دورية أكاديمية

Human lung cancer harbors spatially organized stem-immunity hubs associated with response to immunotherapy.

التفاصيل البيبلوغرافية
العنوان: Human lung cancer harbors spatially organized stem-immunity hubs associated with response to immunotherapy.
المؤلفون: Chen JH; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA. jhchen@broadinstitute.org.; Department of Pathology, MGH, Boston, MA, USA. jhchen@broadinstitute.org.; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA. jhchen@broadinstitute.org.; Harvard Medical School, Boston, MA, USA. jhchen@broadinstitute.org., Nieman LT; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.; Harvard Medical School, Boston, MA, USA., Spurrell M; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.; Department of Pathology, MGH, Boston, MA, USA.; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Jorgji V; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.; Department of Pathology, MGH, Boston, MA, USA.; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Elmelech L; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.; Department of Pathology, MGH, Boston, MA, USA.; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Richieri P; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA., Xu KH; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA., Madhu R; Harvard Medical School, Boston, MA, USA.; Brigham and Women's Hospital, Division of Genetics, Boston, MA, USA., Parikh M; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Zamora I; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Mehta A; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Harvard Medical School, Boston, MA, USA., Nabel CS; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.; Harvard Medical School, Boston, MA, USA.; Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA., Freeman SS; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Harvard Medical School, Boston, MA, USA., Pirl JD; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA., Lu C; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA., Meador CB; Harvard Medical School, Boston, MA, USA.; Department of Medicine, Division of Hematology/Oncology, MGH, HMS, Boston, MA, USA., Barth JL; Department of Pathology, MGH, Boston, MA, USA., Sakhi M; Center for Thoracic Cancers, MGH, Boston, MA, USA., Tang AL; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Sarkizova S; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Price C; Vizgen, Cambridge, MA, USA., Fernandez NF; Vizgen, Cambridge, MA, USA., Emanuel G; Vizgen, Cambridge, MA, USA., He J; Vizgen, Cambridge, MA, USA., Van Raay K; NanoString Technologies, Seattle, WA, USA., Reeves JW; NanoString Technologies, Seattle, WA, USA., Yizhak K; Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel., Hofree M; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.; Lautenberg Center for Immunology and Cancer Research, The Hebrew University of Jerusalem, Jerusalem, Israel., Shih A; Department of Pathology, MGH, Boston, MA, USA.; Harvard Medical School, Boston, MA, USA., Sade-Feldman M; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Harvard Medical School, Boston, MA, USA.; Department of Medicine, Harvard Medical School, Boston, MA, USA., Boland GM; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Harvard Medical School, Boston, MA, USA.; Department of Surgery, MGH, Boston, MA, USA., Pelka K; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Gladstone-UCSF Institute of Genomic Immunology, Gladstone Institutes, San Francisco, CA, USA., Aryee MJ; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Harvard Medical School, Boston, MA, USA.; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA., Mino-Kenudson M; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.; Department of Pathology, MGH, Boston, MA, USA.; Harvard Medical School, Boston, MA, USA., Gainor JF; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA. jgainor@mgh.harvard.edu.; Harvard Medical School, Boston, MA, USA. jgainor@mgh.harvard.edu.; Center for Thoracic Cancers, MGH, Boston, MA, USA. jgainor@mgh.harvard.edu., Korsunsky I; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA. ikorsunsky@bwh.harvard.edu.; Harvard Medical School, Boston, MA, USA. ikorsunsky@bwh.harvard.edu.; Brigham and Women's Hospital, Division of Genetics, Boston, MA, USA. ikorsunsky@bwh.harvard.edu., Hacohen N; Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA. nhacohen@mgh.harvard.edu.; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA. nhacohen@mgh.harvard.edu.; Harvard Medical School, Boston, MA, USA. nhacohen@mgh.harvard.edu.
المصدر: Nature immunology [Nat Immunol] 2024 Apr; Vol. 25 (4), pp. 644-658. Date of Electronic Publication: 2024 Mar 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature America Inc Country of Publication: United States NLM ID: 100941354 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-2916 (Electronic) Linking ISSN: 15292908 NLM ISO Abbreviation: Nat Immunol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature America Inc. c2000-
مواضيع طبية MeSH: Lung Neoplasms*, Humans ; CD8-Positive T-Lymphocytes ; Programmed Cell Death 1 Receptor ; Chemokines/metabolism ; Immunotherapy/methods ; Tumor Microenvironment
مستخلص: The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens and found an association with beneficial response to PD-1 blockade. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcome. This hub is distinct from mature tertiary lymphoid structures and is enriched for stem-like TCF7 + PD-1 + CD8 + T cells, activated CCR7 + LAMP3 + dendritic cells and CCL19 + fibroblasts as well as chemokines that organize these cells. Within the stem-immunity hub, we find preferential interactions between CXCL10 + macrophages and TCF7 - CD8 + T cells as well as between mature regulatory dendritic cells and TCF7 + CD4 + and regulatory T cells. These results provide a picture of the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.
(© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
التعليقات: Update of: bioRxiv. 2023 Apr 06;:. (PMID: 37066412)
References: Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015). (PMID: 26028255448113610.1056/NEJMoa1500596)
Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752 (2021). (PMID: 34450029877239510.1016/j.cell.2021.08.003)
Mihm, M. C. Jr. & Mulé, J. J. Reflections on the histopathology of tumor-infiltrating lymphocytes in melanoma and the host immune response. Cancer Immunol. Res. 3, 827–835 (2015). (PMID: 26242760452708410.1158/2326-6066.CIR-15-0143)
Angell, H. K., Bruni, D., Barrett, J. C., Herbst, R. & Galon, J. The immunoscore: colon cancer and beyond. Clin. Cancer Res. 26, 332–339 (2020). (PMID: 3141300910.1158/1078-0432.CCR-18-1851)
Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1 + CD8 + T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018). (PMID: 29892065611038110.1038/s41591-018-0057-z)
Moldoveanu, D. et al. Spatially mapping the immune landscape of melanoma using imaging mass cytometry. Sci. Immunol. 7, eabi5072 (2022). (PMID: 3536354310.1126/sciimmunol.abi5072)
Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614 (2021). (PMID: 33508232793382410.1016/j.cell.2021.01.002)
Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018). (PMID: 30309915671816210.1126/science.aar3593)
Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017). (PMID: 28650338553141910.1172/JCI91190)
Reschke, R. et al. Immune cell and tumor cell-derived CXCL10 is indicative of immunotherapy response in metastatic melanoma. J. Immunother. Cancer 9, e003521 (2021). (PMID: 34593622848721510.1136/jitc-2021-003521)
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018). (PMID: 30388456664198410.1016/j.cell.2018.10.038)
Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020). (PMID: 33303615888357910.1126/science.abb9847)
Siddiqui, I. et al. Intratumoral Tcf1 + PD-1 + CD8 + T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019). (PMID: 3063523710.1016/j.immuni.2018.12.021)
Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1-CD8 + tumor-infiltrating T cells. Immunity 50, 181–194 (2019). (PMID: 30635236633611310.1016/j.immuni.2018.11.014)
Miller, B. C. et al. Subsets of exhausted CD8 + T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019). (PMID: 30778252667365010.1038/s41590-019-0312-6)
Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016). (PMID: 2771884710.1056/NEJMoa1606774)
Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13 + T cells to immune-checkpoint blockade. Nat. Cancer 3, 1123–1136 (2022). (PMID: 3613813410.1038/s43018-022-00433-7)
Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021). (PMID: 34290408833855510.1038/s41586-021-03752-4)
Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8 + T cells in melanoma. Nature 596, 119–125 (2021). (PMID: 34290406918797410.1038/s41586-021-03704-y)
Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022). (PMID: 35113651899669210.1126/science.abl5447)
Hanada, K.-I. et al. A phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung cancers. Cancer Cell 40, 479–493 (2022). (PMID: 35452604919620510.1016/j.ccell.2022.03.012)
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009). (PMID: 1909777410.1016/j.ejca.2008.10.026)
Groom, J. R. & Luster, A. D. CXCR3 in T cell function. Exp. Cell. Res. 317, 620–631 (2011). (PMID: 21376175306520510.1016/j.yexcr.2010.12.017)
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015). (PMID: 25858977466268110.1126/science.aaa6090)
Wu, T. et al. The TCF1–Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016). (PMID: 28018990517922810.1126/sciimmunol.aai8593)
Im, S. J. et al. Defining CD8 + T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016). (PMID: 27501248529718310.1038/nature19330)
Eberhardt, C. S. et al. Functional HPV-specific PD-1 + stem-like CD8 T cells in head and neck cancer. Nature 597, 279–284 (2021). (PMID: 344712851020134210.1038/s41586-021-03862-z)
Lee, J. et al. IL-15 promotes self-renewal of progenitor exhausted CD8 T cells during persistent antigenic stimulation. Front. Immunol. 14, 1117092 (2023). (PMID: 374091281031905510.3389/fimmu.2023.1117092)
Xue, D. et al. A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors. Sci. Immunol. 7, eabi6899 (2022).
Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020). (PMID: 32269339778719110.1038/s41586-020-2134-y)
Qi, J. et al. Single-cell and spatial analysis reveal interaction of FAP + fibroblasts and SPP1 + macrophages in colorectal cancer. Nat. Commun. 13, 1742 (2022). (PMID: 35365629897607410.1038/s41467-022-29366-6)
Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020). (PMID: 32385277721097510.1038/s41467-020-16164-1)
Song, A., Nikolcheva, T. & Krensky, A. M. Transcriptional regulation of RANTES expression in T lymphocytes. Immunol. Rev. 177, 236–245 (2000). (PMID: 1113878010.1034/j.1600-065X.2000.17610.x)
Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789 (2019). (PMID: 3059545210.1016/j.cell.2018.11.043)
Dubois, S. P., Waldmann, T. A. & Müller, J. R. Survival adjustment of mature dendritic cells by IL-15. Proc. Natl Acad. Sci. USA 102, 8662–8667 (2005). (PMID: 15932944115085210.1073/pnas.0503360102)
Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530 (2021). (PMID: 34343496871945110.1016/j.cell.2021.07.015)
Cohen, M. et al. The interaction of CD4 + helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nat. Cancer 3, 303–317 (2022). (PMID: 3524183510.1038/s43018-022-00338-5)
Rapp, M. et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J. Exp. Med. 216, 1170–1181 (2019). (PMID: 30910796650421810.1084/jem.20170277)
Oh, D. Y. et al. Intratumoral CD4 + T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181, 1612–1625 (2020). (PMID: 32497499732188510.1016/j.cell.2020.05.017)
Lei, X. et al. CD4 + helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment. Nat. Commun. 14, 217 (2023). (PMID: 36639382983967610.1038/s41467-022-35615-5)
House, I. G. et al. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin. Cancer Res. 26, 487–504 (2020). (PMID: 3163609810.1158/1078-0432.CCR-19-1868)
Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512 (2019). (PMID: 31097342652736210.1016/j.immuni.2019.04.010)
Nixon, B. G. et al. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer. Immunity 55, 2044–2058 (2022). (PMID: 36288724964989110.1016/j.immuni.2022.10.002)
Kersten, K. et al. Spatiotemporal co-dependency between macrophages and exhausted CD8 + T cells in cancer. Cancer Cell 40, 624–638 (2022). (PMID: 35623342919796210.1016/j.ccell.2022.05.004)
Cang, Z. et al. Screening cell-cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 20, 218–228 (2023). (PMID: 36690742991135510.1038/s41592-022-01728-4)
Cheng, H.-W. et al. CCL19-producing fibroblastic stromal cells restrain lung carcinoma growth by promoting local antitumor T-cell responses. J. Allergy Clin. Immunol. 142, 1257–1271 (2018). (PMID: 2939125710.1016/j.jaci.2017.12.998)
Peng, Y. et al. Single-cell profiling of tumor-infiltrating TCF1/TCF7 + T cells reveals a T lymphocyte subset associated with tertiary lymphoid structures/organs and a superior prognosis in oral cancer. Oral. Oncol. 119, 105348 (2021). (PMID: 3404431710.1016/j.oraloncology.2021.105348)
Im, S. J. et al. Characteristics and anatomic location of PD-1 + TCF1 + stem-like CD8 T cells in chronic viral infection and cancer. Proc. Natl Acad. Sci. USA 120, e2221985120 (2023). (PMID: 377827971057612210.1073/pnas.2221985120)
Rangel-Moreno, J., Moyron-Quiroz, J. E., Hartson, L., Kusser, K. & Randall, T. D. Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proc. Natl Acad. Sci. USA 104, 10577–10582 (2007). (PMID: 17563386196555510.1073/pnas.0700591104)
Sato, Y. et al. Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney. JCI Insight 1, e87680 (2016). (PMID: 27699223503393810.1172/jci.insight.87680)
Sautès-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019). (PMID: 3109290410.1038/s41568-019-0144-6)
Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022). (PMID: 3499024810.1126/science.abf9419)
Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020). (PMID: 3239391410.1038/s41587-020-0472-9)
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015). (PMID: 26771021470796910.1016/j.cels.2015.12.004)
Wherry, E. J. et al. Molecular signature of CD8 + T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007). (PMID: 1795000310.1016/j.immuni.2007.09.006)
Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022). (PMID: 3536354010.1126/sciimmunol.abk1692)
Schulz, D. et al. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Syst. 6, 25–36 (2018). (PMID: 29289569579165910.1016/j.cels.2017.12.001)
Ardighieri, L. et al. Infiltration by CXCL10 secreting macrophages is associated with antitumor immunity and response to therapy in ovarian cancer subtypes. Front. Immunol. 12, 690201 (2021). (PMID: 34220848825305610.3389/fimmu.2021.690201)
Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019). (PMID: 31645760685857210.1038/s41586-019-1671-8)
Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014). (PMID: 25428505424641810.1038/nature13954)
Ryan, N. et al. STAT1 inhibits T-cell exhaustion and myeloid derived suppressor cell accumulation to promote antitumor immune responses in head and neck squamous cell carcinoma. Int. J. Cancer 146, 1717–1729 (2020). (PMID: 3170952910.1002/ijc.32781)
Meissl, K., Macho-Maschler, S., Müller, M. & Strobl, B. The good and the bad faces of STAT1 in solid tumours. Cytokine 89, 12–20 (2017). (PMID: 2663191210.1016/j.cyto.2015.11.011)
Prokhnevska, N. et al. CD8 + T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56, 107–124 (2023). (PMID: 3658091810.1016/j.immuni.2022.12.002)
Huang, Q. et al. The primordial differentiation of tumor-specific memory CD8 + T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185, 4049–4066 (2022). (PMID: 3620862310.1016/j.cell.2022.09.020)
Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019). (PMID: 31827286710817110.1038/s41586-019-1836-5)
Grant, S. M., Lou, M., Yao, L., Germain, R. N. & Radtke, A. J. The lymph node at a glance–how spatial organization optimizes the immune response. J. Cell Sci. 133, jcs241828 (2020). (PMID: 32144196706383610.1242/jcs.241828)
Duckworth, B. C. & Groom, J. R. Conversations that count: cellular interactions that drive T cell fate. Immunol. Rev. 300, 203–219 (2021). (PMID: 33586207804880510.1111/imr.12945)
Gommerman, J. L. & Browning, J. L. Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat. Rev. Immunol. 3, 642–655 (2003). (PMID: 1297447910.1038/nri1151)
Piao, W. et al. Regulatory T cells condition lymphatic endothelia for enhanced transendothelial migration. Cell Rep. 30, 1052–1062 (2020). (PMID: 31995749700978910.1016/j.celrep.2019.12.083)
Dejardin, E. et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 17, 525–535 (2002). (PMID: 1238774510.1016/S1074-7613(02)00423-5)
Schaeuble, K. et al. Perivascular fibroblasts of the developing spleen act as LTα1β2-dependent precursors of both T and B zone organizer cells. Cell Rep. 21, 2500–2514 (2017). (PMID: 2918668710.1016/j.celrep.2017.10.119)
Bar-Ephraïm, Y. E. & Mebius, R. E. Innate lymphoid cells in secondary lymphoid organs. Immunol. Rev. 271, 185–199 (2016). (PMID: 2708891510.1111/imr.12407)
Magen, A. et al. Intratumoral dendritic cell-CD4 + T helper cell niches enable CD8 + T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat. Med. 29, 1389–1399 (2023). (PMID: 3732211610.1038/s41591-023-02345-0)
Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015). (PMID: 2589117410.1056/NEJMoa1501824)
Filbin, M. R. et al. Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell–cell interactions. Cell Rep. Med. 2, 100287 (2021). (PMID: 33969320809103110.1016/j.xcrm.2021.100287)
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019). (PMID: 30914743643575610.1038/s41598-019-41695-z)
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 16199517123989610.1073/pnas.0506580102)
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021). (PMID: 3331865910.1038/s41592-020-01018-x)
Petukhov, V. et al. Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40, 345–354 (2022). (PMID: 3465026810.1038/s41587-021-01044-w)
Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med. 3, 481–518 (2022). (PMID: 3564941110.1016/j.medj.2022.05.002)
Melville, J. uwot: the uniform manifold approximation and projection (UMAP) method for dimensionality reduction. https://github.com/jlmelville/uwot (2020).
Csardi, G. et al. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
Gelman, A. & Su, Y. -S. arm: data analysis using regression and multilevel/hierarchical models. https://CRAN.R-project.org/package=arm (2020).
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019). (PMID: 31740819688469310.1038/s41592-019-0619-0)
Lee, D. T. & Schachter, B. J. Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9, 219–242 (1980). (PMID: 10.1007/BF00977785)
Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387 (2018). (PMID: 30193111613207210.1016/j.cell.2018.08.039)
المشرفين على المادة: 0 (Programmed Cell Death 1 Receptor)
0 (Chemokines)
تواريخ الأحداث: Date Created: 20240320 Date Completed: 20240411 Latest Revision: 20240513
رمز التحديث: 20240513
DOI: 10.1038/s41590-024-01792-2
PMID: 38503922
قاعدة البيانات: MEDLINE
الوصف
تدمد:1529-2916
DOI:10.1038/s41590-024-01792-2