دورية أكاديمية

Confirmation and characterization of the first case of acetolactate synthase (ALS)-inhibitor resistance in Japanese brome (Bromus japonicus) in the US.

التفاصيل البيبلوغرافية
العنوان: Confirmation and characterization of the first case of acetolactate synthase (ALS)-inhibitor resistance in Japanese brome (Bromus japonicus) in the US.
المؤلفون: Adari MD; Department of Agronomy, Kansas State University, Manhattan, Kansas, USA., Pandian BA; Enko, Mystic, Connecticut, USA., Gaines TA; Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, USA., Prasad PV; Department of Agronomy, Kansas State University, Manhattan, Kansas, USA., Jugulam M; Department of Agronomy, Kansas State University, Manhattan, Kansas, USA.
المصدر: Pest management science [Pest Manag Sci] 2024 Aug; Vol. 80 (8), pp. 3717-3725. Date of Electronic Publication: 2024 Mar 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Published for SCI by Wiley Country of Publication: England NLM ID: 100898744 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1526-4998 (Electronic) Linking ISSN: 1526498X NLM ISO Abbreviation: Pest Manag Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: West Sussex, UK : Published for SCI by Wiley, c2000-
مواضيع طبية MeSH: Acetolactate Synthase*/genetics , Acetolactate Synthase*/antagonists & inhibitors , Acetolactate Synthase*/metabolism , Bromus*/enzymology , Bromus*/drug effects , Bromus*/genetics , Herbicide Resistance*/genetics , Herbicides*/pharmacology , Plant Proteins*/genetics , Plant Proteins*/metabolism , Plant Proteins*/antagonists & inhibitors, Kansas ; Plant Weeds/drug effects ; Plant Weeds/genetics ; Plant Weeds/enzymology
مستخلص: Background: Japanese brome (Bromus japonicus Thumb.) is one of the problematic annual weeds in winter wheat (Triticum aestivum L.) and is generally controlled by acetolactate synthase (ALS) inhibitors. Repeated use of the ALS inhibitor propoxycarbazone-Na resulted in the evolution of resistance to this herbicide in three B. japonicus populations, i.e., R1, R2, and R3 in Kansas (KS). However, the level of resistance and mechanism conferring resistance in these populations is unknown. The objectives of this research were to (i) evaluate the level of resistance to propoxycarbazone-Na in R1, R2, and R3 in comparison with a known susceptible population (S1), (ii) investigate the mechanism of resistance involved in conferring ALS-inhibitor resistance, and (iii) investigate the cross-resistance to other ALS inhibitors.
Results: Dose-response (0 to 16x; x = 44 g ai ha -1 of propoxycarbazone-Na) assay indicated 167, 125, and 667-fold resistance in R1, R2 and R3 populations, respectively, compared to S1 population. ALS gene sequencing confirmed the mutations resulting in amino acid substitutions, i.e., Pro-197-Thr (R3, R1)/Ser (R2, R1) bestowing resistance to these ALS inhibitors. Such amino acid substitutions also showed differential cross-resistance to sulfosulfuron, mesosulfuron-methyl, pyroxsulam, and imazamox among resistant populations. Pretreatment with malathion (a cytochrome P450 enzyme-inhibitor) followed by imazamox treatment suggested cross-resistance to this herbicide possibly via metabolism only in R3 population.
Conclusion: Overall, these results confirm the first case of target-site based resistance to ALS inhibitors in B. japonicus in the US, highlighting the need for exploring herbicides with alternative modes of action to enhance weed control in winter wheat. © 2024 Society of Chemical Industry.
(© 2024 Society of Chemical Industry.)
References: Germino MJ, Belnap J, Stark JM, Allen EB and Rau BM, Ecosystem Impacts of Exotic Annual Invaders in the Genus Bromus, in Exotic Brome‐Grasses in Arid and Semiarid Ecosystems of the Western US. Springer international publishing, switzerland, pp. 61–95 (2016).
Haferkamp MR, Heitschmidt RK, Grings EE, MacNeil MD and Karl MG, Suppression of annual bromes impacts rangeland: vegetation responses. Rangel Ecol Manag Range Manag Arch 54:656–662 (2001).
Ogle SM, Reiners WA and Gerow KG, Impacts of exotic annual brome grasses (Bromus spp.) on ecosystem properties of northern mixed grass prairie. Am Midl Nat 149:46–58 (2003).
Tymo L, Bromus japonicus (Japanese brome), CABI Compend CABI Compe (2022).
Watson L and Dallwitz MJ, The grass genera of the world, CAB international (1992).
Connor O', Gusta LV and Paquette SP, A comparison of the freezing tolerance of downy brome, Japanese brome and Norstar winter wheat. Can J Plant Sci 71:565–569 (1991).
Li Q, Du L, Yuan G, Guo W, Li W and Wang J, Density effect and economic threshold of Japanese brome (Bromus japonicas houtt.) in wheat, Chil. J Agric Res 76:441–447 (2016).
Stahlman PW, Competition and control of annual bromes in winter wheat. Kansas Agricultural Exper Station (1986).
DiTomaso JM, Brooks ML, Allen EB, Minnich R, Rice PM and Kyser GB, Control of invasive weeds with prescribed burning. Weed Technol 20:535–548 (2006).
Mosley JC and Roselle L, Targeted Livestock Grazing to Suppress Invasive Annual Grasses, Target Grazing A Nat Approach to Veg Manag Landsc Enhanc pp. 67–76 (2006).
Whisenant SG and Bulsiewicz WR, Effects of Prescribed Burning on Japanese Brome Population Dynamics: Proceedings of XV International Grassland Congress August 24–31: Kyoto. Science Council of Japan and Japanese Society of Grassland Science, Japan (1985).
Whisenant SG and Uresk DW, Spring burning Japanese brome in a western wheatgrass community. Rangel Ecol Manag Range Manag Arch 43:205–208 (1990).
De Felice M, Guardiola J, Esposito B and Iaccarino M, Structural genes for a newly recognized acetolactate synthase in Escherichia coli K‐12. J Bacteriol 120:1068–1077 (1974).
Ray TB, Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol 75:827–831 (1984).
Reddy SS, Stahlman PW, Geier PW, Thompson CR, Currie RS, Schlegel AJ et al., Weed control and crop safety with premixed Pyrasulfotole and bromoxynil in grain sorghum. Weed Technol 27:664–670 (2013).
Heap I, Herbicide resistant weeds www.weedscience.org. (accessed: May 2023) (2023).
Gaines TA, Duke SO, Morran S, Rigon CAG, Tranel PJ, Küpper A et al., Mechanisms of evolved herbicide resistance. J Biol Chem 295:10307–10330 (2020).
Jugulam M and Shyam C, Non‐target‐site resistance to herbicides: recent developments. Plants 8:417 (2019).
Powles SB and Yu Q, Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317–347 (2010).
Boutsalis P, Karotam J and Powles SB, Molecular basis of resistance to acetolactate synthase‐inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii. Pesticide Sci 55:507–516 (1999).
Tranel PJ and Wright TR, Resistance of weeds to ALS‐inhibiting herbicides: what have we learned? Weed Sci 50:700–712 (2002).
Murphy BP and Tranel PJ, Target‐site mutations conferring herbicide resistance. Plan Theory 8:382 (2019).
Lan Y, Zhou X, Lin S, Cao Y, Wei S, Huang H et al., Pro‐197‐ser mutation and cytochrome P450‐mediated metabolism conferring resistance to flucarbazone‐sodium in Bromus japonicus. Plants 11:1641 (2022).
Li Q, Yu J, Guo W, Du L, Bai P and Liu Y, Target‐site basis for resistance to flucarbazone‐sodium in Japanese brome (Bromus japonicus Houtt.) in China, Chil. J Agric Res 82:493–501 (2022).
Doyle JJ, Isolation of plant DNA from fresh tissue. Focus (Madison) 12:13–15 (1990).
Christopher JT, Preston C and Powles SB, Malathion antagonizes metabolism‐based chlorsulfuron resistance in Lolium rigidum. Pestic Biochem Physiol 49:172–182 (1994).
Kreuz K and Fonné‐Pfister R, Herbicide‐insecticide interaction in maize: malathion inhibits cytochrome P450‐dependent primisulfuron metabolism. Pestic Biochem Physiol 43:232–240 (1992).
Knezevic SZ, Streibig JC and Ritz C, Utilizing R software package for dose‐response studies: the concept and data analysis. Weed Technol 21:840–848 (2007).
Ritz C, Baty F, Streibig JC and Gerhard D, Dose‐response analysis using R. PloS One 10:e0146021 (2015).
Park KW and Mallory‐Smith CA, Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res 44:71–77 (2004).
Kumar V and Jha P, First report of Ser653Asn mutation endowing high‐level resistance to imazamox in downy brome (Bromus tectorum L.). Pest Manag Sci 73:2585–2591 (2017).
Kaundun SS, Dale RP and Bailly GC, Molecular basis of resistance to herbicides inhibiting acetolactate synthase in two rigid ryegrass (Lolium rigidum) populations from Australia. Weed Sci 60:172–178 (2012).
Yu Q, Han H and Powles SB, Mutations of the ALS gene endowing resistance to ALS‐inhibiting herbicides in Lolium rigidum populations. Pest Manag Sci 64:1229–1236 (2008).
Hamouzová K, Košnarová P, Salava J, Soukup J and Hamouz P, Mechanisms of resistance to acetolactate synthase‐inhibiting herbicides in populations of Apera spica‐venti from The Czech Republic. Pest Manag Sci 70:541–548 (2014).
Krysiak M, Gawroński S, Adamczewski K and Kierzek R, ALS gene mutations in Apera spica‐venti confer broad‐range resistance to herbicides. J Plant Prot Res 51:261–267 (2011). https://doi.org/10.2478/v10045-011-0043-7.
Intanon S, Perez‐Jones A, Hulting AG and Mallory‐Smith CA, Multiple Pro197 ALS substitutions endow resistance to ALS inhibitors within and among mayweed chamomile populations. Weed Sci 59:431–437 (2011).
Délye C, Pernin F and Scarabel L, Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate‐synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Sci 180:333–342 (2011).
Preston C, Stone LM, Rieger MA and Baker J, Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide‐resistant populations of Lactuca serriola. Pestic Biochem Physiol 84:227–235 (2006).
Xia W, Pan L, Li J, Wang Q, Feng Y and Dong L, Molecular basis of ALS‐and/or ACCase‐inhibitor resistance in shortawn foxtail (Alopecurus aequalis Sobol.). Pestic Biochem Physiol 122:76–80 (2015).
Owen MJ, Goggin DE and Powles SB, Non‐target‐site‐based resistance to ALS‐inhibiting herbicides in six Bromus rigidus populations from Western Australian cropping fields. Pest Manag Sci 68:1077–1082 (2012).
Park KW, Fandrich L and Mallory‐Smith CA, Absorption, translocation, and metabolism of propoxycarbazone‐sodium in ALS‐inhibitor resistant Bromus tectorum biotypes. Pestic Biochem Physiol 79:18–24 (2004).
Soni N, Westra EP, Allegretta G, Araujo ALS, de Pinho CF, Morran S et al., Survey of ACCase and ALS resistance in winter annual grasses identifies target‐site and nontarget‐site imazamox resistance in Secale cereale. Pest Manag Sci 78:5080–5089 (2022).
Zou Y, Zhao B, Cao S, Guan Y, Liu L and Ji M, Mutation at the 197 site and P450‐mediated metabolic resistance are involved in bensulfuron‐methyl resistance in Sagittaria trifolia. Plant Sci 331:111700 (2023).
Dimaano NG, Yamaguchi T, Fukunishi K, Tominaga T and Iwakami S, Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross‐resistance in Echinochloa phyllopogon. Plant Mol Biol 102:403–416 (2020).
فهرسة مساهمة: Keywords: Japanese brome; acetolactate synthase inhibitors; amino acid substitution; herbicide resistance; target site resistance
المشرفين على المادة: EC 2.2.1.6 (Acetolactate Synthase)
0 (Herbicides)
0 (Plant Proteins)
تواريخ الأحداث: Date Created: 20240314 Date Completed: 20240705 Latest Revision: 20240705
رمز التحديث: 20240705
DOI: 10.1002/ps.8074
PMID: 38483107
قاعدة البيانات: MEDLINE
الوصف
تدمد:1526-4998
DOI:10.1002/ps.8074