دورية أكاديمية

Metabotropic Glutamate Receptors Type 3 and 5 Feature the "NeuroTransmitter-type" of Glioblastoma: A Bioinformatic Approach.

التفاصيل البيبلوغرافية
العنوان: Metabotropic Glutamate Receptors Type 3 and 5 Feature the "NeuroTransmitter-type" of Glioblastoma: A Bioinformatic Approach.
المؤلفون: Caridi M; Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy., Alborghetti M; Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy., Pellicelli V; Internal Medicine, Sapienza University of Rome, Rome, Italy., Orlando R; Department of Physiology and Pharmacology, University Sapienza of Roma, Rome, Italy.; IRCCS Neuromed, Pozzilli, Italy., Pontieri FE; Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy.; IRCCS Fondazione Santa Lucia, Rome, Italy., Battaglia G; Department of Physiology and Pharmacology, University Sapienza of Roma, Rome, Italy.; IRCCS Neuromed, Pozzilli, Italy., Arcella A; IRCCS Neuromed, Pozzilli, Italy.
المصدر: Current neuropharmacology [Curr Neuropharmacol] 2024; Vol. 22 (11), pp. 1923-1939.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Bentham Science Publishers Country of Publication: United Arab Emirates NLM ID: 101157239 Publication Model: Print Cited Medium: Internet ISSN: 1875-6190 (Electronic) Linking ISSN: 1570159X NLM ISO Abbreviation: Curr Neuropharmacol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Sharjah, U.A.E. ; San Francisco, CA : Bentham Science Publishers, c2003-
مواضيع طبية MeSH: Glioblastoma*/genetics , Glioblastoma*/metabolism , Receptors, Metabotropic Glutamate*/metabolism , Receptors, Metabotropic Glutamate*/genetics , Computational Biology* , Brain Neoplasms*/genetics , Brain Neoplasms*/metabolism, Humans ; Receptor, Metabotropic Glutamate 5/metabolism ; Neurotransmitter Agents/metabolism
مستخلص: Background: Glioblastoma (GBM) represents an aggressive and common tumor of the central nervous system. The prognosis of GBM is poor, and despite a refined genetic and molecular characterization, pharmacological treatment is largely suboptimal.
Objective: Contribute to defining a therapeutic line in GBM targeting the mGlu3 receptor in line with the principles of precision medicine.
Methods: Here, we performed a computational analysis focused on the expression of type 3 and 5 metabotropic glutamate receptor subtypes (mGlu3 and mGlu5, respectively) in high- and low-grade gliomas.
Results: The analysis allowed the identification of a particular high-grade glioma type, characterized by a high expression level of both receptor subtypes and by other markers of excitatory and inhibitory neurotransmission. This so-called neurotransmitter-GBM (NT-GBM) also shows a distinct immunological, metabolic, and vascularization gene signature.
Conclusion: Our findings might lay the groundwork for a targeted therapy to be specifically applied to this putative novel type of GBM.
(Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
References: Louis D.N.; Perry A.; Reifenberger G.; von Deimling A.; Figarella-Branger D.; Cavenee W.K.; Ohgaki H.; Wiestler O.D.; Kleihues P.; Ellison D.W.; The 2016 world health or-ganization classification of tumors of the central nervous sys-tem: A summary. Acta Neuropathol 2016,131(6),803-820. (PMID: 10.1007/s00401-016-1545-127157931)
de Almeida Sassi F.; Lunardi Brunetto A.; Schwartsmann G.; Roesler R.; Abujamra A.L.; Glioma revisited: From neu-rogenesis and cancer stem cells to the epigenetic regulation of the niche. J Oncol 2012,2012,537861. (PMID: 10.1155/2012/53786122973309)
Prager B.C.; Bhargava S.; Mahadev V.; Hubert C.G.; Rich J.N.; Glioblastoma stem cells: Driving resilience through cha-os. Trends Cancer 2020,6(3),223-235. (PMID: 10.1016/j.trecan.2020.01.00932101725)
van den Bent M.J.; Smits M.; Kros J.M.; Chang S.M.; Dif-fuse infiltrating oligodendroglioma and astrocytoma. J Clin Oncol 2017,35(21),2394-2401. (PMID: 10.1200/JCO.2017.72.673728640702)
Caccese M.; Padovan M.; D’Avella D.; Chioffi F.; Gardiman M.P.; Berti F.; Busato F.; Bellu L.; Bergo E.; Zoccarato M.; Fassan M.; Zagonel V.; Lombardi G.; Ana-plastic Astrocytoma: State of the art and future directions. Crit Rev Oncol Hematol 2020,153,103062. (PMID: 10.1016/j.critrevonc.2020.10306232717623)
Hegi M.E.; Diserens A.C.; Gorlia T.; Hamou M.F.; de Tri-bolet N.; Weller M.; Kros J.M.; Hainfellner J.A.; Mason W.; Mariani L.; Bromberg J.E.C.; Hau P.; Mirimanoff R.O.; Cairncross J.G.; Janzer R.C.; Stupp R.; MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005,352(10),997-1003. (PMID: 10.1056/NEJMoa04333115758010)
Yang K.; Wu Z.; Zhang H.; Zhang N.; Wu W.; Wang Z.; Dai Z.; Zhang X.; Zhang L.; Peng Y.; Ye W.; Zeng W.; Liu Z.; Cheng Q.; Glioma targeted therapy: Insight into future of molecular approaches. Mol Cancer 2022,21(1),39. (PMID: 10.1186/s12943-022-01513-z35135556)
Khasraw M.; Fujita Y.; Lee-Chang C.; Balyasnikova I.V.; Najem H.; Heimberger A.B.; New approaches to glioblasto-ma. Annu Rev Med 2022,73(1),279-292. (PMID: 10.1146/annurev-med-042420-10210234665646)
Julio-Pieper M.; Flor P.J.; Dinan T.G.; Cryan J.F.; Exciting times beyond the brain: Metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol Rev 2011,63(1),35-58. (PMID: 10.1124/pr.110.00403621228260)
Nicoletti F.; Battaglia G.; Storto M.; Ngomba R.T.; Iacovelli L.; Arcella A.; Gradini R.; Sale P.; Rampello L.; De Vita T.; Di Marco R.; Melchiorri D.; Bruno V.; Metabotropic gluta-mate receptors: Beyond the regulation of synaptic transmis-sion. Psychoneuroendocrinology 2007,32(1),S40-S45. (PMID: 10.1016/j.psyneuen.2007.04.01517651904)
Nicoletti F.; Bockaert J.; Collingridge G.L.; Conn P.J.; Fer-raguti F.; Schoepp D.D.; Wroblewski J.T.; Pin J.P.; Metabo-tropic glutamate receptors: From the workbench to the bed-side. Neuropharmacology 2011,60(7-8),1017-1041. (PMID: 10.1016/j.neuropharm.2010.10.02221036182)
Ali S.; Shourideh M.; Koochekpour S.; Identification of novel GRM1 mutations and single nucleotide polymorphisms in prostate cancer cell lines and tissues. PLoS One 2014,9(7),e103204. (PMID: 10.1371/journal.pone.010320425062106)
Banda M.; Speyer C.L.; Semma S.N.; Osuala K.O.; Koun-alakis N.; Torres Torres K.E.; Barnard N.J.; Kim H.J.; Sloane B.F.; Miller F.R.; Goydos J.S.; Gorski D.H.; Metabo-tropic glutamate receptor-1 contributes to progression in triple negative breast cancer. PLoS One 2014,9(1),e81126. (PMID: 10.1371/journal.pone.008112624404125)
Namkoong J.; Shin S.S.; Lee H.J.; Marín Y.E.; Wall B.A.; Goydos J.S.; Chen S.; Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res 2007,67(5),2298-2305. (PMID: 10.1158/0008-5472.CAN-06-366517332361)
Nicoletti F.; Arcella A.; Iacovelli L.; Battaglia G.; Giangas-pero F.; Melchiorri D.; Metabotropic glutamate receptors: New targets for the control of tumor growth? Trends Pharmacol Sci 2007,28(5),206-213. (PMID: 10.1016/j.tips.2007.03.00817433452)
Stepulak A.; Luksch H.; Gebhardt C.; Uckermann O.; Mar-zahn J.; Sifringer M.; Rzeski W.; Staufner C.; Brocke K.S.; Turski L.; Ikonomidou C.; Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol 2009,132(4),435-445. (PMID: 10.1007/s00418-009-0613-119526364)
Iacovelli L.; Orlando R.; Rossi A.; Spinsanti P.; Melchiorri D.; Nicoletti F.; Targeting metabotropic glutamate receptors in the treatment of primary brain tumors. Curr Opin Pharmacol 2018,38,59-64. (PMID: 10.1016/j.coph.2018.02.00529525720)
Albasanz J.L.; Ros M.; Martín M.; Characterization of metabotropic glutamate receptors in rat C6 glioma cells. Eur J Pharmacol 1997,326(1),85-91. (PMID: 10.1016/S0014-2999(97)00154-49178659)
Condorelli D.F.; Dell’Albani P.; Corsaro M.; Giuffrida R.; Caruso A.; A, T.S.; Spinella, F.; Nicoletti, F.; Albanese, V.; Stella, A.M.G. Metabotropic glutamate receptor expression in cultured rat astrocytes and human gliomas. Neurochem Res 1997,22(9),1127-1133. (PMID: 10.1023/A:10273173191669251103)
Corti C.; Clarkson R.W.E.; Crepaldi L.; Sala C.F.; Xuereb J.H.; Ferraguti F.; Gene structure of the human metabotropic glutamate receptor 5 and functional analysis of its multiple promoters in neuroblastoma and astroglioma cells. J Biol Chem 2003,278(35),33105-33119. (PMID: 10.1074/jbc.M21238020012783878)
Aronica E.; Gorter J.A.; Ijlst-Keizers H.; Rozemuller A.J.; Yankaya B.; Leenstra S.; Troost D.; Expression and func-tional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter pro-teins. Eur J Neurosci 2003,17(10),2106-2118. (PMID: 10.1046/j.1460-9568.2003.02657.x12786977)
Arcella A.; Carpinelli G.; Battaglia G.; D’Onofrio M.; Santo-ro F.; Ngomba R.T.; Bruno V.; Casolini P.; Giangaspero F.; Nicoletti F.; Pharmacological blockade of group II metabo-tropic glutamate receptors reduces the growth of glioma cells in vivo. Neuro-oncol 2005,7(3),236-245. (PMID: 10.1215/S115285170400096116053698)
Zhang C.; Yuan X.; Li H.; Zhao Z.; Liao Y.; Wang X.; Su J.; Sang S.; Liu Q.; Anti-cancer effect of metabotropic gluta-mate receptor 1 inhibition in human glioma U87 cells: In-volvement of PI3K/Akt/mTOR pathway. Cell Physiol Biochem 2015,35(2),419-432. (PMID: 10.1159/00036970725613036)
Dalley C.B.; Wroblewska B.; Wolfe B.B.; Wroblewski J.T.; The role of metabotropic glutamate receptor 1 dependent sig-naling in glioma viability. J Pharmacol Exp Ther 2018,367(1),59-70. (PMID: 10.1124/jpet.118.25015930054311)
Pollock P.M.; Cohen-Solal K.; Sood R.; Namkoong J.; Mar-tino J.J.; Koganti A.; Zhu H.; Robbins C.; Makalowska I.; Shin S.S.; Marin Y.; Roberts K.G.; Yudt L.M.; Chen A.; Cheng J.; Incao A.; Pinkett H.W.; Graham C.L.; Dunn K.; Crespo-Carbone S.M.; Mackason K.R.; Ryan K.B.; Sin-simer D.; Goydos J.; Reuhl K.R.; Eckhaus M.; Meltzer P.S.; Pavan W.J.; Trent J.M.; Chen S.; Melanoma mouse model implicates metabotropic glutamate signaling in melano-cytic neoplasia. Nat Genet 2003,34(1),108-112. (PMID: 10.1038/ng114812704387)
Liu B.; Zhao S.; Qi C.; Zhao X.; Liu B.; Hao F.; Zhao Z.; Inhibition of metabotropic glutamate receptor 5 facilitates hy-poxia-induced glioma cell death. Brain Res 2019,1704,241-248. (PMID: 10.1016/j.brainres.2018.10.02130347216)
Reiner A.; Levitz J.; Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron 2018,98(6),1080-1098. (PMID: 10.1016/j.neuron.2018.05.01829953871)
Ciceroni C.; Arcella A.; Mosillo P.; Battaglia G.; Mastranto-ni E.; Oliva M.A.; Carpinelli G.; Santoro F.; Sale P.; Ricci-Vitiani L.; De Maria R.; Pallini R.; Giangaspero F.; Nicoletti F.; Melchiorri D.; Type-3 metabotropic glutamate receptors negatively modulate bone morphogenetic protein receptor sig-naling and support the tumourigenic potential of glioma-initiating cells. Neuropharmacology 2008,55(4),568-576. (PMID: 10.1016/j.neuropharm.2008.06.06418621067)
Ciceroni C.; Bonelli M.; Mastrantoni E.; Niccolini C.; Lau-renza M.; Larocca L.M.; Pallini R.; Traficante A.; Spinsanti P.; Ricci-Vitiani L.; Arcella A.; De Maria R.; Nicoletti F.; Battaglia G.; Melchiorri D.; Type-3 metabotropic glutamate receptors regulate chemoresistance in glioma stem cells, and their levels are inversely related to survival in patients with malignant gliomas. Cell Death Differ 2013,20(3),396-407. (PMID: 10.1038/cdd.2012.15023175182)
Zhou K.; Song Y.; Zhou W.; Zhang C.; Shu H.; Yang H.; Wang B.; mGlu3 receptor blockade inhibits proliferation and promotes astrocytic phenotype in glioma stem cells. Cell Biol Int 2014,38(4),426-434. (PMID: 10.1002/cbin.1020724482010)
Wirsching H.G.; Silginer M.; Ventura E.; Macnair W.; Burghardt I.; Claassen M.; Gatti S.; Wichmann J.; Riemer C.; Schneider H.; Weller M.; Negative allosteric modulators of metabotropic glutamate receptor 3 target the stem-like phe-notype of glioblastoma. Mol Ther Oncolytics 2021,20,166-174. (PMID: 10.1016/j.omto.2020.12.00933575479)
Maier J.P.; Ravi V.M.; Kueckelhaus J.; Behringer S.P.; Garrelfs N.; Will P.; Sun N.; von Ehr J.; Goeldner J.M.; Pfeifer D.; Follo M.; Hannibal L.; Walch A.K.; Hofmann U.G.; Beck J.; Heiland D.H.; Schnell O.; Joseph K.; Inhibi-tion of metabotropic glutamate receptor III facilitates sensiti-zation to alkylating chemotherapeutics in glioblastoma. Cell Death Dis 2021,12(8),723. (PMID: 10.1038/s41419-021-03937-934290229)
Jantas D.; Grygier B.; Gołda S.; Chwastek J.; Zatorska J.; Tertil M.; An endogenous and ectopic expression of metabo-tropic glutamate receptor 8 (mGluR8) inhibits proliferation and increases chemosensitivity of human neuroblastoma and glioma cells. Cancer Lett 2018,432,1-16. (PMID: 10.1016/j.canlet.2018.06.00429885518)
Di Menna L.; Joffe M.E.; Iacovelli L.; Orlando R.; Lindsley C.W.; Mairesse J.; Gressèns P.; Cannella M.; Car-aci F.; Copani A.; Bruno V.; Battaglia G.; Conn P.J.; Ni-coletti F.; Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous sys-tem. Neuropharmacology 2018,128,301-313. (PMID: 10.1016/j.neuropharm.2017.10.02629079293)
Grzmil M.; Morin P.; Lino M.M.; Merlo A.; Frank S.; Wang Y.; Moncayo G.; Hemmings B.A.; MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-β sig-naling pathway in human glioblastoma. Cancer Res 2011,71(6),2392-2402. (PMID: 10.1158/0008-5472.CAN-10-311221406405)
Schulte A.; Günther H.S.; Phillips H.S.; Kemming D.; Mar-tens T.; Kharbanda S.; Soriano R.H.; Modrusan Z.; Zapf S.; Westphal M.; Lamszus K.; A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target. Glia 2011,59(4),590-602. (PMID: 10.1002/glia.2112721294158)
Günther H.S.; Schmidt N.O.; Phillips H.S.; Kemming D.; Kharbanda S.; Soriano R.; Modrusan Z.; Meissner H.; Westphal M.; Lamszus K.; Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to mo-lecular and phenotypic criteria. Oncogene 2008,27(20),2897-2909. (PMID: 10.1038/sj.onc.121094918037961)
Zamykal M.; Martens T.; Matschke J.; Günther H.S.; Ka-thagen A.; Schulte A.; Peters R.; Westphal M.; Lamszus K.; Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms. Neuro-oncol 2015,17(8),1076-1085. (PMID: 10.1093/neuonc/nou34425543125)
Sturm D.; Witt H.; Hovestadt V.; Khuong-Quang D.A.; Jones D.T.W.; Konermann C.; Pfaff E.; Tönjes M.; Sill M.; Bender S.; Kool M.; Zapatka M.; Becker N.; Zucknick M.; Hielscher T.; Liu X.Y.; Fontebasso A.M.; Ryzhova M.; Al-brecht S.; Jacob K.; Wolter M.; Ebinger M.; Schuhmann M.U.; van Meter T.; Frühwald M.C.; Hauch H.; Pekrun A.; Radlwimmer B.; Niehues T.; von Komorowski G.; Dürken M.; Kulozik A.E.; Madden J.; Donson A.; Foreman N.K.; Drissi R.; Fouladi M.; Scheurlen W.; von Deimling A.; Monoranu C.; Roggendorf W.; Herold-Mende C.; Unterberg A.; Kramm C.M.; Felsberg J.; Hartmann C.; Wiestler B.; Wick W.; Milde T.; Witt O.; Lindroth A.M.; Schwartzentruber J.; Faury D.; Fleming A.; Zakrzewska M.; Liberski P.P.; Zakrzewski K.; Hauser P.; Garami M.; Klekner A.; Bognar L.; Morrissy S.; Cavalli F.; Taylor M.D.; van Sluis P.; Koster J.; Versteeg R.; Volckmann R.; Mikkelsen T.; Aldape K.; Reifenberger G.; Collins V.P.; Majewski J.; Korshunov A.; Lichter P.; Plass C.; Jabado N.; Pfister S.M.; Hotspot mutations in H3F3A and IDH1 de-fine distinct epigenetic and biological subgroups of glioblas-toma. Cancer Cell 2012,22(4),425-437. (PMID: 10.1016/j.ccr.2012.08.02423079654)
Reifenberger G.; Weber R.G.; Riehmer V.; Kaulich K.; Will-scher E.; Wirth H.; Gietzelt J.; Hentschel B.; Westphal M.; Simon M.; Schackert G.; Schramm J.; Matschke J.; Sabel M.C.; Gramatzki D.; Felsberg J.; Hartmann C.; Steinbach J.P.; Schlegel U.; Wick W.; Radlwimmer B.; Pietsch T.; Tonn J.C.; von Deimling A.; Binder H.; Weller M.; Loeffler M.; Molecular characterization of long-term survivors of glio-blastoma using genome- and transcriptome-wide profiling. Int J Cancer 2014,135(8),1822-1831. (PMID: 10.1002/ijc.2883624615357)
Gautier L.; Cope L.; Bolstad B.M.; Irizarry R.A.; affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004,20(3),307-315. (PMID: 10.1093/bioinformatics/btg405)
Wu J; Irizarry R.; Gcrma: Background Adjustment Using Sequence Information. R package version 2.60.0. 2020. Available from: https://rdrr.io/bioc/gcrma/.
Hastie T; Tibshirani R; Narasimhan B; Chu G; Impute: impute: Imputation for microarray data. R package version 1.62.0. 2020. Available from: https://www.researchgate.net/publication/88009004_Impute_Imputation_for_microarray_data.
Wickham H.; Averick M.; Bryan J.; Chang W.; McGowan L.; François R.; Grolemund G.; Hayes A.; Henry L.; Hester J.; Kuhn M.; Pedersen T.; Miller E.; Bache S.; Müller K.; Ooms J.; Robinson D.; Seidel D.; Spinu V.; Takahashi K.; Vaughan D.; Wilke C.; Woo K.; Yutani H.; Welcome to the Tidyverse. J Open Source Softw 2019,4(43),1686. (PMID: 10.21105/joss.01686)
Maechler M.; Rousseeuw P.; Struyf A.; Hubert M.; Hornik K.; Cluster: Cluster Analysis Basics and Extensions. R package version 2.1.4. 2022. Available from: https://CRAN.R-project.org/package=cluster.
Kassambara A.; Mundt F.; Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. 2020. Available from:.
Chouleur T.; Tremblay M.L.; Bikfalvi A.; Mechanisms of invasion in glioblastoma. Curr Opin Oncol 2020,32(6),631-639. (PMID: 10.1097/CCO.000000000000067932852310)
Ceccarelli M.; Barthel F.P.; Malta T.M.; Sabedot T.S.; Sala-ma S.R.; Murray B.A.; Morozova O.; Newton Y.; Raden-baugh A.; Pagnotta S.M.; Anjum S.; Wang J.; Manyam G.; Zoppoli P.; Ling S.; Rao A.A.; Grifford M.; Cherniack A.D.; Zhang H.; Poisson L.; Carlotti C.G.; Tirapelli D.P.C.; Rao A.; Mikkelsen T.; Lau C.C.; Yung W.K.A.; Ra-badan R.; Huse J.; Brat D.J.; Lehman N.L.; Barnholtz-Sloan J.S.; Zheng S.; Hess K.; Rao G.; Meyerson M.; Beroukhim R.; Cooper L.; Akbani R.; Wrensch M.; Haussler D.; Aldape K.D.; Laird P.W.; Gutmann D.H.; Noushmehr H.; Iavarone A.; Verhaak R.G.W.; Anjum S.; Arachchi H.; Auman J.T.; Balasundaram M.; Balu S.; Bar-nett G.; Baylin S.; Bell S.; Benz C.; Bir N.; Black K.L.; Bo-denheimer T.; Boice L.; Bootwalla M.S.; Bowen J.; Bristow C.A.; Butterfield Y.S.N.; Chen Q-R.; Chin L.; Cho J.; Chuah E.; Chudamani S.; Coetzee S.G.; Cohen M.L.; Col-man H.; Couce M.; D’Angelo F.; Davidsen T.; Davis A.; Demchok J.A.; Devine K.; Ding L.; Duell R.; Elder J.B.; Eschbacher J.M.; Fehrenbach A.; Ferguson M.; Frazer S.; Fuller G.; Fulop J.; Gabriel S.B.; Garofano L.; Gastier-Foster J.M.; Gehlenborg N.; Gerken M.; Getz G.; Giannini C.; Gibson W.J.; Hadjipanayis A.; Hayes D.N.; Heiman D.I.; Hermes B.; Hilty J.; Hoadley K.A.; Hoyle A.P.; Huang M.; Jefferys S.R.; Jones C.D.; Jones S.J.M.; Ju Z.; Kastl A.; Kendler A.; Kim J.; Kucherlapati R.; Lai P.H.; Lawrence M.S.; Lee S.; Leraas K.M.; Lichtenberg T.M.; Lin P.; Liu Y.; Liu J.; Ljubimova J.Y.; Lu Y.; Ma Y.; Maglinte D.T.; Mahadeshwar H.S.; Marra M.A.; McGraw M.; McPherson C.; Meng S.; Mieczkowski P.A.; Miller C.R.; Mills G.B.; Moore R.A.; Mose L.E.; Mungall A.J.; Naresh R.; Naska T.; Neder L.; Noble M.S.; Noss A.; O’Neill B.P.; Ostrom Q.T.; Palmer C.; Pantazi A.; Parfenov M.; Park P.J.; Parker J.S.; Perou C.M.; Pierson C.R.; Pihl T.; Protopopov A.; Radenbaugh A.; Ramirez N.C.; Rathmell W.K.; Ren X.; Roach J.; Robertson A.G.; Saksena G.; Schein J.E.; Schu-macher S.E.; Seidman J.; Senecal K.; Seth S.; Shen H.; Shi Y.; Shih J.; Shimmel K.; Sicotte H.; Sifri S.; Silva T.; Si-mons J.V.; Singh R.; Skelly T.; Sloan A.E.; Sofia H.J.; Soloway M.G.; Song X.; Sougnez C.; Souza C.; Staugaitis S.M.; Sun H.; Sun C.; Tan D.; Tang J.; Tang Y.; Thorne L.; Trevisan F.A.; Triche T.; Van Den Berg D.J.; Veluvolu U.; Voet D.; Wan Y.; Wang Z.; Warnick R.; Weinstein J.N.; Weisenberger D.J.; Wilkerson M.D.; Williams F.; Wise L.; Wolinsky Y.; Wu J.; Xu A.W.; Yang L.; Yang L.; Zack T.I.; Zenklusen J.C.; Zhang J.; Zhang W.; Zhang J.; Zmuda E.; Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 2016,164(3),550-563. (PMID: 10.1016/j.cell.2015.12.02826824661)
Madhavan S.; Zenklusen J.C.; Kotliarov Y.; Sahni H.; Fine H.A.; Buetow K.; Rembrandt: Helping personalized medicine become a reality through integrative translational research. Mol Cancer Res 2009,7(2),157-167. (PMID: 10.1158/1541-7786.MCR-08-043519208739)
Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature Cancer Genome Atlas Research Network 2008,455(7216),1061-1068. (PMID: 10.1038/nature0738518772890)
Bowman R.L.; Wang Q.; Carro A.; Verhaak R.G.W.; Squatrito M.; GlioVis data portal for visualization and analy-sis of brain tumor expression datasets. Neuro-oncol 2017,19(1),139-141. (PMID: 10.1093/neuonc/now24728031383)
Vollmann-Zwerenz A.; Leidgens V.; Feliciello G.; Klein C.A.; Hau P.; Tumor cell invasion in glioblastoma. Int J Mol Sci 2020,21(6),1932. (PMID: 10.3390/ijms2106193232178267)
Onken J.; Moeckel S.; Leukel P.; Leidgens V.; Baumann F.; Bogdahn U.; Vollmann-Zwerenz A.; Hau P.; Versican isoform V1 regulates proliferation and migration in high-grade gliomas. J Neurooncol 2014,120(1),73-83. (PMID: 10.1007/s11060-014-1545-825064688)
Tracz-Gaszewska Z.; Dobrzyn P.; Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers 2019,11(7),948. (PMID: 10.3390/cancers1107094831284458)
Duman C.; Yaqubi K.; Hoffmann A.; Acikgöz A.A.; Korshunov A.; Bendszus M.; Herold-Mende C.; Liu H.K.; Alfonso J.; Acyl-CoA-binding protein drives glioblastoma tumorigenesis by sustaining fatty acid oxidation. Cell Metab 2019,30(2),274-289.e5. (PMID: 10.1016/j.cmet.2019.04.00431056285)
Kant S.; Kesarwani P.; Prabhu A.; Graham S.F.; Buelow K.L.; Nakano I.; Chinnaiyan P.; Enhanced fatty acid oxida-tion provides glioblastoma cells metabolic plasticity to ac-commodate to its dynamic nutrient microenvironment. Cell Death Dis 2020,11(4),253. (PMID: 10.1038/s41419-020-2449-532312953)
Lee H.; Kim D.; Youn B.; Targeting oncogenic rewiring of lipid metabolism for glioblastoma treatment. Int J Mol Sci 2022,23(22),13818. (PMID: 10.3390/ijms23221381836430293)
Kou Y.; Geng F.; Guo D.; Lipid metabolism in glioblastoma: From De Novo synthesis to storage. Biomedicines 2022,10(8),1943. (PMID: 10.3390/biomedicines1008194336009491)
فهرسة مساهمة: Keywords: Glioma; glioblastoma multiforme; glutamate; immunological signature; metabolic signature.; metabotropic glutamate receptors type 3 and type 5; neurotransmitter- GBM
المشرفين على المادة: 0 (Receptors, Metabotropic Glutamate)
0 (metabotropic glutamate receptor 3)
0 (Receptor, Metabotropic Glutamate 5)
0 (Neurotransmitter Agents)
تواريخ الأحداث: Date Created: 20240321 Date Completed: 20240722 Latest Revision: 20240722
رمز التحديث: 20240722
DOI: 10.2174/1570159X22666240320112926
PMID: 38509672
قاعدة البيانات: MEDLINE
الوصف
تدمد:1875-6190
DOI:10.2174/1570159X22666240320112926