دورية أكاديمية

Characterization of elusive rhamnosyl dioxanium ions and their application in complex oligosaccharide synthesis.

التفاصيل البيبلوغرافية
العنوان: Characterization of elusive rhamnosyl dioxanium ions and their application in complex oligosaccharide synthesis.
المؤلفون: Moons PH; Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands., Ter Braak F; Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands., de Kleijne FFJ; Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands., Bijleveld B; Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands., Corver SJR; Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands., Houthuijs KJ; FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands., Almizori HR; Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands., Berden G; FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands., Martens J; FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands., Oomens J; FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands., White PB; Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands. paul.white@ru.nl., Boltje TJ; Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands. t.boltje@ru.nl.
المصدر: Nature communications [Nat Commun] 2024 Mar 13; Vol. 15 (1), pp. 2257. Date of Electronic Publication: 2024 Mar 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مستخلص: Attaining complete anomeric control is still one of the biggest challenges in carbohydrate chemistry. Glycosyl cations such as oxocarbenium and dioxanium ions are key intermediates of glycosylation reactions. Characterizing these highly-reactive intermediates and understanding their glycosylation mechanisms are essential to the stereoselective synthesis of complex carbohydrates. Although C-2 acyl neighbouring-group participation has been well-studied, the reactive intermediates in more remote participation remain elusive and are challenging to study. Herein, we report a workflow that is utilized to characterize rhamnosyl 1,3-bridged dioxanium ions derived from C-3 p-anisoyl esterified donors. First, we use a combination of quantum-chemical calculations and infrared ion spectroscopy to determine the structure of the cationic glycosylation intermediate in the gas-phase. In addition, we establish the structure and exchange kinetics of highly-reactive, low-abundance species in the solution-phase using chemical exchange saturation transfer, exchange spectroscopy, correlation spectroscopy, heteronuclear single-quantum correlation, and heteronuclear multiple-bond correlation nuclear magnetic resonance spectroscopy. Finally, we apply C-3 acyl neighbouring-group participation to the synthesis of complex bacterial oligosaccharides. This combined approach of finding answers to fundamental physical-chemical questions and their application in organic synthesis provides a robust basis for elucidating highly-reactive intermediates in glycosylation reactions.
(© 2024. The Author(s).)
References: Frush, H. L. & Isbell, H. S. Sugar acetates, acetylglycosyl halides and orthoacetates in relation to the Walden inversion. J. Res. Natl. Bureau Stand. 27, 413 (1941). (PMID: 10.6028/jres.027.028)
Lemieux, R. Some implications in carbohydrate chemistry of theories relating to the mechanisms of replacement reactions. Adv. Carbohydrate Chem. 9, 1–57 (1954).
Boltje, T. J., Buskas, T. & Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1, 611–622 (2009). (PMID: 20161474279405010.1038/nchem.399)
Baek, J. Y., Lee, B.-Y., Jo, M. G. & Kim, K. S. β-Directing effect of electron-withdrawing groups at O-3, O-4, and O-6 positions and α-directing effect by remote participation of 3-O-acyl and 6-O-acetyl groups of donors in mannopyranosylations. J. Am. Chem. Soc. 131, 17705–17713 (2009). (PMID: 1990884110.1021/ja907252u)
Komarova, B. S., Orekhova, M. V., Tsvetkov, Y. E. & Nifantiev, N. E. Is an acyl group at O-3 in glucosyl donors able to control α-stereoselectivity of glycosylation? The role of conformational mobility and the protecting group at O-6. Carbohydrate Res. 384, 70–86 (2014). (PMID: 10.1016/j.carres.2013.11.016)
Lei, J. C., Ruan, Y. X., Luo, S. & Yang, J. S. Stereodirecting Effect of C3‐Ester Groups on the Glycosylation Stereochemistry of L‐Rhamnopyranose Thioglycoside Donors: Stereoselective Synthesis of α‐and β‐L‐Rhamnopyranosides. Eur. J. Organ. Chem. 2019, 6377–6382 (2019). (PMID: 10.1002/ejoc.201901186)
Demchenko, A. V., Rousson, E. & Boons, G.-J. Stereoselective 1, 2-cis-galactosylation assisted by remote neighboring group participation and solvent effects. Tetrahedron Lett. 40, 6523–6526 (1999). (PMID: 10.1016/S0040-4039(99)01203-4)
Baek, J. Y. et al. Directing effect by remote electron-withdrawing protecting groups at O-3 or O-4 position of donors in glucosylations and galactosylations. Tetrahedron 71, 5315–5320 (2015). (PMID: 10.1016/j.tet.2015.06.014)
Elferink, H. et al. Competing C‐4 and C‐5‐acyl stabilization of uronic acid glycosyl cations. Chemistry. Eur J 28, e202201724 (2022). (PMID: 10.1002/chem.202201724)
Remmerswaal, W. et al. Anomeric Triflates vs Dioxanium ions: Different Product-Forming Intermediates from 1-Thiophenyl-2-O-Benzyl-3-O-Benzoyl-4, 6-O-Benzylidene-Mannose and Glucose. J. Org. Chem. 89, 1618–1625 (2024).
Hettikankanamalage, A. A., Lassfolk, R., Ekholm, F. S., Leino, R. & Crich, D. Mechanisms of stereodirecting participation and ester migration from near and far in glycosylation and related reactions. Chem. Rev. 120, 7104–7151 (2020). (PMID: 32627532742936610.1021/acs.chemrev.0c00243)
Crich, D., Hu, T. & Cai, F. Does neighboring group participation by non-vicinal esters play a role in glycosylation reactions? Effective probes for the detection of bridging intermediates. J. Organ. Chem. 73, 8942–8953 (2008). (PMID: 10.1021/jo801630m)
Ma, Y., Lian, G., Li, Y. & Yu, B. Identification of 3, 6-di-O-acetyl-1, 2, 4-O-orthoacetyl-α-D-glucopyranose as a direct evidence for the 4-O-acyl group participation in glycosylation. Chem. Commun. 47, 7515–7517 (2011). (PMID: 10.1039/c1cc11680k)
Yao, D. et al. Evidence of robust participation by an equatorial 4-O group in glycosylation on a 2-azido-2-deoxy-glucopyranosyl donor. Chem. Commun. 53, 2986–2989 (2017). (PMID: 10.1039/C7CC00274B)
Xu, K. et al. Investigation of the remote acyl group participation in glycosylation from conformational perspectives by using trichloroacetimidate as the acetyl surrogate. Organ. Chem. Front. 7, 1606–1615 (2020). (PMID: 10.1039/D0QO00363H)
Elferink, H. et al. Direct experimental characterization of glycosyl cations by infrared ion spectroscopy. J. Am. Chem. Soc. 140, 6034–6038 (2018). (PMID: 29656643595833810.1021/jacs.8b01236)
Mucha, E. et al. Unravelling the structure of glycosyl cations via cold-ion infrared spectroscopy. Nat. Commun. 9, 4174 (2018). (PMID: 30301896617748010.1038/s41467-018-06764-3)
Elferink, H. et al. The Glycosylation Mechanisms of 6, 3‐Uronic Acid Lactones. Angewandte Chemie Int. Ed. 58, 8746–8751 (2019). (PMID: 10.1002/anie.201902507)
Marianski, M. et al. Remote participation during glycosylation reactions of galactose building blocks: direct evidence from cryogenic vibrational spectroscopy. Angewandte Chemie Int. Ed. 59, 6166–6171 (2020). (PMID: 10.1002/anie.201916245)
Grabarics, M. et al. Mass spectrometry-based techniques to elucidate the sugar code. Chem. Rev. 122, 7840–7908 (2021). (PMID: 34491038905243710.1021/acs.chemrev.1c00380)
Greis, K. et al. The Influence of the Electron Density in Acyl Protecting Groups on the Selectivity of Galactose Formation. J. Am. Chem. Soc. 144, 20258–20266 (2022). (PMID: 36289569965071310.1021/jacs.2c05859)
Hansen, T. et al. Characterization of glycosyl dioxolenium ions and their role in glycosylation reactions. Nat. Commun. 11, 2664 (2020). (PMID: 32471982726018210.1038/s41467-020-16362-x)
de Kleijne, F. F., Elferink, H., Moons, S. J., White, P. B. & Boltje, T. J. Characterization of Mannosyl Dioxanium Ions in Solution Using Chemical Exchange Saturation Transfer NMR Spectroscopy. Angewandte Chemie Int. Ed. 61, e202109874 (2022). (PMID: 10.1002/anie.202109874)
Lemieux, R., Hendriks, K., Stick, R. & James, K. Halide ion catalyzed glycosidation reactions. Syntheses of. alpha.-linked disaccharides. J. Am. Chem. Soc. 97, 4056–4062 (1975). (PMID: 10.1021/ja00847a032)
Nicolaou, K. C., Daines, R., Ogawa, Y. & Chakraborty, T. Total synthesis of amphotericin B. 3. The final stages. J. Am Chem. Soc. 110, 4696–4705 (1988). (PMID: 10.1021/ja00222a030)
Tvaroska, I. & Taravel, F. R. Carbon-proton coupling constants in the conformational analysis of sugar molecules. Adv. Carbohydrate Chem. Biochem. 51, 15–61 (1995). (PMID: 10.1016/S0065-2318(08)60191-2)
Bubb, W. A. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts Magnet. Resonance Part A: Educ J. 19, 1–19 (2003).
Heikkinen, S., Toikka, M. M., Karhunen, P. T. & Kilpeläinen, I. A. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin. J. Am. Chem. Soc. 125, 4362–4367 (2003). (PMID: 1267026010.1021/ja029035k)
Koskela, H., Kilpeläinen, I. & Heikkinen, S. Some aspects of quantitative 2D NMR. J. Magnet. Resonance 174, 237–244 (2005). (PMID: 10.1016/j.jmr.2005.02.002)
Chang, C.-W. et al. Unraveling the promoter effect and the roles of counterion exchange in glycosylation reaction. Sci. Adv. 9, eadk0531 (2023). (PMID: 378518031058434910.1126/sciadv.adk0531)
Zhang, Z. et al. Programmable one-pot oligosaccharide synthesis. J. Am. Chem. Soc. 121, 734–753 (1999). (PMID: 10.1021/ja982232s)
Chang, C. W. et al. Establishment of guidelines for the control of glycosylation reactions and intermediates by quantitative assessment of reactivity. Angewandte Chemie 131, 16931–16935 (2019). (PMID: 10.1002/ange.201906297)
de Kleijne, F. F. et al. Detection and Characterization of Rapidly Equilibrating Glycosylation Reaction Intermediates Using Exchange NMR. J. Am. Chem. Soc. 145, 26190–26201 (2023). (PMID: 380089121070460510.1021/jacs.3c08709)
Martens, J., Berden, G., Gebhardt, C. R. & Oomens, J. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory. Rev. Sci. Instru. 87, 103108 (2016). (PMID: 10.1063/1.4964703)
Braak, F. T. et al. Characterization of Elusive Reaction Intermediates Using Infrared Ion Spectroscopy: Application to the Experimental Characterization of Glycosyl Cations. Acc. Chem. Res. 55, 1669–1679 (2022). (PMID: 35616920921911410.1021/acs.accounts.2c00040)
Blanco-Ania, D. & Rutjes, F. P. Carbonylonium ions: the onium ions of the carbonyl group. Beilstein J. Organ. Chem. 14, 2568–2571 (2018). (PMID: 10.3762/bjoc.14.233)
Van Zijl, P. C. & Yadav, N. N. Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magnet. Resonance Med. 65, 927–948 (2011). (PMID: 10.1002/mrm.22761)
Lokesh, N., Seegerer, A., Hioe, J. & Gschwind, R. M. Chemical exchange saturation transfer in chemical reactions: a mechanistic tool for NMR detection and characterization of transient intermediates. J. Am. Chem. Soc. 140, 1855–1862 (2018). (PMID: 29336150630133010.1021/jacs.7b12343)
Woods, M., Woessner, D. E. & Sherry, A. D. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem. Soc. Rev. 35, 500–511 (2006). (PMID: 16729144271884010.1039/b509907m)
Codée, J. D. et al. Ph2SO/Tf2O: a powerful promotor system in chemoselective glycosylations using thioglycosides. Organ. Lett. 5, 1519–1522 (2003). (PMID: 10.1021/ol034312t)
Bock, K. & Pedersen, C. A study of 13 CH coupling constants in hexopyranoses. J. Chem. Society, Perkin Transact. 2 3, 293–297 (1974). (PMID: 10.1039/p29740000293)
Serianni, A. S., Pierce, J., Huang, S. G. & Barker, R. Anomerization of furanose sugars: kinetics of ring-opening reactions by proton and carbon-13 saturation-transfer NMR spectroscopy. J. Am. Chem Soc. 104, 4037–4044 (1982). (PMID: 10.1021/ja00379a001)
Taylor, C. J., Anderson, A. J. & Wilkinson, S. G. Structure of the O9 antigen from Burkholderia (Pseudomonas) cepacia. FEMS Microbiol. Lett. 115, 201–203 (1994). (PMID: 751112210.1111/j.1574-6968.1994.tb06638.x)
Oxley, D. & Wilkinson, S. G. Structure of a glucorhamnan from the lipopolysaccharide of Serratia marcescens strain S1254. Carbohydrate Res 209, 319–S1322 (1991). (PMID: 10.1016/0008-6215(91)80170-R)
Astronomo, R. D. & Burton, D. R. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat. Rev. Drug Discov. 9, 308–324 (2010). (PMID: 2035780310.1038/nrd3012)
Administration, U. F. D. Vaccines Licensed for Use in the United States. https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states (accessed: february 2023).
Mettu, R., Chen, C.-Y. & Wu, C.-Y. Synthetic carbohydrate-based vaccines: challenges and opportunities. J. Biomed. Sci. 27, 1–22 (2020). (PMID: 10.1186/s12929-019-0591-0)
Lu, S. R., Lai, Y. H., Chen, J. H., Liu, C. Y. & Mong, K. K. T. Dimethylformamide: an unusual glycosylation modulator. Angewandte Chemie Int. Edit. 50, 7315–7320 (2011). (PMID: 10.1002/anie.201100076)
Wen, L. et al. Toward automated enzymatic synthesis of oligosaccharides. Chem. Rev. 118, 8151–8187 (2018). (PMID: 3001119510.1021/acs.chemrev.8b00066)
Lou, Q., Hua, Q., Zhang, L. & Yang, Y. Dimethylformamide-modulated kdo glycosylation for stereoselective synthesis of α-kdo glycosides. Organ. Lett. 22, 981–985 (2020). (PMID: 10.1021/acs.orglett.9b04509)
Hu, J.-C., Feng, A.-F. W., Chang, B.-Y., Lin, C.-H. & Mong, K.-K. T. A flexible 1, 2-cis α-glycosylation strategy based on in situ adduct transformation. Organ. Biomol. Chem. 15, 5345–5356 (2017). (PMID: 10.1039/C7OB00839B)
Wang, L., Zhang, Y., Overkleeft, H. S., van der Marel, G. A. & Codée, J. D. Reagent controlled glycosylations for the assembly of well-defined pel oligosaccharides. J. Organ. Chem. 85, 15872–15884 (2020). (PMID: 10.1021/acs.joc.0c00703)
Li, Y., Manickam, G., Ghoshal, A. & Subramaniam, P. More efficient palladium catalyst for hydrogenolysis of benzyl groups. Synthetic Commun. 36, 925–928 (2006). (PMID: 10.1080/00397910500466199)
Crawford, C. & Oscarson, S. Optimized Conditions for the Palladium‐Catalyzed Hydrogenolysis of Benzyl and Naphthylmethyl Ethers: Preventing Saturation of Aromatic Protecting Groups. Eur. J. Organ. Chem. 2020, 3332–3337 (2020). (PMID: 10.1002/ejoc.202000401)
Crawford, C. J. et al. Defining the qualities of high-quality palladium on carbon catalysts for hydrogenolysis. Organ. Process Res. Dev. 25, 1573–1578 (2021).
Oepts, D., van der Meer, A. & van Amersfoort, P. Infrared Phys. Technol. 36, 297–308 (1995).
Landrum, G. RDKit: Open-source cheminformatics software. https://www.bibsonomy.org/bibtex/28d01fceeccd6bf2486e47d7c4207b108/salotz (2016).
Gaussian 16, Revision A.03, Frisch, M. J. et al. (Gaussian, Inc., Wallingford, CT, 2016). https://gaussian.com/g09citation/ .
تواريخ الأحداث: Date Created: 20240314 Latest Revision: 20240317
رمز التحديث: 20240317
مُعرف محوري في PubMed: PMC10937939
DOI: 10.1038/s41467-024-46522-2
PMID: 38480691
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-46522-2