for thermostability improvement of a novel PL-31 family alginate lyase from Paenibacillus sp. YN15. International Journal of Biological Macromolecules, 253, 126919. https://doi.org/10.1016/j.ijbiomac.2023.126919.
Li, S., Cao, L., Yang, X., Wu, X., Xu, S., & Liu, Y. (2023). Simultaneously optimizing multiple properties of β-glucosidase Bgl6 using combined (semi-)rational design strategies and investigation of the underlying mechanisms. Bioresource Technology, 374, 128792. https://doi.org/10.1016/j.biortech.2023.128792.
Milčić, N., Švaco, P., Sudar, M., Tang, L., Findrik Blažević, Z., & Majerić Elenkov, M. (2023). Impact of organic solvents on the catalytic performance of halohydrin dehalogenase. Applied Microbiology and Biotechnology, 107(7-8), 2351-2361. https://doi.org/10.1007/s00253-023-12450-2.
Cao, J.-R., Fan, F.-F., Lv, C.-J., Wang, H.-P., Li, Y., Hu, S., Zhao, W.-R., Chen, H.-B., Huang, J., & Mei, L.-H. (2021). Improving the thermostability and activity of transaminase from Aspergillus terreus by charge-charge interaction. Frontiers in Chemistry, 9, https://doi.org/10.3389/fchem.2021.664156.
Morley, K. L., & Kazlauskas, R. J. (2005). Improving enzyme properties: When are closer mutations better? Trends in Biotechnology, 23(5), 231-237. https://doi.org/10.1016/j.tibtech.2005.03.005.
Jiang, X., Wang, Y., Wang, Y., Huang, H., Bai, Y., Su, X., Zhang, J., Yao, B., Tu, T., & Luo, H. (2021). Exploiting the activity-stability trade-off of glucose oxidase from Aspergillus niger using a simple approach to calculate thermostability of mutants. Food Chemistry, 342, 128270. https://doi.org/10.1016/j.foodchem.2020.128270.
Vazquez-Figueroa, E., Yeh, V., Broering, J. M., Chaparro-Riggers, J. F., & Bommarius, A. S. (2008). Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media. Protein Engineering, Design and Selection, 21(11), 673-680. https://doi.org/10.1093/protein/gzn048.
Wang, C. N., Qiu, S., Fan, F. F., Lyu, C. J., Hu, S., Zhao, W. R., Mei, J. Q., Mei, L. H., & Huang, J. (2023). Enhancing the organic solvent resistance of ω-amine transaminase for enantioselective synthesis of (R)-(+)-1(1-naphthyl)-ethylamine. Biotechnology Journal, 18(10). https://doi.org/10.1002/biot.202300120.
Jia, R., Tian, S., Yang, Z., Sadiq, F. A., Wang, L., Lu, S., Zhang, G., & Li, J. (2023). Tuning thermostability and catalytic efficiency of aflatoxin-degrading enzyme by error-prone PCR. Applied Microbiology and Biotechnology, 107(15), 4833-4843. https://doi.org/10.1007/s00253-023-12610-4.
Ruan, Y., Zhang, R., & Xu, Y. (2022). Directed evolution of maltogenic amylase from Bacillus licheniformis R-53: Enhancing activity and thermostability improves bread quality and extends shelf life. Food Chemistry, 381, 132222. https://doi.org/10.1016/j.foodchem.2022.132222.
Wang, L.-Y., Tang, H., Zhao, J.-Q., Wang, M.-N., Xue, Y.-P., & Zheng, Y.-G. (2023). Correlation analysis of key residue sites between computational-aided design thermostability d-amino acid oxidase and ancestral enzymes. Journal of Agricultural and Food Chemistry, 71(50), 20177-20186. https://doi.org/10.1021/acs.jafc.3c06865.
Su, B.-M., Xu, X.-Q., Yan, R.-X., Xie, Y., & Lin, J. (2019). Mutagenesis on the surface of a β-agarase from Vibrio sp. ZC-1 increased its thermo-stability. Enzyme and Microbial Technology, 127, 22-31. https://doi.org/10.1016/j.enzmictec.2019.04.006.
Chi, H., Wang, Y., Xia, B., Zhou, Y., Lu, Z., Lu, F., & Zhu, P. (2022). Enhanced thermostability and molecular insights for l-asparaginase from bacillus licheniformis via structure- and computation-based rational design. Journal of Agricultural and Food Chemistry, 70(45), 14499-14509. https://doi.org/10.1021/acs.jafc.2c05712.
Gonzalez, N. A., Li, B. A., McCully, M. E., & Whitehead, T. (2022). The stability and dynamics of computationally designed proteins. Protein Engineering, Design and Selection, 35, gzac001. https://doi.org/10.1093/protein/gzac001.
Xu, L., Wu, Y.-H., Zhou, P., Cheng, H., Liu, Q., & Xu, X.-W. (2018). Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-4789-4.
Xu, S., & Kennedy, M. A. (2020). Structural dynamics of pentapeptide repeat proteins. Proteins: Structure, Function, and Bioinformatics, 88(11), 1493-1512. https://doi.org/10.1002/prot.25969.
Siddiqui, K. S. (2017). Defying the activity-stability trade-off in enzymes: Taking advantage of entropy to enhance activity and thermostability. Critical Reviews in Biotechnology, 37(3), 309-322. https://doi.org/10.3109/07388551.2016.1144045.
معلومات مُعتمدة: 2021YFC2102900 National Key Research and Development Program of China; 2021YFC2102000 National Key Research and Development Program of China; 22308331 National Natural Science Foundation of China; 22178318 National Natural Science Foundation of China; 2020R52013 Department of Science and Technology of Zhejiang Province; LZ21B060002 Department of Science and Technology of Zhejiang Province
فهرسة مساهمة: Keywords: aldo-keto reductase; computer-aided design; organic solvent tolerance; thermostability
المشرفين على المادة: EC 1.1.1.- (Aldo-Keto Reductases)
0 (Caproates)
EC 1.1.1.21 (Aldehyde Reductase)
تواريخ الأحداث: Date Created: 20240312 Date Completed: 20240314 Latest Revision: 20240314
رمز التحديث: 20240314
DOI: 10.1002/biot.202300637
PMID: 38472092
قاعدة البيانات: MEDLINE
الوصف
تدمد:1860-7314
DOI:10.1002/biot.202300637