دورية أكاديمية

The genomic and enzymatic basis for iridoid biosynthesis in cat thyme (Teucrium marum).

التفاصيل البيبلوغرافية
العنوان: The genomic and enzymatic basis for iridoid biosynthesis in cat thyme (Teucrium marum).
المؤلفون: Smit SJ; Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK., Ayten S; Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, Georgia, 30602, USA., Radzikowska BA; Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.; Department of Chemistry, University of York, York, YO10 5DD, UK., Hamilton JP; Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, 30602, USA.; Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, 30602, USA., Langer S; Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK., Unsworth WP; Department of Chemistry, University of York, York, YO10 5DD, UK., Larson TR; Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK., Buell CR; Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, Georgia, 30602, USA.; Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, 30602, USA.; Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, 30602, USA., Lichman BR; Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
المصدر: The Plant journal : for cell and molecular biology [Plant J] 2024 Jun; Vol. 118 (5), pp. 1589-1602. Date of Electronic Publication: 2024 Mar 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology Country of Publication: England NLM ID: 9207397 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-313X (Electronic) Linking ISSN: 09607412 NLM ISO Abbreviation: Plant J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford : Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology, c1991-
مواضيع طبية MeSH: Iridoids*/metabolism, Biosynthetic Pathways/genetics ; Phylogeny ; Genome, Plant/genetics ; Genomics ; Animals ; Cyclopentane Monoterpenes/metabolism ; Pyrones
مستخلص: Iridoids are non-canonical monoterpenoids produced by both insects and plants. An example is the cat-attracting and insect-repelling volatile iridoid nepetalactone, produced by Nepeta sp. (catmint) and aphids. Recently, both nepetalactone biosynthetic pathways were elucidated, showing a remarkable convergent evolution. The iridoid, dolichodial, produced by Teucrium marum (cat thyme) and multiple insect species, has highly similar properties to nepetalactone but its biosynthetic origin remains unknown. We set out to determine the genomic, enzymatic, and evolutionary basis of iridoid biosynthesis in T. marum. First, we generated a de novo chromosome-scale genome assembly for T. marum using Oxford Nanopore Technologies long reads and proximity-by-ligation Hi-C reads. The 610.3 Mb assembly spans 15 pseudomolecules with a 32.9 Mb N50 scaffold size. This enabled identification of iridoid biosynthetic genes, whose roles were verified via activity assays. Phylogenomic analysis revealed that the evolutionary history of T. marum iridoid synthase, the iridoid scaffold-forming enzyme, is not orthologous to typical iridoid synthases but is derived from its conserved paralog. We discovered an enzymatic route from nepetalactol to diverse iridoids through the coupled activity of an iridoid oxidase cytochrome P450 and acetyltransferases, via an inferred acylated intermediate. This work provides a genomic resource for specialized metabolite research in mints and demonstration of the role of acetylation in T. marum iridoid diversity. This work will enable future biocatalytic or biosynthetic production of potent insect repellents, as well as comparative studies into iridoid biosynthesis in insects.
(© 2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)
References: Alagna, F., Geu‐Flores, F., Kries, H., Panara, F., Baldoni, L., O'Connor, S.E. et al. (2016) Identification and characterization of the iridoid synthase involved in oleuropein biosynthesis in olive (Olea europaea) fruits. The Journal of Biological Chemistry, 291, 5542–5554.
Aničić, N., Gašić, U., Lu, F., Ćirić, A., Ivanov, M., Jevtić, B. et al. (2021) Antimicrobial and immunomodulating activities of two endemic nepeta species and their major iridoids isolated from natural sources. Pharmaceuticals, 14, 414. Available from: https://doi.org/10.3390/ph14050414.
Bellesia, F., Pagnoni, U.M., Pinetti, A. & Trave, R. (1983a) Teucrein, a new iridolactol from Teucrium marum, and its biosynthetic relationship with dolichodial. Journal of Chemical Research Synopsis, 12, 328–329.
Bellesia, F., Pagnoni, U.M., Pinetti, A. & Trave, R. (1983b) The biosynthesis of dolichodial in Teucrium marum. Phytochemistry, 22, 2197–2201.
Beran, F., Köllner, T.G., Gershenzon, J. & Tholl, D. (2019) Chemical convergence between plants and insects: biosynthetic origins and functions of common secondary metabolites. The New Phytologist, 223, 52–67.
Birkett, M.A. & Pickett, J.A. (2003) Aphid sex pheromones: from discovery to commercial production. Phytochemistry, 62, 651–656.
Bol, S., Caspers, J., Buckingham, L., Anderson‐Shelton, G.D., Ridgway, C., Buffington, C.A.T. et al. (2017) Responsiveness of cats (Felidae) to silver vine (Actinidia polygama), Tatarian honeysuckle (Lonicera tatarica), valerian (Valeriana officinalis) and catnip (Nepeta cataria). BMC Veterinary Research, 13, 70.
Brown, S., Clastre, M., Courdavault, V. & O'Connor, S.E. (2015). De novo production of the plant-derived alkaloid strictosidine in yeast. Proceedings of the National Academy of Sciences of the United States of America, 112, 3205–3210.
Castro, M. & Rosselló, J.A. (2007) Karyological observations on plant taxa endemic to the Balearic Islands. Botanical Journal of the Linnean Society, 153, 463–476.
Cavill, G.W.K. & Hinterberger, H. (1961) The chemistry of ants. V. Structure and reactions of dolichodial. Australian Journal of Chemistry, 14, 143–149.
Collu, G., Unver, N., Peltenburg‐Looman, A.M., van der Heijden, R., Verpoorte, R. & Memelink, J. (2001) Geraniol 10‐hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Letters, 508, 215–220.
Dang, T.‐T.T., Chen, X. & Facchini, P.J. (2015) Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nature Chemical Biology, 11, 104–106.
Dawson, G.W., Griffiths, D.C., Janes, N.F., Mudd, A., Pickett, J.A., Wadhams, L.J. et al. (1987) Identification of an aphid sex pheromone. Nature, 325, 614–616.
Dewhirst, S.Y., Birkett, M.A., Fitzgerald, J.D., Stewart‐Jones, A., Wadhams, L.J., Woodcock, C.M. et al. (2008) Dolichodial: a new aphid sex pheromone component? Journal of Chemical Ecology, 34, 1575–1583.
Djabou, N., Lorenzi, V., Guinoiseau, E., Andreani, S., Giuliani, M.C., Desjobert, J.M. et al. (2013) Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi‐infectious pathogens. Food Control, 30, 354–363.
Dobler, S., Petschenka, G. & Pankoke, H. (2011) Coping with toxic plant compounds – the insect's perspective on iridoid glycosides and cardenolides. Phytochemistry, 72, 1593–1604.
Dudley, Q.M., Jo, S., Guerrero, D.A.S., Chhetry, M., Smedley, M.A., Harwood, W.A., Sherden, N.H., O'Connor, S.E., Caputi, L. & Patron, N.J. (2022) Reconstitution of monoterpene indole alkaloid biosynthesis in genome engineered Nicotiana benthamiana. Communications Biology, 5, 949.
Eisner, T. (1964) Catnip: its raison d'Être. Science, 146, 1318–1320.
Eisner, T., Eisner, M., Aneshansley, D.J., Wu, C.‐L. & Meinwald, J. (2000) Chemical defense of the mint plant, Teucrium marum (Labiatae). Chemoecology, 10, 211–216.
El‐Naggar, L.J. & Beal, J.L. (1980) Iridoids. A review. Journal of Natural Products, 43, 649–707.
Geu‐Flores, F., Sherden, N.H., Courdavault, V., Burlat, V., Glenn, W.S., Wu, C. et al. (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature, 492, 138–142.
Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J. et al. (2008) Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biology, 9, R7.
Hallahan, D.L., West, J.M., Smiley, D.W.M. & Pickett, J.A. (1998) Nepetalactol oxidoreductase in trichomes of the catmint Nepeta racemosa. Phytochemistry, 48, 421–427.
Hoff, K.J., Lomsadze, A., Borodovsky, M. & Stanke, M. (2019) Whole‐genome annotation with BRAKER. In: Kollmar, M. (Ed.) Gene prediction: methods and protocols. Springer New York: New York, NY, pp. 65–95.
Jensen, S.R. (1991) Plant iridoids, their biosynthesis and distribution in angiosperms. Phytochemistry Reviews, 31, 33–158.
Kang, M., Fu, R., Zhang, P., Lou, S., Yang, X., Chen, Y. et al. (2021) A chromosome‐level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis. Nature Communications, 12, 3531.
Köllner, T.G., David, A., Luck, K., Beran, F., Kunert, G., Zhou, J.‐J. et al. (2022) Biosynthesis of iridoid sex pheromones in aphids. Proceedings of the National Academy of Sciences of the United States of America, 119, e2211254119.
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P.A. (2019) Assembly of long, error‐prone reads using repeat graphs. Nature Biotechnology, 37, 540–546.
Kries, H., Kellner, F., Kamileen, M.O. & O'Connor, S.E. (2017) Inverted stereocontrol of iridoid synthase in snapdragon. The Journal of Biological Chemistry, 292, 14659–14667.
Lenz, R. & Zenk, M.H. (1995) Acetyl coenzyme A: salutaridinol‐7‐O‐acetyltransferase from Papaver somniferum plant cell cultures: the enzyme catalyzing the formation of thebaine in morphine biosynthesis. The Journal of Biological Chemistry, 270, 31091–31096.
Li, C., Wood, J.C., Vu, A.H., Hamilton, J.P., Rodriguez Lopez, C.E., Payne, R.M.E. et al. (2023) Single‐cell multi‐omics in the medicinal plant Catharanthus roseus. Nature Chemical Biology, 19, 1031–1104. Available from: https://doi.org/10.1038/s41589‐023‐01327‐0.
Lichman, B.R., Godden, G.T., Hamilton, J.P., Palmer, L., Kamileen, M.O., Zhao, D. et al. (2020) The evolutionary origins of the cat attractant nepetalactone in catnip. Science Advances, 6, eaba0721.
Lichman, B.R., Kamileen, M.O., Titchiner, G.R., Saalbach, G., Stevenson, C.E.M., Lawson, D.M. et al. (2019) Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis. Nature Chemical Biology, 15, 71–79.
Manni, M., Berkeley, M.R., Seppey, M., Simão, F.A. & Zdobnov, E.M. (2021) BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution, 38, 4647–4654.
Meinwald, J., Chadha, M.S., Hurst, J.J. & Eisner, I. (1962) Defense mechanisms of arthropods – IX anisomorphal, the secretion of a phasmid insect. Tetrahedron Letters, 3, 29–33.
Melo, N., Capek, M., Arenas, O.M., Afify, A., Yilmaz, A., Potter, C.J. et al. (2021) The irritant receptor TRPA1 mediates the mosquito repellent effect of catnip. Current Biology, 31, 1988–1994.e5.
Miettinen, K., Dong, L., Navrot, N., Schneider, T., Burlat, V., Pollier, J. et al. (2014) The seco‐iridoid pathway from Catharanthus roseus. Nature Communications, 5, 3606.
Mint Evolutionary Genomics Consortium. (2018) Phylogenomic Mining of the Mints Reveals Multiple Mechanisms Contributing to the evolution of chemical diversity in Lamiaceae. Molecular Plant, 11, 1084–1096.
Munkert, J., Pollier, J., Miettinen, K., van Moerkercke, A., Payne, R., Müller‐Uri, F. et al. (2014) Iridoid synthase activity is common among the plant progesterone 5beta‐reductase family. Molecular Plant, 8, 136–152.
Nett, R.S., Dho, Y., Tsai, C., Passow, D., Martinez Grundman, J., Low, Y.‐Y. et al. (2023) Plant carbonic anhydrase‐like enzymes in neuroactive alkaloid biosynthesis. Nature, 624, 182–191.
Nguyen, T.‐D. & O'Connor, S.E. (2020) The progesterone 5β‐reductase/iridoid synthase family: a catalytic reservoir for specialized metabolism across land plants. ACS Chemical Biology, 15, 1780–1787.
O'Connor, S.E. & Maresh, J.J. (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Natural Product Reports, 23, 532–547.
Ou, S., Su, W., Liao, Y., Chougule, K., Agda, J.R.A., Hellinga, A.J. et al. (2019) Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biology, 20, 275.
Paddon, C.J., Westfall, P.J., Pitera, D.J., Benjamin, K., Fisher, K., McPhee, D. et al. (2013) High‐level semi‐synthetic production of the potent antimalarial artemisinin. Nature, 496, 528–532.
Pagnoni, U.M., Pinetti, A., Trave, R. & Garanti, L. (1976) Monoterpenes of Teucrium marum. Australian Journal of Chemistry, 29, 1375–1381.
Partridge, S.J., Withall, D.M., Caulfield, J.C., Pickett, J.A., Stockman, R.A., Oldham, N.J. et al. (2021) Iridoid sex pheromone biosynthesis in aphids mimics iridoid‐producing plants. Chemistry ‐ A European Journal, 27, 7231–7234. Available from: https://doi.org/10.1002/chem.202001356.
Pham, G.M., Hamilton, J.P., Wood, J.C., Burke, J.T., Zhao, H., Vaillancourt, B. et al. (2020) Construction of a chromosome‐scale long‐read reference genome assembly for potato. GigaScience, 9, giaa100. Available from: https://academic.oup.com/gigascience/article/9/9/giaa100/5910251 [Accessed 27th November 2021].
Poli, F., Serrilli, A.M., Scartezzini, P., Muzzoli, M., Maxia, A., Ballero, M. et al. (2007) Endemic species of sardo‐corso‐balearic area: molecular composition and biological assay of Teucrium. Natural Product Research, 21, 1061–1066.
Roach, M.J., Schmidt, S.A. & Borneman, A.R. (2018) Purge Haplotigs: allelic contig reassignment for third‐gen diploid genome assemblies. BMC Bioinformatics, 19, 460.
Rodríguez‐López, C.E., Jiang, Y., Kamileen, M.O., Lichman, B.R., Hong, B., Vaillancourt, B. et al. (2022) Phylogeny‐aware chemoinformatic analysis of chemical diversity in Lamiaceae enables iridoid pathway assembly and discovery of aucubin synthase. Molecular Biology and Evolution, 39, msac057. Available from: https://doi.org/10.1093/molbev/msac057.
Rosenkranz, M., Chen, Y., Zhu, P. & Vlot, A.C. (2021) Volatile terpenes ‐ mediators of plant‐to‐plant communication. The Plant Journal, 108, 617–631.
Salim, V., Wiens, B., Masada‐Atsumi, S., Yu, F. & De Luca, V. (2014) 7‐deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7‐deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis. Phytochemistry, 101, 23–31.
Shoji, T. (2019) The recruitment model of metabolic evolution: Jasmonate‐responsive transcription factors and a conceptual model for the evolution of metabolic pathways. Frontiers in Plant Science, 10, 560.
Simkin, A.J., Miettinen, K., Claudel, P., Burlat, V., Guirimand, G., Courdavault, V. et al. (2013) Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry, 85, 36–43.
Teoh, K.H., Polichuk, D.R., Reed, D.W. & Covello, P.S. (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany, 87, 635–642.
Uenoyama, R., Miyazaki, T., Hurst, J.L., Beynon, R.J., Adachi, M., Murooka, T. et al. (2021) The characteristic response of domestic cats to plant iridoids allows them to gain chemical defense against mosquitoes. Science Advances, 7, eabd9135. Available from: https://doi.org/10.1126/sciadv.abd9135.
Zhang, J., Hansen, L.G., Gudich, O., Viehrig, K., Lassen, L.M.M., Schrübbers, L. et al. (2022) A microbial supply chain for production of the anti‐cancer drug vinblastine. Nature, 609, 341–347.
معلومات مُعتمدة: Georgia Seed Development; MR/S01862X/1 UK Research and Innovation; The Republic of Türkiye (Turkey) Ministry of National Education; Georgia Research Alliance; University of Georgia; BB/V006452/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; Michigan State University
فهرسة مساهمة: Keywords: Teucrium marum; biosynthesis; comparative genomics; enzymology; iridoids; mint family
المشرفين على المادة: 0 (Iridoids)
21651-62-7 (nepetalactone)
0 (Cyclopentane Monoterpenes)
0 (Pyrones)
تواريخ الأحداث: Date Created: 20240315 Date Completed: 20240530 Latest Revision: 20240530
رمز التحديث: 20240530
DOI: 10.1111/tpj.16698
PMID: 38489316
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-313X
DOI:10.1111/tpj.16698