دورية أكاديمية

Dynamics and interplay of photosynthetic regulatory processes depend on the amplitudes of oscillating light.

التفاصيل البيبلوغرافية
العنوان: Dynamics and interplay of photosynthetic regulatory processes depend on the amplitudes of oscillating light.
المؤلفون: Niu Y; Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany., Matsubara S; Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany., Nedbal L; Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany.; Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic., Lazár D; Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
المصدر: Plant, cell & environment [Plant Cell Environ] 2024 Jun; Vol. 47 (6), pp. 2240-2257. Date of Electronic Publication: 2024 Mar 14.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Ltd Country of Publication: United States NLM ID: 9309004 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-3040 (Electronic) Linking ISSN: 01407791 NLM ISO Abbreviation: Plant Cell Environ Subsets: MEDLINE
أسماء مطبوعة: Publication: Hoboken, NJ : John Wiley & Sons Ltd.
Original Publication: Oxford, UK : Blackwell Scientific Publications
مواضيع طبية MeSH: Photosynthesis*/physiology , Photosynthesis*/radiation effects , Arabidopsis*/physiology , Arabidopsis*/genetics , Arabidopsis*/radiation effects , Arabidopsis*/metabolism , Photosystem I Protein Complex*/metabolism , Light* , Photosystem II Protein Complex*/metabolism , Arabidopsis Proteins*/metabolism , Arabidopsis Proteins*/genetics , Membrane Proteins*, Electron Transport ; Ferredoxins/metabolism ; Mutation ; Oxidation-Reduction ; Plastocyanin/metabolism ; Photosynthetic Reaction Center Complex Proteins/metabolism ; Photosynthetic Reaction Center Complex Proteins/genetics
مستخلص: Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.
(© 2024 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.)
References: Allahverdiyeva, Y., Suorsa, M., Tikkanen, M. & Aro, E.‐M. (2015) Photoprotection of photosystems in fluctuating light intensities. Journal of Experimental Botany, 66(9), 2427–2436. Available from: https://doi.org/10.1093/jxb/eru463.
Alter, P., Dreissen, A., Luo, F.L. & Matsubara, S. (2012) Acclimatory responses of Arabidopsis to fluctuating light environment: comparison of different sunfleck regimes and accessions. Photosynthesis Research, 113(1–3), 221–237. Available from: https://doi.org/10.1007/s11120-012-9757-2.
Ananyev, G. & Dismukes, G.C. (2005) How fast can photosystem II split water? Kinetic performance at high and low frequencies. Photosynthesis Research, 84(1–3), 355–365. Available from: https://doi.org/10.1007/s11120-004-7081-1.
Avenson, T.J., Cruz, J.A., Kanazawa, A. & Kramer, D.M. (2005) Regulating the proton budget of higher plant photosynthesis. Proceedings of the National Academy of Sciences USA, 102(27), 9709–9713. Available from https://doi.org/10.1073/pnas.0503952102.
Barker, D.H., Logan, B.A., III, W.W.A. & Demmig‐Adams, B. (1997) The response of xanthophyll cycle‐dependent energy dissipation in Alocasia brisbanensis to sunflecks in a subtropical rainforest Funct. Plant Biology, 24(1), 27–33. Available from: https://doi.org/10.1071/PP96059.
Bottin, H. & Mathis, P. (1985) Interaction of plastocyanin with the photosystem I reaction center: a kinetic study by flash absorption spectroscopy. Biochemistry, 24(23), 6453–6460. Available from: https://doi.org/10.1021/bi00344a022.
Chazdon, R.L. & Pearcy, R.W. (1991) The importance of sunflecks for forest understory plants. Bioscience, 41(11), 760–766. Available from: https://doi.org/10.2307/1311725.
Caliandro, R., Nagel, K.A., Kastenholz, B., Bassi, R., Li, Z., Niyogi, K.K. et al. (2013) Effects of altered α‐ and β‐branch carotenoid biosynthesis on photoprotection and whole‐plant acclimation of Arabidopsis to photo‐oxidative stress. Plant, Cell & Environment, 36(2), 438–453. Available from: https://doi.org/10.1111/j.1365-3040.2012.02586.x.
Crofts, A.R.andWraight, C.A. (1983) The electrochemical domain of photosynthesis. Biochimica et Biophysica Acta (BBA)—Reviews on Bioenergetics, 726(3), 149–185. Available from: https://doi.org/10.1016/0304-4173(83)90004-6.
Cruz, J.A., Savage, L.J., Zegarac, R., Hall, C.C., Satoh‐Cruz, M., Davis, G.A. et al. (2016) Dynamic environmental photosynthetic imaging reveals emergent phenotypes. Cell Systems, 2(6), 365–377. Available from: https://doi.org/10.1016/j.cels.2016.06.001.
DalCorso, G., Pesaresi, P., Masiero, S., Aseeva, E., Schünemann, D., Finazzi, G. et al. (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell, 132(2), 273–285. Available from: https://doi.org/10.1016/j.cell.2007.12.028.
Degen, G.E., Jackson, P.J., Proctor, M.S., Zoulias, N., Casson, S.A. & Johnson, M.P. (2023) High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control. Plant Physiology, 192(1), 370–386. Available from: https://doi.org/10.1093/plphys/kiad084.
Demmig‐Adams, B. (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1020(1), 1–24. Available from: https://doi.org/10.1016/0005-2728(90)90088-L.
Demmig‐Adams, B., Garab, G., Adams, W. & Govindjee, U. (2014) Non‐photochemical quenching and energy dissipation in plants, algae and cyanobacteria preface. Netherlands: Springer.
Durand, M. & Robson, T.M. (2023) Fields of a thousand shimmers: canopy architecture determines high‐frequency light fluctuations. New Phytologist, 238(5), 2000–2015. Available from: https://doi.org/10.1111/nph.18822.
Duysens, L.N.M. & Sweers, H.E. (1963) Mechanism of the two photochemical reactions in algaeas studied by means of fluorescence In: Japanese society of plant physiologists (Ed.). Studies on microalgae and photosynthetic bacteria Tokyo: University of Tokyo Press. pp. 353–372.
Ferimazova, N., Küpper, H., Nedbal, L. & Trtílek, M. (2002) New insights into photosynthetic oscillations revealed by two‐dimensional microscopic measurements of chlorophyll fluorescence kinetics in intact leaves and isolated protoplasts. Photochemistry and Photobiology, 76(5), 501–508. Available from: https://doi.org/10.1562/0031-8655(2002)0760501NIIPOR2.0.CO2.
Garab, G., Magyar, M., Sipka, G. & Lambrev, P.H. (2023) New foundations for the physical mechanism of variable chlorophyll a fluorescence. Quantum efficiency versus the light‐adapted state of photosystem II. Journal of Experimental Botany, 74(18), 5458–5471. Available from: https://doi.org/10.1093/jxb/erad252.
Gilmore, A.M. (1997) Mechanistic aspects of xanthophyll cycle‐dependent photoprotection in higher plant chloroplasts and leaves. Physiologia Plantarum, 99(1), 197–209. Available from: https://doi.org/10.1034/j.1399-3054.1997.990127.x.
Gjindali, A., Herrmann, H.A., Schwartz, J.‐M., Johnson, G.N. & Calzadilla, P.I. (2021) A holistic approach to study photosynthetic acclimation responses of plants to fluctuating light. Frontiers in Plant Science, 12, 668512. Available from: https://doi.org/10.3389/fpls.2021.668512.
Han, J., Chang, C.Y.Y., Gu, L., Zhang, Y., Meeker, E.W., Magney, T.S. et al. (2022) The physiological basis for estimating photosynthesis from Chla fluorescence. New Phytologist, 234(4), 1206–1219. Available from: https://doi.org/10.1111/nph.18045.
Hashimoto, M., Endo, T., Peltier, G., Tasaka, M. & Shikanai, T. (2003) A nucleus‐encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. The Plant Journal, 36(4), 541–549. Available from: https://doi.org/10.1046/j.1365-313X.2003.01900.x.
Hertle, A.P., Blunder, T., Wunder, T., Pesaresi, P., Pribil, M., Armbruster, U. et al. (2013) PGRL1 is the elusive ferredoxin‐plastoquinone reductase in photosynthetic cyclic electron flow. Molecular Cell, 49(3), 511–523. Available from: https://doi.org/10.1016/J.MOLCEL.2012.11.030.
Holzwarth, A.R., Miloslavina, Y., Nilkens, M. & Jahns, P. (2009) Identification of two quenching sites active in the regulation of photosynthetic light‐harvesting studied by time‐resolved fluorescence. Chemical Physics Letters, 483(4–6), 262–267. Available from: https://doi.org/10.1016/j.cplett.2009.10.085.
Huang, W., Zhang, S.‐B. & Cao, K.‐F. (2011) Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. Plant and Cell Physiology, 52(2), 297–305. Available from: https://doi.org/10.1093/pcp/pcq166.
Ikeuchi, M., Uebayashi, N., Sato, F. & Endo, T. (2014) Physiological functions of PsbS‐dependent and PsbS‐independent NPQ under naturally fluctuating light conditions. Plant and Cell Physiology, 55(7), 1286–1295. Available from: https://doi.org/10.1093/pcp/pcu069.
Jahns, P. & Holzwarth, A.R. (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1817(1), 182–193. Available from: https://doi.org/10.1016/j.bbabio.2011.04.012.
Johnson, G.N. (2011) Physiology of PSI cyclic electron transport in higher plants. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1807(3), 384–389. Available from: https://doi.org/10.1016/j.bbabio.2010.11.009.
Johnson, G.N., Cardol, P., Minagawa, J. & Finazzi, G. (2014) Regulation of electron transport in photosynthesis. In: Theg, S.M. & Wollman, F.‐A. (Eds.) Plastid biology. New York: Springer, pp. 437–464. Available from: https://doi.org/10.1007/978-1-4939-1136-3_16.
Joliot, P. & Joliot, A. (2005) Quantification of cyclic and linear flows in plants. Proceedings of the National Academy of Sciences of the United States of America, 102(13), 4913–4918. Available from: https://doi.org/10.1073/pnas.0501268102.
Kaiser, E., Morales, A. & Harbinson, J. (2018) Fluctuating light takes crop photosynthesis on a rollercoaster ride. Plant Physiology, 176(2), 977–989. Available from: https://doi.org/10.1104/pp.17.01250.
Kawashima, R., Sato, R., Harada, K. & Masuda, S. (2017) Relative contributions of PGR5‐ and NDH‐dependent photosystem I cyclic electron flow in the generation of a proton gradient in Arabidopsis chloroplasts. Planta, 246(5), 1045–1050. Available from: https://doi.org/10.1007/s00425-017-2761-1.
Klughammer, C. & Schreiber, U. (2016) Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. Photosynthesis Research, 128(2), 195–214. Available from: https://doi.org/10.1007/s11120-016-0219-0.
Kono, M., Noguchi, K. & Terashima, I. (2014) Roles of the cyclic electron flow around PSI (CEF‐PSI) and O2‐dependent alternative pathways in regulation of the photosynthetic electron flow in short‐term fluctuating light in Arabidopsis thaliana. Plant and Cell Physiology, 55(5), 990–1004. Available from: https://doi.org/10.1093/pcp/pcu033.
Kono, M. & Terashima, I. (2014) Long‐term and short‐term responses of the photosynthetic electron transport to fluctuating light. Journal of Photochemistry and Photobiology, B: Biology, 137, 89–99. Available from: https://doi.org/10.1016/j.jphotobiol.2014.02.016.
Kono, M. & Terashima, I. (2016) Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition. Plant & Cell Physiology, 57(7), 1405–1414. Available from: https://doi.org/10.1093/pcp/pcw103.
Kouřil, R., Strouhal, O., Nosek, L., Lenobel, R., Chamrád, I., Boekema, E.J. et al. (2014) Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. The Plant Journal, 77(4), 568–576. Available from: https://doi.org/10.1111/tpj.12402.
Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K. et al. (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354(6314), 857–861. Available from: https://doi.org/10.1126/science.aai8878.
Külheim, C., Ågren, J. & Jansson, S. (2002) Rapid regulation of light harvesting and plant fitness in the field. Science, 297(5578), 91–93. Available from: https://doi.org/10.1126/science.1072359.
Külheim, C. & Jansson, S. (2005) What leads to reduced fitness in non‐photochemical quenching mutants? Physiologia Plantarum, 125(2), 202–211. Available from: https://doi.org/10.1111/j.1399-3054.2005.00547.x.
Laisk, A. & Oja, V. (2020) Variable fluorescence of closed photochemical reaction centers. Photosynthesis Research, 143(3), 335–346. Available from: https://doi.org/10.1007/s11120-020-00712-3.
Laughlin, T.G., Savage, D.F. & Davies, K.M. (2020) Recent advances on the structure and function of NDH‐1: the complex I of oxygenic photosynthesis. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1861(11), 148254. Available from:https://doi.org/10.1016/J.BBABIO.2020.148254.
Lazár, D. (2015) Parameters of photosynthetic energy partitioning. Journal of Plant Physiology, 175, 131–147. Available from: https://doi.org/10.1016/j.jplph.2014.10.021.
Lazár, D., Kaňa, R., Klinkovský, T. & Nauš, J. (2005) Experimental and theoretical study on high temperature induced changes in chlorophyll a fluorescence oscillations in barley leaves upon 2 % CO2. Photosynthetica, 43(1), 13–27. Available from: https://doi.org/10.1007/s11099-005-3027-x.
Lazár, D., Niu, Y. & Nedbal, L. (2022) Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light. Journal of Experimental Botany, 73(18), 6380–6393. Available from: https://doi.org/10.1093/jxb/erac283.
Li, X.P., Björkman, O., Shih, C., Grossman, A.R., Rosenquist, M., Jansson, S. et al. (2000) A pigment‐binding protein essential for regulation of photosynthetic light harvesting. Nature, 403(6768), 391–395. Available from: https://doi.org/10.1038/35000131.
Li, X.‐P., Müller‐Moulé, P., Gilmore, A.M. & Niyogi, K.K. (2002) PsbS‐dependent enhancement of feedback de‐excitation protects photosystem II from photoinhibition. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 15222–15227. Available from: https://doi.org/10.1073/pnas.232447699.
Ma, M., Liu, Y., Bai, C., Yang, Y., Sun, Z., Liu, X. et al. (2021) The physiological functionality of PGR5/PGRL1‐dependent cyclic electron transport in sustaining photosynthesis. Frontiers of Plant Science, 12, 702196. Available from: https://doi.org/10.3389/fpls.2021.702196.
Ma, M., Liu, Y., Bai, C. & Yong, J.W.H. (2021) The significance of chloroplast NAD(P)H dehydrogenase complex and its dependent cyclic electron transport in photosynthesis. Frontiers of Plant Science, 12, 661863.
Magyar, M., Sipka, G., Kovács, L., Ughy, B., Zhu, Q., Han, G. et al. (2018) Rate‐limiting steps in the dark‐to‐light transition of photosystem II—revealed by chlorophyll‐a fluorescence induction. Scientific Reports, 8(1), 2755. Available from: https://doi.org/10.1038/s41598-018-21195-2.
Miyake, C., Miyata, M., Shinzaki, Y. & Tomizawa, K. (2005) CO2 response of cyclic electron flow around PSI (CEF‐PSI) in tobacco leaves—relative electron fluxes through PSI and PSII determine the magnitude of non‐photochemical quenching (NPQ) of chl fluorescence. Plant and Cell Physiology, 46(4), 629–637. Available from: https://doi.org/10.1093/pcp/pci067.
Morales, A. & Kaiser, E. (2020) Photosynthetic acclimation to fluctuating irradiance in plants. Frontiers in Plant Science, 11, 268. Available from: https://doi.org/10.3389/FPLS.2020.00268/BIBTEX.
Müller, P., Li, X.‐P. & Niyogi, K.K. (2001) Non‐photochemical quenching. A response to excess light energy. Plant Physiology, 125(4), 1558–1566. Available from: https://doi.org/10.1104/pp.125.4.1558.
Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K.I., Endo, T., Tasaka, M. et al. (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 429(6991), 579–582. Available from: https://doi.org/10.1038/nature02598.
Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M. & Shikanai, T. (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell, 110(3), 361–371. Available from: https://doi.org/10.1016/S0092-8674(02)00867-X.
Nakano, H., Yamamoto, H. & Shikanai, T. (2019) Contribution of NDH‐dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1860(5), 369–374. Available from: https://doi.org/10.1016/j.bbabio.2019.03.003.
Nedbal, L. & Březina, V. (2002) Complex metabolic oscillations in plants forced by harmonic irradiance. Biophysical Journal, 83(4), 2180–2189. Available from: https://doi.org/10.1016/S0006-3495(02)73978-7.
Nedbal, L., Březina, ě, Adamec, F., Štys, D., Oja, V., Laisk, A. et al. (2003) Negative feedback regulation is responsible for the non‐linear modulation of photosynthetic activity in plants and cyanobacteria exposed to a dynamic light environment. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1607(1), 5–17. Available from: https://doi.org/10.1016/j.bbabio.2003.08.005.
Nedbal, L., Březina, V., Červený, J. & Trtílek, M. (2005) Photosynthesis in dynamic light: systems biology of unconventional chlorophyll fluorescence transients in Synechocystis sp. PCC 6803. Photosynthesis Research, 84(1–3), 99–106. Available from: https://doi.org/10.1007/s11120-004-6428-y.
Nedbal, L. & Lazár, D. (2021) Photosynthesis dynamics and regulation sensed in the frequency domain. Plant Physiology, 187(2), 646–661. Available from: https://doi.org/10.1093/plphys/kiab317.
Niedermaier, S., Schneider, T., Bahl, M.O., Matsubara, S. & Huesgen, P.F. (2020) Photoprotective acclimation of the Arabidopsis thaliana leaf proteome to fluctuating light. Frontiers in Genetics, 11, 154. Available from: https://doi.org/10.3389/fgene.2020.00154.
Niu, Y., Lazár, D., Holzwarth, A.R., Kramer, D.M., Matsubara, S., Fiorani, F. et al. (2023) Plants cope with fluctuating light by frequency‐dependent non‐photochemical quenching and cyclic electron transport. New Phytologist, 239(5), 1869–1886. Available from: https://doi.org/10.1111/nph.19083.
Niyogi, K.K., Grossman, A.R. & Björkman, O. (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. The Plant Cell, 10(7), 1121–1134. Available from: https://doi.org/10.1105/tpc.10.7.1121.
Oja, V. & Laisk, A. (2020) Time‐ and reduction‐dependent rise of photosystem II fluorescence during microseconds‐long inductions in leaves. Photosynthesis Research, 145(3), 209–225. Available from: https://doi.org/10.1007/s11120-020-00783-2.
Okegawa, Y., Kagawa, Y., Kobayashi, Y. & Shikanai, T. (2008) Characterization of factors affecting the activity of photosystem I cyclic electron transport in chloroplasts. Plant and Cell Physiology, 49(5), 825–834. Available from: https://doi.org/10.1093/pcp/pcn055.
Peltier, G., Aro, E.M. & Shikanai, T. (2016) NDH‐1 and NDH‐2 plastoquinone reductases in oxygenic photosynthesis. Annual Review of Plant Biology, 67, 55–80. Available from: https://doi.org/10.1146/annurev-arplant-043014-114752.
Roach, T. & Krieger‐Liszkay, A. (2012) The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1817(12), 2158–2165. Available from: https://doi.org/10.1016/j.bbabio.2012.09.011.
Roden, J.S. & Pearcy, R.W. (1993) Effect of leaf flutter on the light environment of poplars. Oecologia, 93(2), 201–207. Available from: https://doi.org/10.1007/bf00317672.
Rumberg, B. & Siggel, U. (1969) pH changes in the inner phase of the thylakoids during photosynthesis. Die Naturwissenschaften, 56(3), 130–132. Available from: https://doi.org/10.1007/BF00601025.
Ruban, A.V. (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology, 170(4), 1903–1916. Available from: https://doi.org/10.1104/pp.15.01935.
Sagun, J.V., Badger, M.R., Chow, W.S. & Ghannoum, O. (2019) Cyclic electron flow and light partitioning between the two photosystems in leaves of plants with different functional types. Photosynthesis Research, 142(3), 321–334. Available from: https://doi.org/10.1007/s11120-019-00666-1.
Sazanov, L.A., Burrows, P.A. & Nixon, P.J. (1998) The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Letters, 429(1), 115–118. Available from: https://doi.org/10.1016/S0014-5793(98)00573-0.
Schansker, G. (2022) Determining photosynthetic control, a probe for the balance between electron transport and Calvin‐Benson cycle activity, with the DUAL‐KLAS‐NIR. Photosynthesis Research, 153, 191–204. Available from: https://doi.org/10.1007/s11120-022-00934-7.
Schansker, G., Tóth, S.Z., Kovács, L., Holzwarth, A.R. & Garab, G. (2011) Evidence for a fluorescence yield change driven by a light‐induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochimica et Biophysica Acta (BBA) ‐ Bioenegetics, 1807(9), 1032–1043. Available from: https://doi.org/10.1016/j.bbabio.2011.05.022.
Schneider, T., Bolger, A., Zeier, J., Preiskowski, S., Benes, V., Trenkamp, S. et al. (2019) Fluctuating light interacts with time of day and leaf development stage to reprogram gene expression. Plant Physiology, 179(4), 1632–1657. Available from: https://doi.org/10.1104/PP.18.01443.
Schreiber, U. (2004) Pulse‐amplitude‐modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou, G.C. & Govindjee, G. (Eds.) Chlorophyll a fluorescence: a signature of photosynthesis. Dordrecht: Springer, pp. 279–319.
Schreiber, U. & Klughammer, C. (2016) Analysis of photosystem I donor and acceptor sides with a new type of online‐deconvoluting kinetic LED‐array spectrophotometer. Plant & Cell Physiology, 57(7), 1454–1467. Available from: https://doi.org/10.1093/pcp/pcw044.
Setif, P.Q.Y. & Bottin, H. (1995) Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I: spectral and kinetic evidence for the existence of several photosystem I‐ferredoxin complexes. Biochemistry, 34(28), 9059–9070. Available from: https://doi.org/10.1021/bi00028a015.
Shikanai, T. (2014) Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Current Opinion in Biotechnology, 26, 25–30. Available from: https://doi.org/10.1016/J.COPBIO.2013.08.012.
Shikanai, T. & Okegawa, Y. (2008) Regulation of photosynthesis via PSI cyclic electron transport. In: Allen, J.F., Gantt, E., Golbeck, J.H. & Osmond, B. (Eds.) Photosynthesis. Energy from the Sun. Dordrecht: Springer, pp. 981–985.
Shimakawa, G. & Miyake, C. (2018) Changing frequency of fluctuating light reveals the molecular mechanism for P700 oxidation in plant leaves. Plant Direct, 2(7), e00073. Available from: https://doi.org/10.1002/pld3.73.
Siggel, U. (1976) The function of plastoquinone as electron and proton carrier in photosynthesis. Bioelectrochemistry and Bioenergetics, 3(2), 302–318. Available from: https://doi.org/10.1016/0302-4598(76)80012-8.
Sipka, G., Magyar, M., Mezzetti, A., Akhtar, P., Zhu, Q., Xiao, Y. et al. (2021) Light‐adapted charge‐separated state of photosystem II: structural and functional dynamics of the closed reaction center. The Plant Cell, 33(4), 1286–1302. Available from: https://doi.org/10.1093/plcell/koab008.
Smith, W.K. & Berry, Z.C. (2013) Sunflecks? Tree Physiology, 33(3), 233–237. Available from: https://doi.org/10.1093/treephys/tpt005.
Steen, C.J., Morris, J.M., Short, A.H., Niyogi, K.K. & Fleming, G.R. (2020) Complex roles of PsbS and xanthophylls in the regulation of nonphotochemical quenching in Arabidopsis thaliana under fluctuating light. The Journal of Physical Chemistry B, 124(46), 10311–10325. Available from: https://doi.org/10.1021/acs.jpcb.0c06265.
Stirbet, A. (2013) Excitonic connectivity between photosystem II units: what is it, and how to measure it. Photosynthesis Research, 116(2–3), 189–214. Available from: https://doi.org/10.1007/s11120-013-9863-9.
Strand, D.D., Fisher, N. & Kramer, D.M. (2017) The higher plant plastid NAD(P)H dehydrogenase‐like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. Journal of Biological Chemistry, 292(28), 11850–11860. Available from: https://doi.org/10.1074/jbc.M116.770792.
Sugimoto, K., Okegawa, Y., Tohri, A., Long, T.A., Covert, S.F., Hisabori, T. et al. (2013) A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI. Plant and Cell Physiology, 54(9), 1525–1534. Available from: https://doi.org/10.1093/pcp/pct098.
Suorsa, M., Grieco, M., Järvi, S., Gollan, P.J., Kangasjärvi, S., Tikkanen, M. et al. (2013) PGR5 ensures photosynthetic control to safeguard photosystem I under fluctuating light conditions. Plant Signaling & Behavior, 8(1), e22741. Available from: https://doi.org/10.4161/psb.22741.
Suorsa, M., Järvi, S., Grieco, M., Nurmi, M., Pietrzykowska, M., Rantala, M. et al. (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. The Plant Cell, 24(7), 2934–2948. Available from: https://doi.org/10.1105/tpc.112.097162.
Sylak‐Glassman, E.J., Malnoë, A., De Re, E., Brooks, M.D., Fischer, A.L., Niyogi, K.K. et al. (2014) Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17498–17503. Available from: https://doi.org/10.1073/pnas.1418317111.
Takagi, D., Takumi, S., Hashiguchi, M., Sejima, T. & Miyake, C. (2016) Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiology, 171(3), 1626–1634. Available from: https://doi.org/10.1104/pp.16.00246.
Terashima, I., Funayama, S. & Sonoike, K. (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta, 193(2), 300–306. Available from: https://doi.org/10.1007/BF00192544.
Tikhonov, A.N. (2023) The cytochrome b6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts. Photosynthesis Research. Available from: https://doi.org/10.1007/s11120-023-01034-w.
Tikhonov, A.N., Khomutov, G.B., Ruuge, E.K. & Blumenfeld, L.A. (1981) Electron transport control in chloroplasts; effects of photosynthetic control monitored by the intrathylakoid pH. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 637(2), 321–333. Available from: https://doi.org/10.1016/0005-2728(81)90171-7.
Tjus, S.E., Lindberg Møller, B. & Vibe Scheller, H. (1998) Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiology, 116(2), 755–764. Available from: https://doi.org/10.1104/pp.116.2.755.
Vialet‐Chabrand, S., Matthews, J.S.A., Simkin, A.J., Raines, C.A. & Lawson, T. (2017) Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiology, 173(4), 2163–2179. Available from: https://doi.org/10.1104/pp.16.01767.
Wada, S., Amako, K. & Miyake, C. (2021) Identification of a novel mutation exacerbated the PSI photoinhibition in pgr5/pgrl1 mutants; caution for overestimation of the phenotypes in Arabidopsis pgr5‐1 mutant. Cells, 10(11), 2884. Available from: https://doi.org/10.3390/cells10112884.
Wang, C., Yamamoto, H. & Shikanai, T. (2015) Role of cyclic electron transport around photosystem I in regulating proton motive force. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1847(9), 931–938. Available from: https://doi.org/10.1016/j.bbabio.2014.11.013.
Ware, M.A., Belgio, E. & Ruban, A.V. (2015) Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. Journal of Experimental Botany, 66(5), 1259–1270. Available from: https://doi.org/10.1093/jxb/eru477.
Way, D.A. & Pearcy, R.W. (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiology, 32(9), 1066–1081. Available from: https://doi.org/10.1093/treephys/tps064.
Wei, Z., Duan, F., Sun, X., Song, X. & Zhou, W. (2021) Leaf photosynthetic and anatomical insights into mechanisms of acclimation in rice in response to long‐term fluctuating light. Plant, Cell & Environment, 44(3), 747–761. Available from: https://doi.org/10.1111/pce.13954.
Yamamoto, H., Peng, L., Fukao, Y. & Shikanai, T. (2011) An Src homology 3 domain‐like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase‐like complex in Arabidopsis. The Plant Cell, 23(4), 1480–1493. Available from: https://doi.org/10.1105/tpc.110.080291.
Yamamoto, H. & Shikanai, T. (2019) PGR5‐dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant Physiology, 179(2), 588–600. Available from: https://doi.org/10.1104/pp.18.01343.
Yamori, W., Makino, A. & Shikanai, T. (2016) A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Scientific Reports, 6, 20147. Available from: https://doi.org/10.1038/srep20147.
Yamori, W., Sakata, N., Suzuki, Y., Shikanai, T. & Makino, A. (2011) Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. The Plant Journal, 68(6), 966–976. Available from: https://doi.org/10.1111/j.1365-313X.2011.04747.x.
Yamori, W. & Shikanai, T. (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annual Review of Plant Biology, 67, 81–106. Available from: https://doi.org/10.1146/annurev-arplant-043015-112002.
Yamori, W., Shikanai, T. & Makino, A. (2015) Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase‐like complex performs a physiological role for photosynthesis at low light. Scientific Reports, 5, 13908. Available from: https://doi.org/10.1038/srep15593.
Zhou, Q., Yamamoto, H. & Shikanai, T. (2022) Distinct contribution of two cyclic electron transport pathways to P700 oxidation. Plant Physiology, 192(1), 326–341. Available from: https://doi.org/10.1093/plphys/kiac557.
معلومات مُعتمدة: CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund; 101046451 HORIZON EUROPE Framework Programme; 03SF0576A Federal Ministry of Education and Research of Germany
فهرسة مساهمة: Keywords: alternative electron transports; cyclic electron transport; fluctuating light; rapidly reversible nonphotochemical quenching; regulation
المشرفين على المادة: 0 (Photosystem I Protein Complex)
0 (Photosystem II Protein Complex)
0 (Arabidopsis Proteins)
0 (Ferredoxins)
9014-09-9 (Plastocyanin)
0 (Photosynthetic Reaction Center Complex Proteins)
0 (PGR5 protein, Arabidopsis)
0 (PGRL1 protein, Arabidopsis)
0 (Membrane Proteins)
تواريخ الأحداث: Date Created: 20240314 Date Completed: 20240429 Latest Revision: 20240429
رمز التحديث: 20240429
DOI: 10.1111/pce.14879
PMID: 38482712
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-3040
DOI:10.1111/pce.14879