دورية أكاديمية

Prophylactic and Therapeutic Efficacy of Ultrasonicated Rosmarinus officinalis Ethanolic Extract and its Chitosan-Loaded Nanoparticles Against Eimeria tenella Infected Broiler Chickens.

التفاصيل البيبلوغرافية
العنوان: Prophylactic and Therapeutic Efficacy of Ultrasonicated Rosmarinus officinalis Ethanolic Extract and its Chitosan-Loaded Nanoparticles Against Eimeria tenella Infected Broiler Chickens.
المؤلفون: Kasem SM; Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt. shaimaakasem48@yahoo.com., Mira NM; Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt., Helal IB; Zoology Department, Faculty of Science, Tanta University, EL Gharbia, 31527, Egypt., Mahfouz ME; Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt.
المصدر: Acta parasitologica [Acta Parasitol] 2024 Mar; Vol. 69 (1), pp. 951-999. Date of Electronic Publication: 2024 Mar 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Publishing Country of Publication: Switzerland NLM ID: 9301947 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1896-1851 (Electronic) Linking ISSN: 12302821 NLM ISO Abbreviation: Acta Parasitol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2019- : Cham : Springer International Publishing
Original Publication: Warszawa : Witold Stefanski Institute Of Parasitology
مواضيع طبية MeSH: Chickens* , Coccidiosis*/veterinary , Coccidiosis*/parasitology , Coccidiosis*/prevention & control , Coccidiosis*/drug therapy , Plant Extracts*/pharmacology , Plant Extracts*/administration & dosage , Chitosan* , Poultry Diseases*/parasitology , Poultry Diseases*/drug therapy , Poultry Diseases*/prevention & control , Nanoparticles* , Eimeria tenella*/drug effects , Cytokines*/metabolism , Rosmarinus*/chemistry, Animals ; Oocysts/drug effects ; Feces/parasitology ; Animal Feed/analysis
مستخلص: Purpose: The in vivo efficacy of ultrasonicated Rosmarinus officinalis ethanolic extract (UROEE) and its chitosan-loaded nanoparticles (UROEE-CsNPs) was investigated as a dietary prophylactic agent and as a therapeutic treatment against Eimeria tenella infected broiler chickens.
Methods: Chickens were infected with 4 × 10 4 E. tenella oocysts at 21 days old for primary infection and with 8 × 10 4 oocysts at 35 days old for secondary infection. Eleven experimental groups were conducted. Dietary addition of 100 mg/kg UROEE and 20 mg/kg for CsNPs as well as UROEE-CsNPs were included for prophylactic groups from day 1 to 42. The same doses were used for therapeutic treatment groups for 5 constitutive days. Oocyst output in feces was counted. Histopathological and immunohistochemical studies were conducted. Gene expression of pro-inflammatory cytokines as IFN-γ, IL-1β and IL-6 as well as anti-inflammatory cytokines as IL-10 and TGF-β4 was analyzed using semi-quantitative reverse transcriptase-PCR.
Results: The results showed an efficacy of UROEE, CsNPs and UROEE-CsNPs in reduction of oocyst excretion and improving the cecal tissue architecture. CD4 + and CD8 + T lymphocytes protein expression were reduced. E. tenella infection lead to upregulation of pro-inflammatory cytokines as IFN-γ, IL-1β, IL-6 and anti-inflammatory cytokines as TGF-β4 following primary infection, while their expression was downregulated following secondary infection.
Conclusion: The dietary prophylactic additives and therapeutic treatments with UROEE, CsNPs and UROEE-CsNPs could decrease the inflammatory response to E. tenella as indicated by oocyst output reduction, histopathological improvements, CD4 + and CD8 + T cells protein expression reduction as well as reducing mRNA expression levels of the tested cytokines following primary and secondary infections. Consequently, these results will help to develop better-combating strategies for the control and prevention of coccidiosis on poultry farms as a dietary prophylactic agent or as a therapeutic treatment.
(© 2024. The Author(s).)
References: Lee Y, Lu M, Lillehoj HS (2022) Coccidiosis: recent progress in host immunity and alternatives to antibiotic strategies. Vaccines 10(2):215. https://doi.org/10.3390/vaccines10020215. (PMID: 10.3390/vaccines10020215352146738879868)
Blake DP, Knox J, Dehaeck B, Huntington B, Rathinam T, Ravipati V, Ayoade S, Gilbert W, Adebambo A, Jatau ID, Raman M, Parker DM, Rushton J, Tomley FM (2020) Re-calculating the cost of coccidiosis in chickens. Vet Res 51(1):115. https://doi.org/10.1186/s13567-020-00837-2. (PMID: 10.1186/s13567-020-00837-2329282717488756)
Han M, Hu W, Chen T, Guo H, Zhu J, Chen F (2022) Anticoccidial activity of natural plants extracts mixture against Eimeria tenella: an in vitro and in vivo study. Front Vet Sci 9:1066543. https://doi.org/10.3389/fvets.2022.1066543. (PMID: 10.3389/fvets.2022.1066543365048419727100)
Okumura R, Takeda K (2017) Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med 49(5):e338. https://doi.org/10.1038/emm.2017.20. (PMID: 10.1038/emm.2017.20285465645454438)
Lillehoj HS, Lillehoj EP (2000) Avian coccidiosis. A review of acquired intestinal immunity and vaccination strategies. Avian Dis 44(2):408. https://doi.org/10.2307/1592556. (PMID: 10.2307/159255610879922)
Lillehoj HS, Okamura M (2003) Host immunity and vaccine development to coccidia and salmonella infections in chickens. J Poult Sci 40(3):151–193. https://doi.org/10.2141/jpsa.40.151. (PMID: 10.2141/jpsa.40.151)
Lillehoj HS, Trout JM (1996) Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin Microbiol Rev 9(3):349–360. https://doi.org/10.1128/cmr.9.3.349. (PMID: 10.1128/cmr.9.3.3498809465172898)
Yun C, Lillehoj HS, Lillehoj EP (2000) Intestinal immune responses to coccidiosis. Dev Comp Immunol 24(2–3):303–324. https://doi.org/10.1016/s0145-305x(99)00080-4. (PMID: 10.1016/s0145-305x(99)00080-410717295)
Rose ME, Wakelin D, Hesketh P (1991) Interferon-gamma-mediated effects upon immunity to coccidial infections in the mouse. Parasite Immunol 13(1):63–74. https://doi.org/10.1111/j.1365-3024.1991.tb00263.x. (PMID: 10.1111/j.1365-3024.1991.tb00263.x1901641)
Ghareeb K, Awad WA, Soodoi C, Sasgary S, Strasser A, Böhm J (2013) Effects of feed contaminant deoxynivalenol on plasma cytokines and mRNA expression of immune genes in the intestine of broiler chickens. PLoS ONE 8(8):e71492. https://doi.org/10.1371/journal.pone.0071492. (PMID: 10.1371/journal.pone.0071492239770543748120)
Rahman SU, Mohsin M (2019) The under reported issue of antibiotic-resistance in food-producing animals in Pakistan. Pakistan Vet J 39(03):323–328. https://doi.org/10.29261/pakvetj/2019.037. (PMID: 10.29261/pakvetj/2019.037)
Sidiropoulou E, Skoufos I, Marugán-Hernández V, Giannenas I, Bonos E, Aguiar-Martins K, Lazari D, Blake DP, Tzora A (2020) In vitro anticoccidial study of oregano and garlic essential oils and effects on growth performance, fecal oocyst output, and intestinal microbiota in vivo. Front Vet Sci 7:420. https://doi.org/10.3389/fvets.2020.00420. (PMID: 10.3389/fvets.2020.00420328510117411182)
Mund MD, Khan U, Tahir U, Mustafa BE, Fayyaz A (2017) Antimicrobial drug residues in poultry products and implications on public health: a review. Int J Food Prop 20(7):1433–1446. https://doi.org/10.1080/10942912.2016.1212874. (PMID: 10.1080/10942912.2016.1212874)
Khater HF, Ziam H, Abbas A, Abbas RZ, Raza MA, Hussain K, Younis EZ, Radwan IT, Selim A (2020) Avian coccidiosis: recent advances in alternative control strategies and vaccine development. Agrobiol Rec 1:11–25. https://doi.org/10.47278/journal.abr/2020.003. (PMID: 10.47278/journal.abr/2020.003)
Gadde UD, Kim W, Oh SH, Lillehoj HS (2017) Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim Health Res Rev 18(1):26–45. https://doi.org/10.1017/s1466252316000207. (PMID: 10.1017/s146625231600020728485263)
Lin Y, Xu S, Zeng D, Ni X, Zhou M, Zeng Y, Wang H, Zhou Y, Zhu H, Pan K, Li G (2017) Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation. PLoS ONE 12(8):e0182426. https://doi.org/10.1371/journal.pone.0182426. (PMID: 10.1371/journal.pone.0182426287715695542615)
Hassani FA, Shirani K, Hosseinzadeh H (2016) Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review. Naunyn-Schmiedebergs Arch Pharmacol 389(9):931–949. https://doi.org/10.1007/s00210-016-1256-0. (PMID: 10.1007/s00210-016-1256-027178264)
Perez-Fons L, Garzon MT, Micol V (2009) Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J Agric Food Chem 58(1):161–171. https://doi.org/10.1021/jf9026487. (PMID: 10.1021/jf9026487)
Yu M, Choi J, Chae I, Im H, Yang S, More KN, Lee I, Lee J (2013) Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L. Food Chem 136(2):1047–1054. https://doi.org/10.1016/j.foodchem.2012.08.085. (PMID: 10.1016/j.foodchem.2012.08.08523122161)
Kasem SM, Helal IB, Mira NM, Amer S (2019) Evaluating the in vitro efficiency of Rosmarinus officinalis extracts, formalin and sodium hypochlorite on sporulation of Eimeria tenella oocysts. Jokull J 69(9):36–54.
Kasem SM, Mira NM, Mahfouz ME, Helal IB (2022) In Vitro study to evaluate the efficacy of ultrasonicated ethanolic extract of Rosmarinus officinalis and its chitosan-based nanoparticles against Eimeria tenella oocysts of chickens. AAPS PharmSciTech 23:295. https://doi.org/10.1208/s12249-022-02445-z. (PMID: 10.1208/s12249-022-02445-z36329254)
Oluwatuyi M, Kaatz GW, Gibbons S (2004) Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 65(24):3249–3254. https://doi.org/10.1016/j.phytochem.2004.10.009. (PMID: 10.1016/j.phytochem.2004.10.00915561190)
Yao Y, Liu Y, Li C, Huang X, Zhang X, Deng P, Jiang G, Dai Q (2023) Effects of rosemary extract supplementation in feed on growth performance, meat quality, serum biochemistry, antioxidant capacity, and immune function of meat ducks. Poult Sci 102(2):102357. https://doi.org/10.1016/j.psj.2022.102357. (PMID: 10.1016/j.psj.2022.10235736502565)
Abd El-Hack ME, Alaidaroos BA, Farsi RM, Abou-Kassem DE, El-Saadony MT, Saad AM, Shafi ME, Albaqami NM, Taha AE, Ashour EA (2021) Impacts of supplementing broiler diets with biological curcumin, Zinc nanoparticles and Bacillus licheniformis on growth, carcass traits, blood indices, meat quality and cecal microbial load. Animals 11(7):1878. https://doi.org/10.3390/ani11071878. (PMID: 10.3390/ani11071878342026218300294)
Abdel-Ghany WA, Shaalan M, Salem HM (2021) Nanoparticles applications in poultry production: an updated review. World Poult Sci J 77(4):1001–1025. https://doi.org/10.1080/00439339.2021.1960235. (PMID: 10.1080/00439339.2021.1960235)
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi-Kolli M, Badehnoosh B, Ghandali MV, Hamblin MR, Mirzaei H (2021) Chitosan-based nanoparticles against viral infections. Front Cell Infect Microbiol 11:643953. https://doi.org/10.3389/fcimb.2021.643953. (PMID: 10.3389/fcimb.2021.643953338163498011499)
Cheng Z, Cheng Y, Chen Q, Li M, Wang JJ, Liu H, Li M, Ning Y, Yu Z, Wang Y, Wang H (2020) Self-assembly of pentapeptides into morphology-adaptable nanomedicines for enhanced combinatorial chemo-photodynamic therapy. Nano Today 33:100878. https://doi.org/10.1016/j.nantod.2020.100878. (PMID: 10.1016/j.nantod.2020.100878)
Song N, Zhou Z, Song Y, Li M, Yu X, Hu B, Yu Z (2021) In situ oxidation-regulated self-assembly of peptides into transformable scaffolds for cascade therapy. Nano Today 38:101198. https://doi.org/10.1016/j.nantod.2021.101198. (PMID: 10.1016/j.nantod.2021.101198)
AbdElKader NA, Sheta E, AbuBakr HO, El-Shamy OaA, Oryan A, Attia MM (2021) Effects of chitosan nanoparticles, ivermectin and their combination in the treatment of Gasterophilus intestinalis (Diptera: Gasterophilidae) larvae in donkeys (Equus asinus). Int J Trop Insect Sci 41(1):43–54. https://doi.org/10.1007/s42690-020-00171-2. (PMID: 10.1007/s42690-020-00171-2)
Attia MM, Yehia N, Soliman MM, Shukry M, El-Hack MEA, Salem HF (2021) Evaluation of the antiparasitic activity of the chitosan-silver nanocomposites in the treatment of experimentally infested pigeons with Pseudolynchia canariensis. Saudi J Biol Sci 29(3):1644–1652. https://doi.org/10.1016/j.sjbs.2021.10.067. (PMID: 10.1016/j.sjbs.2021.10.067352805768913377)
Elgadir MA, Uddin MI, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23(4):619–629. https://doi.org/10.1016/j.jfda.2014.10.008. (PMID: 10.1016/j.jfda.2014.10.00828911477)
Sepehri Z, Javadian F, Khammari D, Hassanshahian M (2016) Antifungal effects of the aqueous and ethanolic leaf extracts of Echinophora platyloba and Rosmarinus officinalis. Curr Med Mycol 2:30–35. https://doi.org/10.18869/acadpub.cmm.2.1.30. (PMID: 10.18869/acadpub.cmm.2.1.30286810105490295)
Hesami S, Safi S, Larijani K, Badi HN, Abdossi V, Hadidi M (2022) Synthesis and characterization of chitosan nanoparticles loaded with greater celandine (Chelidonium majus L) essential oil as an anticancer agent on MCF-7 cell line. Int J Biol Macromol 194:974–981. https://doi.org/10.1016/j.ijbiomac.2021.11.155. (PMID: 10.1016/j.ijbiomac.2021.11.15534856216)
Long PL, Rowell JG (1958) Counting oocysts of chicken coccidia. Lab Pract 7:515–519.
Long PL, Joyner LP, Millard BJ, Norton CC (1976) A guide to laboratory techniques used in the study and diagnosis of avian coccidiosis. Folia Vet Lat 6:201–217. (PMID: 1010500)
Conway DP, McKenzie ME (2007) Poultry coccidiosis and effect of coccidiosis diagnostic and testing procedures. 3rd edn. Blackwell Publishing Ames IA.
Güven EA, BBeckstead R, Kar S, Vatansever Z, Karaer Z (2013) Molecular identification of Eimeria species of broiler chickens in Turkey. Ank Univ Vet Fak Derg 60(4):245–250. https://doi.org/10.1501/vetfak_0000002587. (PMID: 10.1501/vetfak_0000002587)
Lee H, Hong S, Chung Y, Kim O (2011) Sensitive and specific identification by polymerase chain reaction of Eimeria tenella and Eimeria maxima, important protozoan pathogens in laboratory avian facilities. Lab Anim Res 27(3):255. https://doi.org/10.5625/lar.2011.27.3.255. (PMID: 10.5625/lar.2011.27.3.255219986163188734)
Györke A, Pop LM, Cozma V (2013) Prevalence and distribution of Eimeria species in broiler chicken farms of different capacities. Parasite 20:50. https://doi.org/10.1051/parasite/2013052. (PMID: 10.1051/parasite/2013052243090073852269)
Koinarski V, Georgieva N, Gadjeva V, Petkov P (2005) Antioxidant status of broiler chickens, infected with Eimeria acervulina. Revue De Medecine Veterinaire 156(10):498–502.
Fahmy A, Fahmy ZH, Aly E, Elshenawy A, Wakil EE (2021) Therapeutic potential of Commiphora molmol extract loaded on chitosan nanofibers against experimental cryptosporidiosis. Parasitol United J 14(1):39–45. https://doi.org/10.21608/puj.2021.55537.1102. (PMID: 10.21608/puj.2021.55537.1102)
Bancroft JD, Cook HC (1994) Manual of histological techniques and their diagnostic application (p. 53). Churchill Livingstone.
Kim WH, Jeong J, Park AR, Yim D, Kim YJ, Kim KS, Chang H, Lillehoj HS, Lee B, Min W (2012) Chicken IL-17F: Identification and comparative expression analysis in Eimeria-infected chickens. Dev Comp Immunol 38(3):401–409. https://doi.org/10.1016/j.dci.2012.08.002. (PMID: 10.1016/j.dci.2012.08.00222922588)
Liu J, Liu L, Li L, Tian D, Li W, Xu LC, Yan R, Li X, Song X (2018) Protective immunity induced by Eimeria common antigen 14–3–3 against Eimeria tenella, Eimeria acervulina and Eimeria maxima. BMC Vet Res. https://doi.org/10.1186/s12917-018-1665-z. (PMID: 10.1186/s12917-018-1665-z305635116299661)
Antiabong JF, Ngoepe MG, Abechi AS (2016) Semiquantitative digital analysis of polymerase chain reaction-electrophoresis gel: potential applications in low-income veterinary laboratories. Vet World 9(9):935–939. https://doi.org/10.14202/vetworld.2016.935-939. (PMID: 10.14202/vetworld.2016.935-939277337925057030)
Lee BH, Kim WH, Jeong J, Yoo J, Kwon YK, Jung BY, Kwon JH, Lillehoj HS, Min W (2010) Prevalence and cross-immunity of Eimeria species on Korean chicken farms. J Vet Med Sci 72:985–989. (PMID: 10.1292/jvms.09-051720234110)
Moraes JC, França M, Sartor AA, Bellato V, Moura AB, Magalhães MLB, Souza AP, Miletti LC (2015) Prevalence of Eimeria spp in broilers by multiplex PCR in the southern region of Brazil on two hundred and fifty farms. Avian Dis 59(2):277–281. https://doi.org/10.1637/10989-112014-Reg. (PMID: 10.1637/10989-112014-Reg26473679)
Lan LH, Sun BB, Zuo BXZ, Chen XQ, Du AF (2017) Prevalence and drug resistance of avian Eimeria species in broiler chicken farms of Zhejiang province. China Poult Sci 96(7):2104–2109. https://doi.org/10.3382/ps/pew499. (PMID: 10.3382/ps/pew49928339722)
Kumar S, Garg R, Moftah A, Clark EL, MacDonald S, Chaudhry AS, Sparagano O, Banerjee PP, Kundu K, Tomley FM, Blake DP (2014) An optimised protocol for molecular identification of Eimeria from chickens. Vet Parasitol 199(1–2):24–31. https://doi.org/10.1016/j.vetpar.2013.09.026. (PMID: 10.1016/j.vetpar.2013.09.026241387243858809)
Tang X, Huang G, Liu X, El-Ashram S, Tao G, Lu C, Suo J, Suo X (2018) An optimized DNA extraction method for molecular identification of coccidian species. Parasitol Res 117(3):655–664. https://doi.org/10.1007/s00436-017-5683-8. (PMID: 10.1007/s00436-017-5683-829396674)
You M (2014) Detection of four important Eimeria species by multiplex PCR in a single assay. Parasitol Int 63(3):527–532. https://doi.org/10.1016/j.parint.2014.01.006. (PMID: 10.1016/j.parint.2014.01.00624495953)
Jones KS, Garcia GW (2023) Teaching of veterinary parasitology to University students in Trinidad, West Indies; are our local wildlife species neglected? Braz J Biol 83:110. https://doi.org/10.1590/1519-6984.248493. (PMID: 10.1590/1519-6984.248493)
Qaid MM, Mansour L, Al-Garadi MA, Alqhtani AH, Al-Abdullatif A, Qasem MA, Murshed M (2022) Evaluation of the anticoccidial effect of traditional medicinal plants, Cinnamomum verum bark and Rumex nervosus leaves in experimentally infected broiler chickens with Eimeria tenella. Ital J Anim Sci 21(1):408–421. https://doi.org/10.1080/1828051x.2022.2033139. (PMID: 10.1080/1828051x.2022.2033139)
Qaid MM, Al-Mufarrej SI, Azzam MMM, Al-Garadi MA (2021) Anticoccidial effectivity of a traditional medicinal plant, Cinnamomum verum, in broiler chickens infected with Eimeria tenella. Poult Sci 100(3):100902. https://doi.org/10.1016/j.psj.2020.11.071. (PMID: 10.1016/j.psj.2020.11.07133518353)
Shetshak MA, Suleiman MM, Jatau ID, Ameh MP, Akefe IO (2021) Anticoccidial efficacy of Garcinia kola (Heckel H.) against experimental Eimeria tenella infection in chicks. J Parasit Dis 45(4):1034–1048. https://doi.org/10.1007/s12639-021-01389-8. (PMID: 10.1007/s12639-021-01389-8347899878556448)
Bumstead N, Millard BJ (1992) Variation in susceptibility of inbred lines of chickens to seven species of Eimeria. Parasitology 104:407–413. https://doi.org/10.1017/s0031182000063654. (PMID: 10.1017/s00311820000636541386419)
Wondimu A, Mesfin E, Bayu Y (2019) Prevalence of poultry coccidiosis and associated risk factors in intensive farming system of Gondar Town, Ethiopia. Vety Med Int 2019:1–6. https://doi.org/10.1155/2019/5748690. (PMID: 10.1155/2019/5748690)
Abdel-Latif M, Abdel-Haleem HM, Abdel-Baki AS (2016) Anticoccidial activities of Chitosan on Eimeria papillata-infected mice. Parasitol Res 115(7):2845–2852. https://doi.org/10.1007/s00436-016-5035-0. (PMID: 10.1007/s00436-016-5035-027041340)
Nooreh Z, Taherpour K, Ghasemi HA, Gharaei MA, Shirzadi H (2021) Protective and immunostimulatory effects of in-feed preparations of an anticoccidial, a probiotic, a vitamin-selenium complex, and Ferulago angulata extract in broiler chickens infected with Eimeria species. BMC Vet Res 17(1):307. https://doi.org/10.1186/s12917-021-03005-6. (PMID: 10.1186/s12917-021-03005-6345260188442408)
Mikail HG, Abubakar IA, Mohammed BR, Yusuf M, Hussain G, Fatihu MY (2019) Effects of methanolic leaf extract of Lannea schimperi on some organs histopathology in experimentally induced coccidiosis in broiler chickens. J Vet Sci Anim Husb 6(6):602.
Stanley D, Hughes RM, Moore RB (2014) Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol 98(10):4301–4310. https://doi.org/10.1007/s00253-014-5646-2. (PMID: 10.1007/s00253-014-5646-224643736)
Huang G, Tang X, Feifei B, Zhenkai H, Han Z, Suo J, Zhang S, Wang S, Duan C, Yu Z, Yu F, Yu Y, Lv Y, Suo X, Liu X (2018) Eimeria tenella infection perturbs the chicken gut microbiota from the onset of oocyst shedding. Vet Parasitol 258:30–37. https://doi.org/10.1016/j.vetpar.2018.06.005. (PMID: 10.1016/j.vetpar.2018.06.00530105975)
Zhou BH, Jia LS, Wei SS, Ding HY, Yang JY, Wang HW (2020) Effects of Eimeria tenella infection on the barrier damage and microbiota diversity of chicken cecum. Poult Sci 99(3):1297–1305. https://doi.org/10.1016/j.psj.2019.10.073. (PMID: 10.1016/j.psj.2019.10.073321113067587721)
Abdul-Wasae A, Mohamed BA (2017) A preliminary study on possible effect of Plectranthus spp extract on histopathology and performance of broilers chicken infected by Eimeria tenella in Taiz city, Yemen. Egypt Poult Sci J 37(3):761–777. https://doi.org/10.21608/epsj.2017.7575. (PMID: 10.21608/epsj.2017.7575)
Abd-Elrahman S, Mohamed SA, Mohamed SS, El-Khadragy MF, Dyab AK, Hamad N, Safwat MM, AaE N, AaM A, Gareh A, Elmahallawy EK (2022) Comparative effect of Allicin and alcoholic garlic extract on the morphology and infectivity of Eimeria tenella oocysts in chickens. Animals 12(22):3185. https://doi.org/10.3390/ani12223185. (PMID: 10.3390/ani12223185364284129686627)
El-Shall NA, Abd El-Hack ME, Albaqami NM, Khafaga AF, Taha AE, Swelum AA, El-Saadony MT, Salem HM, El-Tahan AM, AbuQamar SF, El-Tarabily KA, Elbestawy AR (2022) Phytochemical control of poultry coccidiosis: a review. Poult Sci 101(1):101542. https://doi.org/10.1016/j.psj.2021.101542. (PMID: 10.1016/j.psj.2021.10154234871985)
Akefe IO, Ayo JO, Sinkalu VO (2020) Kaempferol and zinc gluconate mitigate neurobehavioral deficits and oxidative stress induced by noise exposure in Wistar rats. PLoS ONE 15(7):e0236251. https://doi.org/10.1371/journal.pone.0236251. (PMID: 10.1371/journal.pone.0236251326927547373279)
Sasaki K, Omri AE, Kondo S, Han J, Isoda H (2013) Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res 238:86–94. https://doi.org/10.1016/j.bbr.2012.10.010. (PMID: 10.1016/j.bbr.2012.10.01023085339)
Zaki MA, Salem MES, Gaber MM, Nour AM (2015) Effect of chitosan supplemented diet on survival, growth, feed utilization, body composition & histology of sea bass (Dicentrarchus labrax). World J Eng Technol 03(04):38–47. https://doi.org/10.4236/wjet.2015.34c005. (PMID: 10.4236/wjet.2015.34c005)
Najafabad MK, Imanpoor MR, Taghizadeh V, Alishahi A (2016) Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. Fish Physiol Biochem 42(4):1063–1071. https://doi.org/10.1007/s10695-016-0197-3. (PMID: 10.1007/s10695-016-0197-3)
Kim WH, Chaudhari AA, Lillehoj HS (2019) Involvement of T cell immunity in avian coccidiosis. Front Immunol 10:2732. https://doi.org/10.3389/fimmu.2019.02732. (PMID: 10.3389/fimmu.2019.02732318245096886378)
Lillehoj HS (1994) Analysis of Eimeria acervulina-induced changes in the intestinal T lymphocyte subpopulations in two chicken strains showing different levels of susceptibility to coccidiosis. Res Vet Sci 56(1):1–7. https://doi.org/10.1016/0034-5288(94)90188-0. (PMID: 10.1016/0034-5288(94)90188-07908452)
Bremner A, Kim DY, Morris KM, Nolan MF, Borowska D, Wu Z, Tomley FM, Blake DP, Hawken R, Kaiser PK, Vervelde L (2021) Kinetics of the cellular and transcriptomic response to Eimeria maxima in relatively resistant and susceptible chicken lines. Front Immunol 12:653085. https://doi.org/10.3389/fimmu.2021.653085. (PMID: 10.3389/fimmu.2021.653085338414368027475)
Vervelde L, Vermeulen AN, Jeurissen SH (1996) In situ characterization of leucocyte subpopulations after infection with Eimeria tenella in chickens. Parasite Immunol 18(5):247–256. https://doi.org/10.1046/j.1365-3024.1996.d01-94.x. (PMID: 10.1046/j.1365-3024.1996.d01-94.x9229377)
Choi KD, Lillehoj HS, Zalenga DS (1999) Changes in local IFN-gamma and TGFbeta4 mRNA expression and intraepithelial lymphocytes following Eimeria acervulina infection. Vet Immunol Immunopathol 71:263–275. https://doi.org/10.1016/s0165-2427(99)00103-8. (PMID: 10.1016/s0165-2427(99)00103-810587306)
Walston MWS, Shanmugasundaram R, Selvaraj RK (2016) Effect of infection with mixed Eimeria species on T cells and T regulatory cell properties. J Appl Poult Res 25(3):407–413. https://doi.org/10.3382/japr/pfw026. (PMID: 10.3382/japr/pfw026)
Trout JM, Lillehoj HS (1995) Eimeria acervulina infection: evidence for the involvement of CD8+ T lymphocytes in sporozoite transport and host protection. Poult Sci 74(7):1117–1125. https://doi.org/10.3382/ps.0741117. (PMID: 10.3382/ps.07411177479488)
Wang D, Zhou L, Li W, Zhou H, Hou G (2016) Anticoccidial effect of Piper sarmentosum extracts in experimental coccidiosis in broiler chickens. Trop Anim Health Prod 48(5):1071–1078. https://doi.org/10.1007/s11250-016-1034-5. (PMID: 10.1007/s11250-016-1034-526984597)
Riddell NE (2020) Immune responses: primary and secondary. Encycl Life Sci 1(2):316–326. https://doi.org/10.1002/9780470015902.a0029196. (PMID: 10.1002/9780470015902.a0029196)
Hong YH, Lillehoj HS, Lee SK, Dalloul RA, Lillehoj EP (2006) Analysis of chicken cytokine and chemokine gene expression following Eimeria acervulina and Eimeria tenella infections. Vet Immunol Immunopathol 114(3–4):209–223. https://doi.org/10.1016/j.vetimm.2006.07.007. (PMID: 10.1016/j.vetimm.2006.07.00716996141)
Qasem MA, Dkhil MA, Al-Shaebi EM, Murshed M, Mares MM, Al-Quraishy S (2020) Rumex nervosus leaf extracts enhance the regulation of goblet cells and the inflammatory response during infection of chickens with Eimeria tenella. J King Saud Univ Sci 32(3):1818–1823. https://doi.org/10.1016/j.jksus.2020.01.024. (PMID: 10.1016/j.jksus.2020.01.024)
Yun CW, Lillehoj HS, Choi KY (2000) Eimeria tenella infection induces local gamma interferon production and intestinal lymphocyte subpopulation changes. Infect Immun 68(3):1282–1288. https://doi.org/10.1128/iai.68.3.1282-1288.2000. (PMID: 10.1128/iai.68.3.1282-1288.20001067893997280)
Laurent F, Mancassola R, Lacroix S, Menezes R, Naciri M (2001) Analysis of chicken mucosal immune response to Eimeria tenella and Eimeria maxima infection by quantitative reverse transcription-PCR. Infect Immun 69(4):2527–2534. https://doi.org/10.1128/iai.69.4.2527-2534.2001. (PMID: 10.1128/iai.69.4.2527-2534.20011125461698188)
Dkhil MA, Metwaly MS, Al-Quraishy S, Sherif NE, Delic D, Omar SYA, Wunderlich F (2015) Anti-Eimeria activity of berberine and identification of associated gene expression changes in the mouse jejunum infected with Eimeria papillata. Parasitol Res 114(4):1581–1593. https://doi.org/10.1007/s00436-015-4344-z. (PMID: 10.1007/s00436-015-4344-z25663104)
Alkhudhayri AA, Dkhil MA, Al-Quraishy S (2018) Nanoselenium prevents eimeriosis-induced inflammation and regulates mucin gene expression in mice jejunum. Int J Nanomed 13:1993–2003. https://doi.org/10.2147/ijn.s162355. (PMID: 10.2147/ijn.s162355)
Moraes PO, Andretta I, Cardinal KM, Ceron M, Vilella L, Borille R, Frazzon APG, Frazzon J, Santin E, Ribeiro A (2019) Effect of functional oils on the immune response of broilers challenged with Eimeria spp. Animal 13(10):2190–2198. https://doi.org/10.1017/s1751731119000600. (PMID: 10.1017/s175173111900060030955505)
Abdelhady AY, El-Safty SA, Hashim MA, Ibrahim MA, Mohammed FF, Elbaz AM, Abdel-Moneim AE (2021) Comparative evaluation of single or combined anticoccidials on performance, antioxidant status, immune response, and intestinal architecture of broiler chickens challenged with mixed Eimeria species. Poult Sci 100(6):101162. https://doi.org/10.1016/j.psj.2021.101162. (PMID: 10.1016/j.psj.2021.101162339750348122173)
Hong YH, Lillehoj HS, Lillehoj EP, Lee SK (2006) Changes in immune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infection of chickens. Vet Immunol Immunopathol 114(3–4):259–272. https://doi.org/10.1016/j.vetimm.2006.08.006. (PMID: 10.1016/j.vetimm.2006.08.00617045659)
Lee SK, Lillehoj HS, Jang SS, Herschorn S, Bravo D, Lillehoj EP (2011) Effects of dietary supplementation with phytonutrients on vaccine-stimulated immunity against infection with Eimeria tenella. Vet Parasitol 181(2–4):97–105. https://doi.org/10.1016/j.vetpar.2011.05.003. (PMID: 10.1016/j.vetpar.2011.05.00321676547)
Al-Quraishy S, Delic D, Sies H, Wunderlich F, Abdel-Baki AS, Dkhil MA (2011) Differential miRNA expression in the mouse jejunum during garlic treatment of Eimeria papillata infections. Parasitol Res 109(2):387–394. https://doi.org/10.1007/s00436-011-2266-y. (PMID: 10.1007/s00436-011-2266-y21301871)
Swaggerty CL, Kogut MH, Ferro PJ, Rothwell L, Pevzner IY, Kaiser PK (2004) Differential cytokine mRNA expression in heterophils isolated from Salmonella-resistant and -susceptible chickens. Immunology 113(1):139–148. https://doi.org/10.1111/j.1365-2567.2004.01939.x. (PMID: 10.1111/j.1365-2567.2004.01939.x153121451782542)
Lynagh GR, Bailey M, Kaiser PK (2000) Interleukin-6 is produced during both murine and avian Eimeria infections. Vet Immunol Immunopathol 76(1–2):89–102. https://doi.org/10.1016/s0165-2427(00)00203-8. (PMID: 10.1016/s0165-2427(00)00203-810973688)
Lillehoj HS, Kim D, Bravo D, Lee SK (2011) Effects of dietary plant-derived phytonutrients on the genome-wide profiles and coccidiosis resistance in the broiler chickens. BMC Proc. https://doi.org/10.1186/1753-6561-5-s4-s34. (PMID: 10.1186/1753-6561-5-s4-s34216453153108230)
Amer O, Dkhil MA, Hikal WM, Al-Quraishy S (2015) Antioxidant and anti-inflammatory activities of pomegranate (Punica granatum) on Eimeria papillata-INDUCED INFECTION IN MICE. Biomed Res Int 2015:1–7. https://doi.org/10.1155/2015/219670. (PMID: 10.1155/2015/219670)
Moore KN, Malefyt RDW, Coffman RL, O’Garra A (2001) Interleukin-10 and the Interleukin-10 receptor. Annu Rev Immunol 19(1):683–765. https://doi.org/10.1146/annurev.immunol.19.1.683. (PMID: 10.1146/annurev.immunol.19.1.68311244051)
Kim D, Lillehoj HS, Lee SK, Lillehoj EP, Bravo D (2013) Improved resistance to Eimeria acervulina infection in chickens due to dietary supplementation with garlic metabolites. Br J Nutr 109(1):76–88. https://doi.org/10.1017/s0007114512000530. (PMID: 10.1017/s000711451200053022717023)
Arendt MK, Elissa J, Schmidt N, Michael E, Potter N, Cook MJ, Knoll LJ (2019) Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens. Vet Immunol Immunopathol 218:109934. https://doi.org/10.1016/j.vetimm.2019.109934. (PMID: 10.1016/j.vetimm.2019.109934315208706861699)
De Waal MR, Haanen J, Spits H, Roncarolo MG, AaT V, Figdor C, Johnson KW, Kastelein RA, Yssel H, De Vries JE (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174(4):915–924. https://doi.org/10.1084/jem.174.4.915. (PMID: 10.1084/jem.174.4.915)
Groux H, Powrie F (1999) Regulatory T cells and inflammatory bowel disease. Immunol Today 20(10):442–445. https://doi.org/10.1016/s0167-5699(99)01510-8. (PMID: 10.1016/s0167-5699(99)01510-810500290)
Cyktor JC, Turner J (2011) Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun 79(8):2964–2973. https://doi.org/10.1128/iai.00047-11. (PMID: 10.1128/iai.00047-11215763313147550)
Kim D, Lillehoj HS, Lee SK, Jang S, Park MS, Min W, Lillehoj EP, Bravo D (2013) Immune effects of dietary anethole on Eimeria acervulina infection. Poult Sci 92(10):2625–2634. https://doi.org/10.3382/ps.2013-03092. (PMID: 10.3382/ps.2013-0309224046409)
Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777. https://doi.org/10.4049/jimmunol.180.9.5771. (PMID: 10.4049/jimmunol.180.9.577118424693)
Wigley PG, Kaiser PK (2003) Avian cytokines in health and disease. Braz J Poult Sci 5(1):1–14. https://doi.org/10.1590/s1516-635x2003000100001. (PMID: 10.1590/s1516-635x2003000100001)
Jin H, Haicheng Y, Caiyun Z, Yong Z, Jinrong W (2020) The expression of NF-kB signaling pathway was inhibited by silencing TGF-b4 in CHICKEN IECs infected with E. tenella. Braz J Poult Sci 22(4):1–8. https://doi.org/10.1590/1806-9061-2020-1338. (PMID: 10.1590/1806-9061-2020-1338)
Jakowlew SB, Mathias A, Lillehoj HS (1997) Transforming growth factor-β isoforms in the developing chicken intestine and spleen: increase in transforming growth factor-β4 with coccidia infection. Vet Immunol Immunopathol 55(4):321–339. https://doi.org/10.1016/s0165-2427(96)05628-0. (PMID: 10.1016/s0165-2427(96)05628-09151404)
Song H, Song X, Xu LC, Yan R, Shah MR, Li X (2010) Changes of cytokines and IgG antibody in chickens vaccinated with DNA vaccines encoding Eimeria acervulina lactate dehydrogenase. Vet Parasitol 173(3–4):219–227. https://doi.org/10.1016/j.vetpar.2010.06.030. (PMID: 10.1016/j.vetpar.2010.06.03020650568)
Karaffová V, Bobíková K, Husáková E, Levkut M, Herich R, Revajová V, Levkutová M, Levkut M (2015) Interaction of TGF-β4 and IL-17 with IgA secretion in the intestine of chickens fed with E. faecium AL41 and challenged with S. enteritidis. Res Vet Sci 100:75–79. https://doi.org/10.1016/j.rvsc.2015.04.005. (PMID: 10.1016/j.rvsc.2015.04.00525935756)
Huang J, Yin H, Zhang Y, Qiao H, Su LJ, Wang J (2022) Expression of TGF-β/Smads in cecum and spleen of chicken infected with E. tenella. Braz J Poult Sci. https://doi.org/10.1590/1806-9061-2021-1446. (PMID: 10.1590/1806-9061-2021-1446)
Lillehoj HS (1998) Role of T lymphocytes and cytokines in coccidiosis. Int J Parasitol 28(7):1071–1081. https://doi.org/10.1016/s0020-7519(98)00075-7. (PMID: 10.1016/s0020-7519(98)00075-79724878)
Inagaki-Ohara K, Dewi FNA, Hisaeda H, Smith A, Jimi F, Miyahira M, Abdel-Aleem ASF, Horii Y, Nawa Y (2006) Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun 74(9):5292–5301. https://doi.org/10.1128/iai.02024-05. (PMID: 10.1128/iai.02024-05169264231594832)
Kim MS, You HJ, You MK, Kim NS, Shim BS, Kim HM (2004) Inhibitory effect of water-soluble chitosan on TNF-alpha and IL-8 secretion from HMC-1 cells. Immunopharmacol Immunotoxicol 26(3):401–409. https://doi.org/10.1081/iph-200026887. (PMID: 10.1081/iph-20002688715518173)
Gordillo Jaramillo FX, Kim DH, Lee SH, Kwon S-K, Jha R, Lee K-W (2021) Role of oregano and Citrus species-based essential oil preparation for the control of coccidiosis in broiler chickens. J Animal Sci Biotechnol 12:47. https://doi.org/10.1186/s40104-021-00569-z. (PMID: 10.1186/s40104-021-00569-z)
فهرسة مساهمة: Keywords: Eimeria tenella oocyst; Rosmarinus officinalis extract; Chitosan nanoparticles; Cytokines; Gene expression
المشرفين على المادة: 0 (Plant Extracts)
9012-76-4 (Chitosan)
0 (Cytokines)
تواريخ الأحداث: Date Created: 20240316 Date Completed: 20240430 Latest Revision: 20240430
رمز التحديث: 20240430
مُعرف محوري في PubMed: PMC11001757
DOI: 10.1007/s11686-024-00793-3
PMID: 38492183
قاعدة البيانات: MEDLINE
الوصف
تدمد:1896-1851
DOI:10.1007/s11686-024-00793-3