دورية أكاديمية

Chemical attributes, bacterial community, and antibiotic resistance genes are affected by intensive use of soil in agro-ecosystems of the Atlantic Forest, Southeastern Brazil.

التفاصيل البيبلوغرافية
العنوان: Chemical attributes, bacterial community, and antibiotic resistance genes are affected by intensive use of soil in agro-ecosystems of the Atlantic Forest, Southeastern Brazil.
المؤلفون: Ferreira PFA; Departament of Soil, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil., Rocha FI; Mokichi Okada Research Center, Korin Agriculture and Environment, Ipeúna, São Paulo, Brazil., Howe A; Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA., Barbosa DR; Departament of Soil, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil., da Conceição Jesus E; Embrapa Agrobiology, Brazilian Agricultural Research Corporation, Seropédica, Rio de Janeiro, 23891-000, Brazil., do Amaral Sobrinho NMB; Departament of Soil, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil., da Silva Coelho I; Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil. irenecoelho@ufrrj.br.
المصدر: Environmental geochemistry and health [Environ Geochem Health] 2024 Mar 14; Vol. 46 (4), pp. 123. Date of Electronic Publication: 2024 Mar 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
مواضيع طبية MeSH: Anti-Bacterial Agents*/pharmacology , Microbiota*/genetics, Soil/chemistry ; Genes, Bacterial ; Brazil ; Bacteria ; Drug Resistance, Microbial/genetics ; Forests ; Soil Microbiology ; Manure/microbiology
مستخلص: Soil is one of the largest reservoirs of microbial diversity in nature. Although soil management is vital for agricultural purposes, intensive practices can have a significant impact on fertility, microbial community, and resistome. Thus, the aim of this study was to evaluate the effects of an intensive soil management system on the chemical attributes, composition and structure of prevalent bacterial communities, and presence and abundance of antimicrobial resistance genes (ARGs). The chemical characterization, bacterial diversity and relative abundance of ARGs were evaluated in soils from areas of intensive vegetable cultivation and forests. Results indicate that levels of nutrients and heavy metals were higher in soil samples from cultivated areas. Similarly, greater enrichment and diversity of bacterial genera was detected in agricultural areas. Of the 18 target ARGs evaluated, seven were detected in studied soils. The oprD gene exhibited the highest abundance among the studied genes and was the only one that showed a significantly different prevalence between areas. The oprD gene was identified only from soil of the cultivated areas. The bla SFO , erm(36), oprD and van genes, in addition to the pH, showed greater correlation with in soil of cultivated areas, which in turn exhibited higher contents of nutrients. Thus, in addition to changes in chemical attributes and in the microbial community of the soil, intensive agricultural cultivation systems cause a modification of its resistome, reinforcing the importance of the study of antimicrobial resistance in a One Health approach.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Aguiar, L. M., Souza, M. F., Laia, M. L., Melo, J. O., Costa, M. R., Gonçalves, J. F., & Santos, J. B. (2020). Metagenomic analysis reveals mechanisms of atrazine biodegradation promoted by tree species. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.115636. (PMID: 10.1016/j.envpol.2020.115636)
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxicology, 9, p. 42. https://doi.org/10.3390/toxics9030042.
Andersen, K. S., Kirkegaard, R. H., Karst, S. M., & Albertsen, M. (2018). Ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. BioRxiv. https://doi.org/10.1101/299537. (PMID: 10.1101/299537)
Armalytė, J., Skerniškytė, J., Bakienė, E., Krasauskas, R., Šiugždinienė, R., Kareivienė, V., Kerziené, S., Klimiene, I., Suziedeliene, E., & Ružauskas, M. (2019). Microbial diversity and antimicrobial resistance profile in microbiota from soils of conventional and organic farming systems. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.00892. (PMID: 10.3389/fmicb.2019.00892)
Barbosa, D. R., García, A. C., Souza, C. D. C. B., & Sobrinho, N. M. B. A. (2021). Influence of humic acid structure on the accumulation of oxyfluorfen in tropical soils of mountain agroecosystems. Environmental Pollution. https://doi.org/10.1016/j.envpol.2021.117380. (PMID: 10.1016/j.envpol.2021.117380)
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
Bertol, I., Cogo, N. P., Schick, J., Gudagnin, J. C., & Amaral, A. J. (2007). Aspectos financeiros relacionados às perdas de nutrientes por erosão hídrica em diferentes sistemas de manejo do solo. Revista Brasileira De Ciências Do Solo. https://doi.org/10.1590/S0100-06832007000100014. (PMID: 10.1590/S0100-06832007000100014)
Bhering, A. S., Carmo, M. G. F., Matos, T. S., Lima, E. S. A., Sobrinho, N. M. B. A. (2017). Soil factors related to the severity of Clubroot in Rio de Janeiro, Brazil. Plant Disease.  https://doi.org/10.1094/PDIS-07-16-1024-SR.
Bizuti, D. T., Robin, A., Soares, T. M., Moreno, V. S., Almeida, D. R., Andreote, F. D., Casagrande, J. C., Herrmann, L., Melis, J. V., Perim, J. E. L., Medeiros, S. D. S., Sorrini, T. B., & Brancalion, P. H. (2022). Multifunctional soil recovery during the restoration of Brazil’s Atlantic Forest after bauxite mining. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.14097. (PMID: 10.1111/1365-2664.14097)
BRASIL. Lei de Proteção da Vegetação Nativa. Lei nº 12.651, de 25 de maio de 2012. 2012. Brasília. 2012.
Calegari, A., Mondardo, A., Bulisani, E. A., Wildner, L. P., Costa, M. B. B., Alcântara, P. B., Miyasaka, S., Amado, T. J. C. (1993). Adubação verde no sul do Brasil. Rio de Janeiro: AS-PTA.
Carvalho, T. S., Jesus, E. D. C., Barlow, J., Gardner, T. A., Soares, I. C., Tiedje, J. M., & Moreira, F. M. D. S. (2016). Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology. https://doi.org/10.1002/ecy.1513. (PMID: 10.1002/ecy.1513)
Cerqueira, A. E. S., Silva, T. H., Nunes, A. C. S., Nunes, D. D., Lobato, L. C., Veloso, T. G. R., Paula, S. O., Kasuya, M. C. M., & Silva, C. C. (2018). Amazon basin pasture soils reveal susceptibility to phytopathogens and lower fungal community dissimilarity than forest. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2018.07.004. (PMID: 10.1016/j.apsoil.2018.07.004)
Chediack, S. E., Baqueiro, M. F. (2005). Extração e conservação do palmito. In C. Galindo-Leal & I. G. Câmara (Eds.), Mata Atlântica: Biodiversidade, ameaças e perspectivas. São Paulo: Fundação SOS Mata Atlântica.
Chiesa, L., Nobile, M., Arioli, F., Britti, D., Trutic, N., Pavlovic, R., & Panseri, S. (2015). Determination of veterinary antibiotics in bovine urine by liquid chromatography-tandem mass spectrometry. Food Chemistry. https://doi.org/10.1016/j.foodchem.2015.03.098. (PMID: 10.1016/j.foodchem.2015.03.098)
Chong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols. https://doi.org/10.1038/s41596-019-0264-1. (PMID: 10.1038/s41596-019-0264-1)
D’costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature. https://doi.org/10.1038/nature10388. (PMID: 10.1038/nature10388)
Dantas, M. E., Shinzato, E., Medina, A. I. D. M., Silva, C. R. D., Pimentel, J., Lumbreras, J. F., Calderano, S. B., Filho, A. D. C. (2015) Diagnóstico Geoambiental do Estado do Rio De Janeiro. Serviço Geológico do Brasil. Available at: http://www.cprm.gov.br/publique/media/artigo_geoambiental RJ.pdf. Accessed 04 Jul 2018.
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews. https://doi.org/10.1128/MMBR.00016-10. (PMID: 10.1128/MMBR.00016-10)
Delgado-Baquerizo, M., Hu, H. W., Maestre, F. T., Guerra, C. A., Eisenhauer, N., Eldridge, D. J., Zhu, Y., Chen, Q., Trivedi, P., Du, S., Makhalanyane, T. P., Verma, J. P., Gozalo, B., Ochoa, V., Asensio, S., Wanh, L., Zaady, E., Illán, J. G., Siebe, C., … He, J. Z. (2022). The global distribution and environmental drivers of the soil antibiotic resistome. Microbiome. https://doi.org/10.1186/s40168-022-01405-w. (PMID: 10.1186/s40168-022-01405-w)
Donagema, G. K., Campos, D. B., Calderano, S. B., Teixeira, W. G., Viana, J. M. (2011) Manual de métodos de análise de solo. Embrapa Solos-Documentos.
Faoro, H., Alves, A. C., Souza, E. M., Rigo, L. U., Cruz, L. M., Al-Janabi, S. M., Monteiro, R. A., Baura, V. A., & Pedrosa, F. O. (2010). Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.03025-09. (PMID: 10.1128/AEM.03025-09)
Ferreira, P. F. A., Xavier, J. F., Nunes, J. F., Fonseca, I. P., Coelho, S. M. O., Souza, M. M. S., & Coelho, I. S. (2023). Bacteria and antimicrobial resistance profile during the composting process of wastes from animal production. Brazilian Journal of Microbiology. https://doi.org/10.1007/s42770-023-00912-8. (PMID: 10.1007/s42770-023-00912-8)
Garrity, G. M., Bell, J. A., & Liburun, T. G. (2004). Taxonomic outline of prokaryotes. In D. J. Brenner, N. R. Krieg, J. T. Staley, & G. M. Garrity (Eds.), Bergey’s manual of systematic bacteriology (2nd ed., pp. 1–399). Springer.
Goss-souza, D., Mendes, L. W., Borges, C. D., Baretta, D., Tsai, S. M., & Rodrigues, J. L. (2017). Soil microbial community dynamics and assembly under long-term land use change. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fix109. (PMID: 10.1093/femsec/fix109)
Guerrero, M. G. G. (2023). Sporulation, structure assembly, and germination in the soil bacterium bacillus thuringiensis: Survival and success in the environment and the insect host. Microbiology Research. https://doi.org/10.3390/microbiolres14020035. (PMID: 10.3390/microbiolres14020035)
Habig, J., & Swanepoel, C. (2015). Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environments. https://doi.org/10.3390/environments2030358. (PMID: 10.3390/environments2030358)
Hahne, J., Isele, D., Heilborn, D. H. V., Czaja-hasse, L., Hüttel, B., & Lipski, A. (2019). Galactobacter caseinivorans gen. nov., sp. nov. and Galactobacter valiniphilus sp. nov., two novel species of the family Micrococcaceae, isolated from high bacterial count raw cow’s milk. International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijsem.0.003570.
Henao, S. G., & Ghneim-herrera, T. (2021). Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2021.604216. (PMID: 10.3389/fenvs.2021.604216)
Hernani, L. C., Freitas, P. D., Pruski, F. F., Maria, I. C., Filho, C. D. C., & Landers, J. N. (2002). A erosão e seu impacto. Uso agrícola dos solos brasileiros. Embrapa Solos.
Heydari, A., Kim, N. D., Horswell, J., Gielen, G., Siggins, A., Taylor, M., Bromhead, C., & Palmer, B. R. (2022). Co-selection of heavy metal and antibiotic resistance in soil bacteria from agricultural soils in New Zealand. Sustainability. https://doi.org/10.3390/su14031790. (PMID: 10.3390/su14031790)
Hiraishi, A., & Imhoff, J. F. (2015). Rhodoplanes. In F. Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. DeVos, B. Hedlund, & S. Dedysh (Eds.), Bergey’s manual of systematics of archaea and bacteria (pp. 1–12). Wiley.
Hoelzer, K., Wong, N., Thomas, J., Talkington, K., Jungman, E., & Coukell, A. (2017). Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Veterinary Research. https://doi.org/10.1186/s12917-017-1131-3. (PMID: 10.1186/s12917-017-1131-3)
Hu, H. W., Wang, J. T., Singh, B. K., Liu, Y. R., Chen, Y. L., Zhang, Y. J., & He, J. Z. (2018). Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environmental Microbiology. https://doi.org/10.1111/1462-2920.14248. (PMID: 10.1111/1462-2920.14248)
Jacobsen, C. S., & Hjelmsø, M. H. (2014). Agricultural soils, pesticides and microbial diversity. Current Opinion in Biotechnology. https://doi.org/10.1016/j.copbio.2013.09.003. (PMID: 10.1016/j.copbio.2013.09.003)
Johns, I. C., & Adams, E. L. (2015). Trends in antimicrobial resistance in equine bacterial isolates: 1999–2012. Veterinary Record. https://doi.org/10.1136/vr.102708. (PMID: 10.1136/vr.102708)
Kassambara, A., & Mundt, F. (2018). Factoextra: Extract and visualize the results of multivariate data analyses. R Packag.
Knapp, C. W., Callan, A. C., Aitken, B., Shearn, R., Koenders, A., & Hinwood, A. (2017). Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-016-7997-y. (PMID: 10.1007/s11356-016-7997-y)
Knapp, C. W., Mccluskey, S. M., Singh, B. K., Campbell, C. D., Hudson, G., & Graham, D. W. (2011). Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS ONE. https://doi.org/10.1371/journal.pone.0027300. (PMID: 10.1371/journal.pone.0027300)
Korish, M. A., & Attia, Y. A. (2020). Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals. https://doi.org/10.3390/ani10040727. (PMID: 10.3390/ani10040727)
Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer?: A review. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph16193521. (PMID: 10.3390/ijerph16193521)
Larsson, D. G. J., & Flach, C. F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology. https://doi.org/10.1038/s41579-021-00649-x. (PMID: 10.1038/s41579-021-00649-x)
Li, H. Z., Yang, K., Liao, H., Lassen, S. B., Su, J. Q., Zhang, X., Cui, L., & Zhu, Y. G. (2022). Active antibiotic resistome in soils unraveled by single-cell isotope probing and targeted metagenomics. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2201473119. (PMID: 10.1073/pnas.2201473119)
Marques, M. C., & Grelle, C. E. (2021). The Atlantic Forest. Springer. (PMID: 10.1007/978-3-030-55322-7)
Martone-rocha, S., Dropa, M., Cruz, B. M. C., Leite, D. B. M. O., Santos, T. P., & Razzolini, M. T. P. (2023). Antimicrobial profile of non-typhoidal Salmonella isolated from raw sewage in the Metropolitan Region of São Paulo, Brazil. The Journal of Infection in Developing Countries. https://doi.org/10.3855/jidc.16946.
Mathew, R. P., Feng, Y. C., Githinji, L., Ankumah, R., & Balkcom, K. S. (2012). Impact of no-tillage and conventional tillage systems on soil microbial communities. Applied and Environmental Soil Science. https://doi.org/10.1155/2012/548620. (PMID: 10.1155/2012/548620)
McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. https://doi.org/10.1371/journal.pone.0061217. (PMID: 10.1371/journal.pone.0061217)
Mendes, L. W., Brossi, M. J. L., Kuramae, E. E., & Tsai, S. M. (2015). Land-use system shapes soil bacterial communities in Southeastern Amazon region. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2015.06.005. (PMID: 10.1016/j.apsoil.2015.06.005)
Methe, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. (2020). Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Scientific African. https://doi.org/10.1016/j.sciaf.2019.e00246. (PMID: 10.1016/j.sciaf.2019.e00246)
Minari, G. D., Rosalen, D. L., Cruz, M. C. P., Melo, W. J., Alves, L. M. C., & Saran, L. M. (2017). Agricultural management of an Oxisol affect acumulation of heavy metals. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.07.008. (PMID: 10.1016/j.chemosphere.2017.07.008)
Miyashita, N. T. (2015). Contrasting soil bacterial community structure between the phyla Acidobacteria and Proteobacteria in tropical Southeast Asian and temperate Japanese forests. Genes & Genetic Systems. https://doi.org/10.1266/ggs.90.61. (PMID: 10.1266/ggs.90.61)
Navarrete, A. A., Kuramae, E. E., Hollander, M., Pijl, A. S., Veen, J. A. V., & Tsai, S. M. (2013). Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiology Ecology. https://doi.org/10.1111/1574-6941.12018. (PMID: 10.1111/1574-6941.12018)
Nhung, N. T., Chansiripornchai, N., & Carrique-mas, J. J. (2017). Antimicrobial resistance in bacterial poultry pathogens: A review. Frontiers in Veterinary Science. https://doi.org/10.3389/fvets.2017.00126. (PMID: 10.3389/fvets.2017.00126)
NIST - National Institute of Standards and Technology. Standard Reference Materials -SRM 2709. Addendum Issue Date: 18 Jan. 2002.
Núñez, JEV, Sobrinho, NMBDA, & Mazur, N. (2006). Sistemas de preparo de solo e acúmulo de metais pesados no solo e na cultura do pimentão (Capsicum Annum L.). Ciência Rural. https://doi.org/10.1590/S0103-84782006000100017.
OIE. (2020). World Organization for Animal Health. One Health. Retrieved January 28, 2021, from https:// www.oie.int/en/forthe-media/onehealth/ .
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., & Stevens, M. H. H. (2016). Vegan: Community ecology package. R package version 2.4–3. Vienna: R Found. Stat. Comput. Sch.
Oliveira, C. C., Lopes, E. S., Barbosa, D. R., Pimenta, R. L., Sobrinho, N. M. B. A., Coelho, S. M. O., Souza, M. M. S., & Coelho, I. S. (2019). Occurrence of the colistin resistance mcr-1 gene in soils from intensive vegetable production and native vegetation. European Journal of Soil Science. https://doi.org/10.1111/ejss.12832. (PMID: 10.1111/ejss.12832)
Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2022.962619. (PMID: 10.3389/fmicb.2022.962619)
Patil, I. (2023). ggstatsplot: 'ggplot2' Based Plots with Statistical Details (0.11.0). Zenodo. https://doi.org/10.5281/zenodo.7643705.
Pereira, A. A., & Thomaz, E. L. (2015). Atributos químicos do solo em áreas sob diferentes sistemas de uso e manejo no município de Reserva-PR. Caminhos de geografia. https://doi.org/10.14393/RCG165528327.
Perry, J., Waglechner, N., & Wright, G. (2016). The prehistory of antibiotic resistance. Perspectivas De Cold Spring Harbor Na Medicina. https://doi.org/10.1101/cshperspect.a025197. (PMID: 10.1101/cshperspect.a025197)
Petersen, I. A., Meyer, K. M., & Bohannan, B. J. (2019). Meta-analysis reveals consistent bacterial responses to land use change across the tropics. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2019.00391. (PMID: 10.3389/fevo.2019.00391)
Pinto, L. F. G., Metzger, J. P., Sparovek, G. (2022). Food production in the Atlantic Forest. São Paulo: Fundação SOS Mata Atlântica.
Pirela, M. L. R., Suárez, W. A. B., & Vargas, M. M. B. (2014). Antibiotic-and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela. Revista Colombiana de biotecnologia. https://doi.org/10.15446/rev.colomb.biote.v16n2.41004.
PMNF (Prefeitura Municipal de Nova Friburgo). (2015) Dados gerais. Available at: http://novafriburgo.rj.gov.br/nova-friburgo/dados-gerais/ . Accessed 13 Jun 2023.
Poole, K. (2017). At the nexus of antibiotics and metals: The impact of Cu and Zn on antibiotic activity and resistance. Trends in Microbiology. https://doi.org/10.1016/j.tim.2017.04.010. (PMID: 10.1016/j.tim.2017.04.010)
Robinson, T. P., Bu, D. P., Carrique-Mas, J., Fèvre, E. M., Gilbert, M., Grace, D., Hay, S. I., Jiwakanon, J., Makkar, M., Sariuki, S., Laxminarayan, R., Lubroth, J., Magnusson, U., Ngoc, P. T., Boeckel, T. P. V., & Woolhouse, M. E. J. (2016). Antibiotic resistance is the quintessential one health issue. Transactions of the Royal Society of Tropical Medicine and Hygiene. https://doi.org/10.1093/trstmh/trw048. (PMID: 10.1093/trstmh/trw048)
Rocha, F. I., Ribeiro, T. G., Fontes, M. A., Schwab, S., Coelho, M. R. R., Lumbreras, J. F., Motta, P. E. F., Teixeira, W. G., Cole, J., Borsanelli, A. C., Dutra, I. S., Howe, A., Oliveira, A. P., & Jesus, E. D. C. (2021). Land-use system and forest floor explain prokaryotic metacommunity structuring and spatial turnover in Amazonian forest-to-pasture conversion areas. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2021.657508. (PMID: 10.3389/fmicb.2021.657508)
Ryan, M. P., & Pembroke, J. T. (2018). Brevundimonas spp: Emerging global opportunistic pathogens. Virulence. https://doi.org/10.1080/21505594.2017.1419116. (PMID: 10.1080/21505594.2017.1419116)
Santos, D. D. S. (2019). Metais pesados em áreas agrícolas e Cerrado nativo no Oeste da Bahia. 2019.102 f. Tese. (Doutorado em fitotecnia). Programa de Pós Graduação da Universidade Federal de Uberlandia.
Santos, F. D., Fantinel, R. A., Weiler, E. B., & Cruz, J. C. (2021). Fatores que afetam a disponibilidade de micronutrientes no solo. Tecno-Lógica. https://doi.org/10.17058/tecnolog.v25i2.15552.
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols. https://doi.org/10.1038/nprot.2008.73. (PMID: 10.1038/nprot.2008.73)
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology. https://doi.org/10.1186/gb-2011-12-6-r60. (PMID: 10.1186/gb-2011-12-6-r60)
Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2012.00399. (PMID: 10.3389/fmicb.2012.00399)
Siqueira, J. O., & Franco, A. A. (1988). Biotecnologia do solo: fundamentos e perspectivas. Ministério da Educação e Cultura.
Sousa, F. F., do Carmo, M. G. F., Lima, E. S. A, de Souza, C. C. B., do Amaral Sobrinho, N. M. B. (2020). Lead and cadmium transfer factors and the contamination of tomato fruits (Solanum lycopersicum) in a tropical mountain agroecosystem. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-020-02930-w.
Souza, C. D. C. B., Sobrinho, N. M. B. A., Lima, E. S. A., Lima, J. O., Carmo, M. G. F., & García, A. C. (2019). Relation between changes in organic matter structure of poultry litter and heavy metals solubility during composting. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2019.06.072. (PMID: 10.1016/j.jenvman.2019.06.072)
Stedtfeld, R. D., Guo, X., Stedtfeld, T. M., Sheng, H., Williams, MR, Hauschild, K., Gunturu, S., Tift, L., Wang, F., Howe, A., Chai, B., Yin, D., Cole, J. R., Tiedje, J. M., & Hashsham, S. A. (2018). Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fiy130.
Tellen, V. A., & Yerima, B. P. K. (2018). Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environmental Systems Research. https://doi.org/10.1186/s40068-018-0106-0. (PMID: 10.1186/s40068-018-0106-0)
Tian, Q., Taniguchi, T., Shi, W. Y., Li, G., Yamanaka, N., & Du, S. (2017). Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China. Scientific Reports. https://doi.org/10.1038/srep45289 .
US EPA (United States Environment Protection Agency). (2007) Method 3051: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Test Methods for Evaluating Solid Waste. Washington DC. Available at: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3051a.pdf . Accessed 08 Jun 2023.
Vázquez-Boland, J. A., & Meijer, W. G. (2019). The pathogenic actinobacterium Rhodococcus equi: What’s in a name? Molecular Microbiology. https://doi.org/10.1111/mmi.14267. (PMID: 10.1111/mmi.14267)
Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fidzgerald, G. F., Chater, K. F., & Sinderen, D. (2007). Genomics of actinobacteria: Tracing the evolutionary history of na ancient phylum. Microbiology and Molecular Biology Reviews. https://doi.org/10.1128/MMBR.00005-07. (PMID: 10.1128/MMBR.00005-07)
Viana, A. T., Caetano, T., Covas, C., Santos, T., & Mendo, S. (2018). Environmental superbugs: The case study of Pedobacter spp. Environmental Pollution. https://doi.org/10.1016/j.envpol.2018.06.047. (PMID: 10.1016/j.envpol.2018.06.047)
Volk, L. B. S., Cogo, N. P., & Streck, E. V. (2004). Erosão hídrica influenciada por condições físicas de superfície e subsuperfície do solo resultantes do seu manejo na ausência de cobertura vegetal. Revista Brasileira De Ciência Do Solo. https://doi.org/10.1590/S0100-06832004000400016. (PMID: 10.1590/S0100-06832004000400016)
Wang, F. F., Liu, G. P., Zhang, F., Li, Z. M., Yang, X. L., Yang, C. D., Shen, J. L., He, J. Z., Li, B. L., Zeng, J. G. (2022). Natural selenium stress influences the changes of antibiotic resistome in seleniferous forest soils. Environmental Microbiome. https://doi.org/10.1186/s40793-022-00419-z .
Wellington, E. M., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., Rollings, A. S. J., Jones, D. L., Lee, N. M., Otten, W., & Thomas, C. M. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(12)70317-1. (PMID: 10.1016/S1473-3099(12)70317-1)
Willms, I. M., Bolz, S. H., Yuan, J., Krafft, L., Schneider, D., Schöning, I., Schrumpf, M., & Nacke, H. (2021). The ubiquitous soil verrucomicrobial clade ‘Candidatus Udaeobacter’shows preferences for acidic pH. Environmental Microbiology Reports. https://doi.org/10.1111/1758-2229.13006. (PMID: 10.1111/1758-2229.13006)
Willms, I. M., Kamran, A., Aßmann, N. F., Krone, D., Bolz, S. H., Fiedler, F., & Nacke, H. (2019). Discovery of novel antibiotic resistance determinants in forest and grassland soil metagenomes. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.00460. (PMID: 10.3389/fmicb.2019.00460)
Wright, G. D. (2007). The antibiotic resistome: The nexus of chemical and genetic diversity. Nature Reviews Microbiology. https://doi.org/10.1038/nrmicro1614. (PMID: 10.1038/nrmicro1614)
Xie, W. Y., Shen, Q., & Zhao, F. J. (2017). Antibiotics and antibiotic resistance from animal manures to soil: A review. European Journal of Soil Science. https://doi.org/10.1111/ejss.12494. (PMID: 10.1111/ejss.12494)
Yazdankhah, S., Skjerve, E., & Wasteson, Y. (2018). Antimicrobial resistance due to the content of potentially toxic metals in soil and fertilizing products. Microbial Ecology in Health and Disease. https://doi.org/10.1080/16512235.2018.1548248. (PMID: 10.1080/16512235.2018.1548248)
معلومات مُعتمدة: 2021-68015-33495 Agriculture and Food Research Initiative (AFRI)
فهرسة مساهمة: Keywords: Antimicrobial; Bacterial resistance; Soil management; Soil microbiota
المشرفين على المادة: 0 (Anti-Bacterial Agents)
0 (Soil)
0 (Manure)
تواريخ الأحداث: Date Created: 20240314 Date Completed: 20240318 Latest Revision: 20240410
رمز التحديث: 20240411
DOI: 10.1007/s10653-024-01894-8
PMID: 38483669
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2983
DOI:10.1007/s10653-024-01894-8