دورية أكاديمية

The Role of Pharmacogenomics in Rare Diseases.

التفاصيل البيبلوغرافية
العنوان: The Role of Pharmacogenomics in Rare Diseases.
المؤلفون: Man A; BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.; Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada., Groeneweg GSS; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.; Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, BC, Canada., Ross CJD; BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.; Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada., Carleton BC; BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. bcarleton@popi.ubc.ca.; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. bcarleton@popi.ubc.ca.; Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, BC, Canada. bcarleton@popi.ubc.ca.; Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. bcarleton@popi.ubc.ca.
المصدر: Drug safety [Drug Saf] 2024 Jun; Vol. 47 (6), pp. 521-528. Date of Electronic Publication: 2024 Mar 14.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Adis, Springer International Country of Publication: New Zealand NLM ID: 9002928 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1179-1942 (Electronic) Linking ISSN: 01145916 NLM ISO Abbreviation: Drug Saf Subsets: MEDLINE
أسماء مطبوعة: Publication: Auckland : Adis, Springer International
Original Publication: [Mairangi Bay, Auckland, N.Z. : ADIS Press Limited, c1990-
مواضيع طبية MeSH: Rare Diseases*/genetics , Rare Diseases*/drug therapy , Pharmacogenetics* , Orphan Drug Production*, Humans
مستخلص: Rare diseases have become an increasingly important public health priority due to their collective prevalence and often life-threatening nature. Incentive programs, such as the Orphan Drug Act have been introduced to increase the development of rare disease therapeutics. While the approval of these therapeutics requires supportive data from stringent pre-market studies, these data lack the ability to describe the causes of treatment response heterogeneity, leading to medications often being more harmful or less effective than predicted. If a Goal Line were to be used to describe the multifactorial continuum of phenotypic variations occurring in response to a medication, the 'Goal Posts', or the two defining points of this continuum, would be (1) Super-Response, or an extraordinary therapeutic effect; and (2) Serious Harm. Investigation of the pharmacogenomics behind these two extreme phenotypes can potentially lead to the development of new therapeutics, help inform rational use criteria in drug policy, and improve the understanding of underlying disease pathophysiology. In the context of rare diseases where cohort sizes are smaller than ideal, 'small data' and 'big data' approaches to data collection and analysis should be combined to produce the most robust results. This paper presents the importance of studying drug response in parallel to other research initiatives in rare diseases, as well as the need for international collaboration in the area of rare disease pharmacogenomics.
(© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet. 2020;28:165–73. https://doi.org/10.1038/s41431-019-0508-0 . (PMID: 10.1038/s41431-019-0508-031527858)
Fermaglich LJ, Miller KL. A comprehensive study of the rare diseases and conditions targeted by orphan drug designations and approvals over the forty years of the Orphan Drug Act. Orphanet J Rare Dis. 2023;18:163. https://doi.org/10.1186/s13023-023-02790-7 . (PMID: 10.1186/s13023-023-02790-73735379610290406)
Center for Drug Evaluation and Research. Development & approval process | drugs. FDA 2023. https://www.fda.gov/drugs/development-approval-process-drugs . Accessed 29 July 2023.
Rosner AL. Evidence-based medicine: revisiting the pyramid of priorities. J Bodyw Mov Ther. 2012;16:42–9. https://doi.org/10.1016/j.jbmt.2011.05.003 . (PMID: 10.1016/j.jbmt.2011.05.00322196426)
Makady A, de Boer A, Hillege H, Klungel O, Goettsch W. What is real-world data? A review of definitions based on literature and stakeholder interviews. Value Health. 2017;20:858–65. https://doi.org/10.1016/j.jval.2017.03.008 . (PMID: 10.1016/j.jval.2017.03.00828712614)
Freemantle N, Strack T. Real-world effectiveness of new medicines should be evaluated by appropriately designed clinical trials. J Clin Epidemiol. 2010;63:1053–8. https://doi.org/10.1016/j.jclinepi.2009.07.013 . (PMID: 10.1016/j.jclinepi.2009.07.01319880285)
Schwartz D, Lellouch J. Explanatory and pragmatic attitudes in therapeutical trials. J Clin Epidemiol. 2009;62:499–505. https://doi.org/10.1016/j.jclinepi.2009.01.012 . (PMID: 10.1016/j.jclinepi.2009.01.01219348976)
Price D, Hillyer EV, van der Molen T. Efficacy versus effectiveness trials: informing guidelines for asthma management. Curr Opin Allergy Clin Immunol. 2013;13:50. https://doi.org/10.1097/ACI.0b013e32835ad059 . (PMID: 10.1097/ACI.0b013e32835ad05923242115)
Kelman CW, Pearson S-A, Day RO, Holman CDJ, Kliewer EV, Henry DA. Evaluating medicines: let’s use all the evidence. Med J Aust. 2007;186:249–52. https://doi.org/10.5694/j.1326-5377.2007.tb00883.x . (PMID: 10.5694/j.1326-5377.2007.tb00883.x17391088)
Cherubini A, Signore SD, Ouslander J, Semla T, Michel J-P. Fighting against age discrimination in clinical trials. J Am Geriatr Soc. 2010;58:1791–6. https://doi.org/10.1111/j.1532-5415.2010.03032.x . (PMID: 10.1111/j.1532-5415.2010.03032.x20863340)
Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A, et al. Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N Engl J Med. 2004;351:543–51. https://doi.org/10.1056/NEJMoa040135 . (PMID: 10.1056/NEJMoa04013515295047)
Joseph PD, Craig JC, Caldwell PHY. Clinical trials in children. Br J Clin Pharmacol. 2015;79:357–69. https://doi.org/10.1111/bcp.12305 . (PMID: 10.1111/bcp.12305243251524345947)
Rodieux F, Gotta V, Pfister M, van den Anker JN. Causes and consequences of variability in drug transporter activity in pediatric drug therapy. J Clin Pharmacol. 2016;56:S173–92. https://doi.org/10.1002/jcph.721 . (PMID: 10.1002/jcph.72127385174)
Carleton BC, Poole RI, Smith MA, Leeder JS, Ghannadan R, Ross CJD, et al. Adverse drug reaction active surveillance: developing a national network in Canada’s children’s hospitals. Pharmacoepidemiol Drug Saf. 2009;18:713–21. https://doi.org/10.1002/pds.1772 . (PMID: 10.1002/pds.177219507171)
Slater R, Cantarella A, Franck L, Meek J, Fitzgerald M. How well do clinical pain assessment tools reflect pain in infants? PLoS Med. 2008;5: e129. https://doi.org/10.1371/journal.pmed.0050129 . (PMID: 10.1371/journal.pmed.0050129185785622504041)
Tambuyzer E, Vandendriessche B, Austin CP, Brooks PJ, Larsson K, Miller Needleman KI, et al. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat Rev Drug Discov. 2020;19:93–111. https://doi.org/10.1038/s41573-019-0049-9 . (PMID: 10.1038/s41573-019-0049-931836861)
Korth-Bradley JM. Regulatory framework for drug development in rare diseases. J Clin Pharmacol. 2022;62:S15-26. https://doi.org/10.1002/jcph.2171 . (PMID: 10.1002/jcph.217136461739)
Babolmorad G, Latif A, Domingo IK, Pollock NM, Delyea C, Rieger AM, et al. Toll-like receptor 4 is activated by platinum and contributes to cisplatin-induced ototoxicity. EMBO Rep. 2021;22:e51280. https://doi.org/10.15252/embr.202051280 .
Magdy T, Jiang Z, Jouni M, Fonoudi H, Lyra-Leite D, Jung G, et al. RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy. Cell Stem Cell. 2021;28:2076-2089.e7. https://doi.org/10.1016/j.stem.2021.08.006 . (PMID: 10.1016/j.stem.2021.08.00634525346)
Magdy T, Jouni M, Kuo H-H, Weddle CJ, Lyra-Leite D, Fonoudi H, et al. Identification of drug transporter genomic variants and inhibitors that protect against doxorubicin-induced cardiotoxicity. Circulation. 2022;145:279–94. https://doi.org/10.1161/CIRCULATIONAHA.121.055801 . (PMID: 10.1161/CIRCULATIONAHA.121.05580134874743)
Hasbullah JS, Scott EN, Bhavsar AP, Gunaretnam EP, Miao F, Soliman H, et al. All-trans retinoic acid (ATRA) regulates key genes in the RARG-TOP2B pathway and reduces anthracycline-induced cardiotoxicity. PLoS ONE. 2022;17: e0276541. https://doi.org/10.1371/journal.pone.0276541 . (PMID: 10.1371/journal.pone.0276541363319229635745)
Pereira NL, Rihal CS, So DYF, Rosenberg Y, Lennon RJ, Mathew V, et al. Clopidogrel pharmacogenetics. Circ Cardiovasc Interv. 2019;12: e007811. https://doi.org/10.1161/CIRCINTERVENTIONS.119.007811 . (PMID: 10.1161/CIRCINTERVENTIONS.119.007811309983966581205)
Lyon E, Gastier Foster J, Palomaki GE, Pratt VM, Reynolds K, Sábato MF, et al. Laboratory testing of CYP2D6 alleles in relation to tamoxifen therapy. Genet Med. 2012;14:990–1000. https://doi.org/10.1038/gim.2012.108 . (PMID: 10.1038/gim.2012.10822955113)
Organization WH. How to develop and implement a national drug policy. Geneva: World Health Organization; 2001.
Almarsdóttir AB, Traulsen JM. Rational use of medicines—an important issue in pharmaceutical policy. Pharm World Sci. 2005;27:76–80. https://doi.org/10.1007/s11096-005-3303-7 . (PMID: 10.1007/s11096-005-3303-715999915)
Hespanhol L, Vallio CS, Costa LM, Saragiotto BT. Understanding and interpreting confidence and credible intervals around effect estimates. Braz J Phys Ther. 2019;23:290–301. https://doi.org/10.1016/j.bjpt.2018.12.006 . (PMID: 10.1016/j.bjpt.2018.12.00630638956)
Stone MB, Yaseen ZS, Miller BJ, Richardville K, Kalaria SN, Kirsch I. Response to acute monotherapy for major depressive disorder in randomized, placebo controlled trials submitted to the US Food and Drug Administration: individual participant data analysis. BMJ. 2022;378: e067606. https://doi.org/10.1136/bmj-2021-067606 . (PMID: 10.1136/bmj-2021-067606359180979344377)
Bell SC, Mall MA, Gutierrez H, Macek M, Madge S, Davies JC, et al. The future of cystic fibrosis care: a global perspective. Lancet Respir Med. 2020;8:65–124. https://doi.org/10.1016/S2213-2600(19)30337-6 . (PMID: 10.1016/S2213-2600(19)30337-631570318)
Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365:1663–72. https://doi.org/10.1056/NEJMoa1105185 . (PMID: 10.1056/NEJMoa1105185220475573230303)
Davies JC, Wainwright CE, Canny GJ, Chilvers MA, Howenstine MS, Munck A, et al. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med. 2013;187:1219–25. https://doi.org/10.1164/rccm.201301-0153OC . (PMID: 10.1164/rccm.201301-0153OC235902653734608)
Middleton PG, Mall MA, Dřevínek P, Lands LC, McKone EF, Polineni D, et al. Elexacaftor–tezacaftor–ivacaftor for cystic fibrosis with a single Phe508del Allele. N Engl J Med. 2019;381:1809–19. https://doi.org/10.1056/NEJMoa1908639 . (PMID: 10.1056/NEJMoa1908639316978737282384)
Lassoued Ferjani H, Makhlouf Y, Maatallah K, Triki W, Ben Nessib D, Kaffel D, et al. Management of chronic recurrent multifocal osteomyelitis: review and update on the treatment protocol. Expert Opin Biol Ther. 2022;22:781–7. https://doi.org/10.1080/14712598.2022.2078161 . (PMID: 10.1080/14712598.2022.207816135574685)
Girschick H, Finetti M, Orlando F, Schalm S, Insalaco A, Ganser G, et al. The multifaceted presentation of chronic recurrent multifocal osteomyelitis: a series of 486 cases from the Eurofever international registry. Rheumatology (Oxford). 2018;57:1203–11. https://doi.org/10.1093/rheumatology/key058 . (PMID: 10.1093/rheumatology/key05829596638)
Bhat CS, Anderson C, Harbinson A, McCann LJ, Roderick M, Finn A, et al. Chronic non bacterial osteitis: a multicentre study. Pediatr Rheumatol Online J. 2018;16:74. https://doi.org/10.1186/s12969-018-0290-5 . (PMID: 10.1186/s12969-018-0290-5304664446251121)
Chand AR, Xu H, Wells LG, Clair B, Neunert C, Spellman AE, et al. Are there true non-responders to hydroxyurea in sickle cell disease? A multiparameter analysis. Blood. 2014;124:4073. https://doi.org/10.1182/blood.V124.21.4073.4073 . (PMID: 10.1182/blood.V124.21.4073.4073)
Ware RE. How I use hydroxyurea to treat young patients with sickle cell anemia. Blood. 2010;115:5300–11. https://doi.org/10.1182/blood-2009-04-146852 . (PMID: 10.1182/blood-2009-04-146852202239212902131)
Tsouana E, Ominu-Evbota K, Ghumran F, Tuffin N. 604 Hydroxycarbamide treatment failures in paediatric sickle cell disease; non-adherence, intolerance, or true non-response? Arch Dis Child. 2023;108:A379–80. https://doi.org/10.1136/archdischild-2023-rcpch.596 . (PMID: 10.1136/archdischild-2023-rcpch.596)
Vertex developed a CRISPR cure. It’s already on the hunt for something better. MIT technology review. https://www.technologyreview.com/2023/12/15/1085380/vertex-sickle-cell-pill-treatment/ . Accessed 29 Jan 2024.
Blau N. Sapropterin dihydrochloride for the treatment of hyperphenylalaninemias. Expert Opin Drug Metab Toxicol. 2013;9:1207–18. https://doi.org/10.1517/17425255.2013.804064 . (PMID: 10.1517/17425255.2013.80406423705856)
Nutrients | Free Full-Text | Impact on diet quality and burden of care in sapropterin dihydrochloride use in children with phenylketonuria: a 6 month follow-up report. https://www.mdpi.com/2072-6643/15/16/3603 . Accessed 29 Jan 2024.
Downing NS, Shah ND, Aminawung JA, Pease AM, Zeitoun J-D, Krumholz HM, et al. Postmarket safety events among novel therapeutics approved by the US Food and Drug Administration between 2001 and 2010. JAMA. 2017;317:1854–63. https://doi.org/10.1001/jama.2017.5150 . (PMID: 10.1001/jama.2017.5150284928995815036)
European Medicines Agency. Guidance on the format of the risk management plan (RMP) in the EU—in integrated format. Amsterdam: European Medicines Agency; 2018.
Mittmann N, Knowles SR, Gomez M, Fish JS, Cartotto R, Shear NH. Evaluation of the extent of under-reporting of serious adverse drug reactions. Drug Saf. 2004;27:477–87. https://doi.org/10.2165/00002018-200427070-00004 . (PMID: 10.2165/00002018-200427070-0000415141997)
Health Canada. Protecting Canadians from Unsafe Drugs Act (Vanessa’s Law) Amendments to the Food and Drugs Act (Bill C-17). 2013. https://www.canada.ca/en/health-canada/services/drugs-health-products/legislation-guidelines/protecting-canadians-unsafe-drugs-act-vanessa-law-amendments-food-drugs-act.html . Accessed 29 July 2023.
Government of Canada PW and GSC. Canada Gazette, Part 2, volume 153, number 13: regulations amending the Food and Drug Regulations (serious adverse drug reaction reporting—hospitals). 2019.
Wiktorowicz ME, Lexchin J, Paterson M, Mintzes B, Metge C, Light D, et al. Research networks involved in post-market pharmacosurveillance in the United States, United Kingdom, France, New Zealand, Australia, Norway and European Union: Lessons for Canada. Canadian Patient Safety Institute; 2000.
van der Linden CMJ, Jansen PAF, van Marum RJ, Grouls RJE, Korsten EHM, Egberts ACG. Recurrence of adverse drug reactions following inappropriate re-prescription. Drug Saf. 2010;33:535–8. https://doi.org/10.2165/11532350-000000000-00000 . (PMID: 10.2165/11532350-000000000-0000020553055)
Layton D, Hazell L, Shakir SAW. Modified prescription-event monitoring studies. Drug Saf. 2011;34:e1-9. https://doi.org/10.2165/11593830-000000000-00000 . (PMID: 10.2165/11593830-000000000-0000022077508)
Bailey C, Peddie D, Wickham ME, Badke K, Small SS, Doyle-Waters MM, et al. Adverse drug event reporting systems: a systematic review. Br J Clin Pharmacol. 2016;82:17–29. https://doi.org/10.1111/bcp.12944 . (PMID: 10.1111/bcp.12944270162664917803)
Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients a meta-analysis of prospective studies. JAMA. 1998;279:1200–5. https://doi.org/10.1001/jama.279.15.1200 . (PMID: 10.1001/jama.279.15.12009555760)
Routledge PA, O’Mahony MS, Woodhouse KW. Adverse drug reactions in elderly patients. Br J Clin Pharmacol. 2004;57:121–6. https://doi.org/10.1046/j.1365-2125.2003.01875.x . (PMID: 10.1046/j.1365-2125.2003.01875.x147488101884428)
Kitchin R, Lauriault TP. Small data in the era of big data. GeoJournal. 2015;80:463–75. https://doi.org/10.1007/s10708-014-9601-7 . (PMID: 10.1007/s10708-014-9601-7)
Alyass A, Turcotte M, Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genom. 2015;8:33. https://doi.org/10.1186/s12920-015-0108-y . (PMID: 10.1186/s12920-015-0108-y)
Smith M, Hare ML. An overview of progress in childhood cancer survival. J Pediatr Oncol Nurs. 2004;21:160–4. https://doi.org/10.1177/1043454204264407 . (PMID: 10.1177/104345420426440715296046)
Siegel DA, Li J, Henley SJ, Wilson RJ, Lunsford NB, Tai E, et al. Geographic variation in pediatric cancer incidence—United States, 2003–2014. MMWR Morb Mortal Wkly Rep. 2018;67:707–13. https://doi.org/10.15585/mmwr.mm6725a2 . (PMID: 10.15585/mmwr.mm6725a2299534306023185)
Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355:1572–82. https://doi.org/10.1056/NEJMsa060185 . (PMID: 10.1056/NEJMsa06018517035650)
Aminkeng F, Bhavsar AP, Visscher H, Rassekh SR, Li Y, Lee JW, et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015;47:1079–84. https://doi.org/10.1038/ng.3374 . (PMID: 10.1038/ng.3374262374294552570)
Visscher H, Ross CJD, Rassekh SR, Sandor GSS, Caron HN, van Dalen EC, et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr Blood Cancer. 2013;60:1375–81. https://doi.org/10.1002/pbc.24505 . (PMID: 10.1002/pbc.2450523441093)
Krishnaswamy S, Hao Q, Al-Rohaimi A, Hesse LM, Moltke LL von, Greenblatt DJ, et al. UDP Glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J Pharmacol Exp Ther. 2005;313:1340–6. https://doi.org/10.1124/jpet.104.081968 .
Deng S, Yan T, Jendrny C, Nemecek A, Vincetic M, Gödtel-Armbrust U, et al. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both Topoisomerase II isoforms. BMC Cancer. 2014;14:842. https://doi.org/10.1186/1471-2407-14-842 . (PMID: 10.1186/1471-2407-14-842254068344242484)
Nagasawa K, Nagai K, Ohinishi N, Yokoyama T, Fujimoto S. Contribution of specific transport systems to anthracycline transport in tumor and normal cells. Curr Drug Metab. 2001;2:355–66. https://doi.org/10.2174/1389200013338243 . (PMID: 10.2174/138920001333824311766987)
Aminkeng F, Ross CJD, Rassekh SR, Hwang S, Rieder MJ, Bhavsar AP, et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82:683–95. https://doi.org/10.1111/bcp.13008 . (PMID: 10.1111/bcp.13008271970035338111)
Thorn CF, Klein TE, Altman RB. PharmGKB: the pharmacogenomics knowledge base. Methods Mol Biol. 2013;1015:311–20. https://doi.org/10.1007/978-1-62703-435-7_20 . (PMID: 10.1007/978-1-62703-435-7_20238248654084821)
Nelson MR, Bacanu S-A, Mosteller M, Li L, Bowman CE, Roses AD, et al. Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. Pharmacogenom J. 2009;9:23–33. https://doi.org/10.1038/tpj.2008.4 . (PMID: 10.1038/tpj.2008.4)
تواريخ الأحداث: Date Created: 20240314 Date Completed: 20240523 Latest Revision: 20240624
رمز التحديث: 20240624
DOI: 10.1007/s40264-024-01416-6
PMID: 38483768
قاعدة البيانات: MEDLINE
الوصف
تدمد:1179-1942
DOI:10.1007/s40264-024-01416-6