دورية أكاديمية

Antitumoral Activity of Cecropia Pachystachya Leaves Extract in Vitro and in Vivo Model of Rat Glioma: Brain and Blood Effects.

التفاصيل البيبلوغرافية
العنوان: Antitumoral Activity of Cecropia Pachystachya Leaves Extract in Vitro and in Vivo Model of Rat Glioma: Brain and Blood Effects.
المؤلفون: Bona NP; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil., Pedra NS; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil., Spohr L; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil., da Silva Dos Santos F; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil., Saraiva JT; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil., Carvalho FB; Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil., da Cruz Fernandes M; Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil., Fernandes AS; CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal., Saraiva N; CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal., Martins MF; CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal.; Department of Biomedical Sciences, University of Alcalá, Ctra, Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, 28871, Spain., Tavares RG; CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal.; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Brazil., Spanevello RM; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil., Aguiar MSS; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil., Stefanello FM; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil. francieli.stefanello@ufpel.edu.br.
المصدر: Molecular neurobiology [Mol Neurobiol] 2024 Mar 14. Date of Electronic Publication: 2024 Mar 14.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 8900963 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-1182 (Electronic) Linking ISSN: 08937648 NLM ISO Abbreviation: Mol Neurobiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Clifton, NJ : Humana Press, c1987-
مستخلص: The aim of this study was to investigate the antiglioma effect of Cecropia pachystachya Trécul (CEC) leaves extract against C6 and U87 glioblastoma (GB) cells and in a rat preclinical GB model. The CEC extract reduced in vitro cell viability and biomass. In vivo, the extract decreased the tumor volume approximately 62%, without inducing systemic toxicity. The deficit in locomotion and memory and an anxiolytic-like behaviors induced in the GB model were minimized by CEC. The extract decreased the levels of reactive oxygen species, nitrites and thiobarbituric acid reactive substances and increased the activity of antioxidant enzymes in platelets, sera and brains of GB animals. The activity of NTPDases, 5'-nucleotidase and adenosine deaminase (ADA) was evaluated in lymphocytes, platelets and serum. In platelets, ATP and AMP hydrolysis was reduced and hydrolysis of ADP and the activity of ADA were increased in the control, while in CEC-treated animals no alteration in the hydrolysis of ADP was detected. In serum, the reduction in ATP hydrolysis was reversed by CEC. In lymphocytes, the increase in the hydrolysis of ATP, ADP and in the activity of ADA observed in GB model was altered by CEC administration. The observed increase in IL-6 and decrease in IL-10 levels in the serum of GB animals was reversed by CEC. These results demonstrate that CEC extract is a potential complementary treatment to GB, decreasing the tumor size, while modulating aspects of redox and purinergic systems.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: American Brain Tumor Association. BRAIN TUMOR INFORMATION: Types of tumor – Glioma. Disponível em < https://www.abta.org/tumor&#95;types/glioblastoma-gbm/ Acesso em 18 ag. de 2021.
Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. (PMID: 10.1007/s00401-016-1545-127157931)
Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J cancer Prevention: APJCP 18:3–9.
Caragher S, Chalmers AJ, Gomez-Roman N (2019) Glioblastoma’s next top model: novel culture systems for brain cancer radiotherapy research. Cancers 11:44. (PMID: 30621226635681210.3390/cancers11010044)
Grochans S, Cybulska AM, Simińska D et al (2022) Epidemiology of Glioblastoma Multiforme–Literature Review. Cancers 14:2412. (PMID: 35626018913961110.3390/cancers14102412)
Fang X, Wang C, Balgley BM et al (2012) Targeted tissue proteomic analysis of human astrocytomas. J Proteome Res 11:3937–3946. (PMID: 22794670341326810.1021/pr300303t)
Abbas MN, Kausar S, Cui H (2020) Therapeutic potential of natural products in glioblastoma treatment: targeting key glioblastoma signaling pathways and epigenetic alterations. Clin Transl Oncol 22:963–977. (PMID: 3163035610.1007/s12094-019-02227-3)
Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G, ESMO Guidelines Working Group (2014) High-grade glioma: ESMO Clinical Practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25:iii93–iii101. (PMID: 2478245410.1093/annonc/mdu050)
Thakkar JP, Dolecek TA, Horbinski C et al (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Prev Biomarkers 23:1985–1996. (PMID: 10.1158/1055-9965.EPI-14-0275)
Salazar-Ramiro A, Ramírez-Ortega D, de la Pérez V et al (2016) Role of redox status in development of glioblastoma. Front Immunol 7:156. (PMID: 27199982484461310.3389/fimmu.2016.00156)
Bergamin LS, Capece M, Salaro E et al (2019) Role of the P2X7 receptor in in vitro and in vivo glioma tumor growth. Oncotarget 10:4840. (PMID: 31448051669067310.18632/oncotarget.27106)
Rathbone MP, Middlemiss PJ, Gysbers JW et al (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690. (PMID: 1084575710.1016/S0301-0082(99)00017-9)
Wink MR, Lenz G, Braganhol E et al (2003) Altered extracellular ATP, ADP and AMP catabolism in glioma cell lines. Cancer Lett 198:211–218. (PMID: 1295736010.1016/S0304-3835(03)00308-2)
Morrone FB, Horn AP, Stella J et al (2005) Increased resistance of glioma cell lines to extracellular ATP cytotoxicity. J Neurooncol 71:35–140. (PMID: 10.1007/s11060-004-1383-1)
Fahmideh H, Shapourian H, Moltafeti R et al (2022) The Role of Natural Products as Inhibitors of JAK/STAT Signaling Pathways in Glioblastoma Treatment. Oxid Med Cell Longev 2022:7838583.
Cragg GM, Grothaus PG, Newman DJ (2014) New horizons for old drugs and drug leads. J Nat Prod 77:703–723. (PMID: 2449920510.1021/np5000796)
Gutiérrez-Rodríguez AG, Juárez-Portilla C, Olivares-Bañuelos T, Zepeda RC (2018) Anticancer activity of seaweeds. Drug Discovery Today 23:434–447. (PMID: 2910709510.1016/j.drudis.2017.10.019)
Pacheco NR, Pinto NCC, Mello da Silva J et al (2014) Cecropia pachystachya: a species with expressive in vivo topical anti-inflammatory and in vitro antioxidant effects. Biomed Res Int 2014:301294. (PMID: 24877079402215810.1155/2014/301294)
Aragão DM, Guarize L, Lanini J, da Costa JC, Garcia RM, Scio E (2010) Hypoglycemic effects of Cecropia pachystachya in normal and alloxan-induced diabetic rats. J Ethnopharmacol 128:629–633. (PMID: 2006459710.1016/j.jep.2010.01.008)
Aragão DM, de Assis Lima IV, da Silva JM et al (2013) Anti-inflammatory, antinociceptive and cytotoxic effects of the methanol extract of Cecropia pachystachya Trécul. Phytother Res 27:926–930. (PMID: 2293339410.1002/ptr.4811)
Consolini AE, Migliori GN (2005) Cardiovascular effects of the South American medicinal plant Cecropia pachystachya (ambay) on rats. J Ethnopharmacol 96:417–422. (PMID: 1561956010.1016/j.jep.2004.09.030)
Consolini AE, Ragone MI, Migliori GN, Conforti P, Volonté MG (2006) Cardiotonic and sedative effects of Cecropia pachystachya Mart. (ambay) on isolated rat hearts and conscious mice. J Ethnopharmacol 106:90–96. (PMID: 1641371610.1016/j.jep.2005.12.006)
de Campos ML, de Castro MB, Campos AD et al (2021) Antiobesity, hepatoprotective and anti-hyperglycemic effects of a pharmaceutical formulation containing Cecropia pachystachya Trécul in mice fed with a hypercaloric diet. J Ethnopharmacol 280:114418. (PMID: 3427111110.1016/j.jep.2021.114418)
Ortmann CF, Réus GZ, Ignácio ZM et al (2016) Enriched flavonoid fraction from Cecropia pachystachya Trécul leaves exerts antidepressant-like behavior and protects brain against oxidative stress in rats subjected to chronic mild stress. Neurotox Res 29:469–483. (PMID: 2676236210.1007/s12640-016-9596-6)
Gazal M, Ortmann CF, Martins FA et al (2014) Antidepressant-like effects of aqueous extract from Cecropia pachystachya leaves in a mouse model of chronic unpredictable stress. Brain Res Bull 108:10–17. (PMID: 2510823310.1016/j.brainresbull.2014.07.007)
Costa GM, Ortmann CF, Schenkel EP, Reginatto FH (2011) An HPLC-DAD method to quantification of main phenolic compounds from leaves of Cecropia species. J Braz Chem Soc 22:1096–1102. (PMID: 10.1590/S0103-50532011000600014)
Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. (PMID: 660668210.1016/0022-1759(83)90303-4)
Pauwels B, Korst AE, de Pooter CM et al (2003) Comparison of the sulforhodamine B assay and the clonogenic assay for in vitro chemoradiation studies. Cancer Chemother Pharmacol 51:221–226. (PMID: 1265544010.1007/s00280-002-0557-9)
Guerreiro OS, Corvacho E, Costa JG et al (2017) The APE1 redox inhibitor E3330 reduces collective cell migration of human breast cancer cells and decreases chemoinvasion and colony formation when combined with docetaxel. Chem Biol Drug Des 90:561–571. (PMID: 2830366510.1111/cbdd.12979)
Da Silveira EF, Azambuja JH, de Carvalho TR et al (2017) Synthetic 2-aryl-3-((piperidin-1-yl) ethyl) thiazolidin-4-ones exhibit selective in vitro antitumoral activity and inhibit cancer cell growth in a preclinical model of glioblastoma multiforme. Chemico-Biol Interact 266:1–9. (PMID: 10.1016/j.cbi.2017.02.001)
Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482. (PMID: 1758291910.1037/0033-2909.83.3.482)
Dere E, Huston JP, Silva MADS (2005) Integrated memory for objects, places, and temporal order: evidence for episodic-like memory in mice. Neurobiol Learn Mem 84:214–221. (PMID: 1610298010.1016/j.nlm.2005.07.002)
Ziegler DR, Gamaro GD, Araújo E et al (2005) Nociception and locomotor activity are increased in ketogenic diet fed rats. Physiol Behav 84:421–427. (PMID: 1576357910.1016/j.physbeh.2005.01.003)
Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Investig 97:77–89.
Jaques JA, Peres Rezer JR, Ruchel JB et al (2011) A method for isolation of rat lymphocyte-rich mononuclear cells from lung tissue useful for determination of nucleoside triphosphate diphosphohydrolase activity. Anal Biochem 410:34–39. (PMID: 2105933510.1016/j.ab.2010.10.039)
Lunkes GI, Lunkes DS, Morsch VM et al (2004) NTPDase and 5′-nucleotidase activities in rats with alloxan-induced diabetes. Diabetes Res Clin Pract 65:1–6. (PMID: 1516347110.1016/j.diabres.2003.11.016)
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. (PMID: 1490771310.1016/S0021-9258(19)52451-6)
Bradford NA (1976) A rapid and sensitive method for the quantitation microgram quantities of a protein isolated from red cell membranes. Anal Biochem 72:e254. (PMID: 10.1016/0003-2697(76)90527-3)
Ali SF, LeBel CP, Bondy SC (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13:637–648. (PMID: 1475065)
Stuehr DJ, Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555. (PMID: 249722510.1084/jem.169.5.1543)
Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145. (PMID: 1129040710.1016/S0304-3940(01)01636-6)
Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. (PMID: 223330810.1016/0076-6879(90)86134-H)
Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175. (PMID: 462384510.1016/S0021-9258(19)45228-9)
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. (PMID: 672766010.1016/S0076-6879(84)05016-3)
Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139. (PMID: 443630010.1016/S0021-9258(19)42083-8)
Fürstenau CR, da Silva Trentin D, Gossenheimer AN et al (2008) Ectonucleotidase activities are altered in serum and platelets of L-NAME-treated rats. Blood Cells Molecules Dis 41:223–229. (PMID: 10.1016/j.bcmd.2008.04.009)
Chan K, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca 2+ –ATPase activity. Anal Biochem 157:375–378. (PMID: 294625010.1016/0003-2697(86)90640-8)
Leal DB, Streher CA, Neu TN et al (2005) Characterization of NTPDase (NTPDase 1: ectoapyrase; ectodiphosphohydrolase; CD39; E.C. 3.6.1.5) activity in human lymphocytes. Biochim Biophys Acta 1721:9–11. (PMID: 1565217410.1016/j.bbagen.2004.09.006)
Pilla C, Emanuelli T, Frassetto SS, Battastini AMO, Dias RD, Sarkis JJF (1996) ATP diphosphohydrolase activity (apyrase, EC 3.6. 1.5) in human blood platelets. Platelets 7:225–230. (PMID: 2104369110.3109/09537109609023582)
Giusti G, Galanti B (1984) Colorimetric method. Adenosine deaminase. Methods Enzymatic Anal 4:3.
Ladomersky E, Zhai L, Gritsina G et al (2016) Advanced age negatively impacts survival in an experimental brain tumor model. Neurosci Lett 630:203–208. (PMID: 27493076500618310.1016/j.neulet.2016.08.002)
Gazal M, Kaufmann FN, Acosta BA et al (2015) Preventive effect of Cecropia pachystachya against ketamine-induced manic behavior and oxidative stress in rats. Neurochem Res 40:1421–1430. (PMID: 2599888610.1007/s11064-015-1610-5)
Pedra NS, Galdino KDCA, da Silva DS et al (2018) Endophytic Fungus isolated from Achyrocline satureioides exhibits selective Antiglioma Activity—the role of Sch-642305. Front Oncol 8:476. (PMID: 30420941621584610.3389/fonc.2018.00476)
Bona NP, Pedra NS, Azambuja JH et al (2020) Tannic acid elicits selective antitumoral activity in vitro and inhibits cancer cell growth in a preclinical model of glioblastoma multiforme. Metab Brain Dis 35:283–293. (PMID: 3177343410.1007/s11011-019-00519-9)
Costa GM, Schenkel EP, Reginatto FH (2011) Chemical and pharmacological aspects of the genus Cecropia. Nat prod Commun 6:913–920. (PMID: 21815438)
Imran M, Rauf A, Abu-Izneid T et al (2019) Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother 112:108612. (PMID: 3079814210.1016/j.biopha.2019.108612)
Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310:1842–1850. (PMID: 2419308210.1001/jama.2013.280319)
Bonassa EMA, Santana TR (2005) Enfermagem em terapêutica oncológica. 3 ed. São Paulo:Atheneu.
Ramírez-Expósito MJ, Martínez-Martos JM (2019) The delicate equilibrium between oxidants and antioxidants in brain glioma. Curr Neuropharmacol 17:342–351. (PMID: 29512467648247410.2174/1570159X16666180302120925)
Sajadimajd S, Khazaei M (2018) Oxidative stress and Cancer: the role of Nrf2. Curr cancer drug Targets 18:538–557. (PMID: 2896955510.2174/1568009617666171002144228)
Bona NP, Soares MSP, Pedra NS et al (2022) Tannic acid attenuates peripheral and brain changes in a preclinical rat model of glioblastoma by modulating oxidative stress and purinergic signaling. Neurochem Res 47:1541–1552. (PMID: 3517864310.1007/s11064-022-03547-7)
Pedra NS, Bona NP, de Aguiar MSS et al (2022) Impact of gallic acid on tumor suppression: modulation of redox homeostasis and purinergic response in in vitro and a preclinical glioblastoma model. J Nutr Biochem 110:109156. (PMID: 3625506010.1016/j.jnutbio.2022.109156)
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B (2022) Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383:132531. (PMID: 3541375210.1016/j.foodchem.2022.132531)
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S (2020) Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury. Curr Mol Med 20:116–133. (PMID: 31622191)
Jin Q, Liu T, Qiao Y et al (2023) Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol, 14.
Braganhol E, Huppes D, Bernardi A, Wink MR, Lenz G, Battastini AMO (2009) A comparative study of ectonucleotidase and P2 receptor mRNA profiles in C6 cell line cultures and C6 ex vivo glioma model. Cell Tissue Res 335:331–340. (PMID: 1902359710.1007/s00441-008-0723-4)
Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discovery 7:575–590. (PMID: 1859197910.1038/nrd2605)
Azambuja JH, Gelsleichter NE, Beckenkamp LR et al (2019) CD73 downregulation decreases in vitro and in vivo glioblastoma growth. Mol Neurobiol 56:3260–3279. (PMID: 3011710410.1007/s12035-018-1240-4)
Samaras V, Piperi C, Korkolopoulou P et al (2007) Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors. Mol Cell Biochem 304:343–351. (PMID: 1755167110.1007/s11010-007-9517-3)
Rolhion C, Penault-Llorca F, Kémény JL et al (2001) Interleukin-6 overexpression as a marker of malignancy in human gliomas. J Neurosurg 94:97–101. (PMID: 1114790510.3171/jns.2001.94.1.0097)
Widodo SS, Dinevska K, Furst LM, Stulli SS, Mantamadiotis T (2021) IL-10 in glioma. Br J Cancer 125:1466–1476. (PMID: 34349251860902310.1038/s41416-021-01515-6)
Shan Y, He X, Song W, Han D, Niu J, Wang J (2015) Role of IL-6 in the invasiveness and prognosis of glioma. Int J Clin Exp Med 8:9114–9120. (PMID: 263095664538008)
فهرسة مساهمة: Keywords: Cecropia pachystachya; Glioblastoma; Natural product; Purinergic system; Redox status; Toxicity
تواريخ الأحداث: Date Created: 20240314 Latest Revision: 20240314
رمز التحديث: 20240315
DOI: 10.1007/s12035-024-04086-8
PMID: 38483655
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-1182
DOI:10.1007/s12035-024-04086-8