دورية أكاديمية

The interaction between lncRNAs and transcription factors regulating autophagy in human cancers: A comprehensive and therapeutical survey.

التفاصيل البيبلوغرافية
العنوان: The interaction between lncRNAs and transcription factors regulating autophagy in human cancers: A comprehensive and therapeutical survey.
المؤلفون: Jasim SA; Medical Laboratory Techniques Department, Al-Maarif University College, Anbar, Iraq., Almajidi YQ; Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq., Al-Rashidi RR; Department of Dentistry, Kut University College, Wasit, Iraq., Hjazi A; Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia., Ahmad I; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia., Alawadi AHR; College of Technical Engineering, The Islamic University, Najaf, Iraq.; College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.; College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq., Alwaily ER; Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq., Alsaab HO; Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia., Haslany A; Medical Technical College, Al-Farahidi University, Baghdad, Iraq., Hameed M; Medical Technical College, Al-Farahidi University, Baghdad, Iraq.
المصدر: Cell biochemistry and function [Cell Biochem Funct] 2024 Mar; Vol. 42 (2), pp. e3971.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 8305874 Publication Model: Print Cited Medium: Internet ISSN: 1099-0844 (Electronic) Linking ISSN: 02636484 NLM ISO Abbreviation: Cell Biochem Funct Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, England : Wiley-Blackwell
Original Publication: Guildford, Surrey : Butterworth Scientific Ltd., c1983-
مواضيع طبية MeSH: RNA, Long Noncoding*/genetics , RNA, Long Noncoding*/metabolism , Neoplasms*/genetics, Humans ; Transcription Factors/genetics ; Apoptosis ; Autophagy
مستخلص: Autophagy, as a highly conserved cellular process, participates in cellular homeostasis by degradation and recycling of damaged organelles and proteins. Besides, autophagy has been evidenced to play a dual role through cancer initiation and progression. In the early stage, it may have a tumor-suppressive function through inducing apoptosis and removing damaged cells and organelles. However, late stages promote tumor progression by maintaining stemness features and induction of chemoresistance. Therefore, identifying and targeting molecular mechanisms involved in autophagy is a potential therapeutic strategy for human cancers. Multiple transcription factors (TFs) are involved in the regulation of autophagy by modulating the expression of autophagy-related genes (ATGs). In addition, a wide array of long noncoding RNAs (lncRNAs), a group of regulatory ncRNAs, have been evidenced to regulate the function of these autophagy-related TFs through tumorigenesis. Subsequently, the lncRNAs/TFs/ATGs axis shows great potential as a therapeutic target for human cancers. Therefore, this review aimed to summarize new findings about the role of lncRNAs in regulating autophagy-related TFs with therapeutic perspectives.
(© 2024 John Wiley & Sons Ltd.)
References: Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717‐1721.
Yun C, Lee S. The roles of autophagy in cancer. Int J Mol Sci. 2018;19(11):3466.
Lorin S, Hamaï A, Mehrpour M, Codogno P. Autophagy regulation and its role in cancer. Semin Cancer Biol. 2013;23(5):361‐379.
Lim SM, Mohamad Hanif EA, Chin SF. Is targeting autophagy mechanism in cancer a good approach? the possible double‐edge sword effect. Cell Biosci. 2021;11(1):56.
Pan Z, Wu C, Li Y, et al. RETRACTED: LncRNA DANCR silence inhibits SOX5‐medicated progression and autophagy in osteosarcoma via regulating miR‐216a‐5p. Biomed Pharmacother. 2020;122:109707.
Kume S, Koya D. Autophagy: a novel therapeutic target for diabetic nephropathy. Diabetes Metab J. 2015;39(6):451‐460.
Hurley JH, Young LN. Mechanisms of autophagy initiation. Annu Rev Biochem. 2017;86:225‐244.
Li X, He S, Ma B. Autophagy and autophagy‐related proteins in cancer. Mol Cancer. 2020;19(1):12.
Rahman MA, Rahman MS, Rahman MH, et al. Modulatory effects of autophagy on APP processing as a potential treatment target for Alzheimer's disease. Biomedicines. 2020;9(1):5.
Ma Q, Long S, Gan Z, Tettamanti G, Li K, Tian L. Transcriptional and post‐transcriptional regulation of autophagy. Cells. 2022;11(3):441.
Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8(11):931‐937.
Füllgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol. 2014;15(1):65‐74.
Yang L, Wang H, Shen Q, Feng L, Jin H. Long non‐coding RNAs involved in autophagy regulation. Cell Death Dis. 2017;8(10):3073.
Rebecca VW, Amaravadi RK. Emerging strategies to effectively target autophagy in cancer. Oncogene. 2016;35(1):1‐11.
Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T. Autophagy and autophagy‐related proteins in the immune system. Nat Immunol. 2015;16(10):1014‐1024.
Shintani T, Klionsky DJ. Autophagy in health and disease: a double‐edged sword. Science. 2004;306(5698):990‐995.
Levine B, Klionsky DJ. Development by self‐digestion. Dev Cell. 2004;6(4):463‐477.
Liu L, Liao J‐Z, He X‐X, Li P‐Y. The role of autophagy in hepatocellular carcinoma: friend or foe. Oncotarget. 2017;8(34):57707‐57722.
Sun T. Long noncoding RNAs act as regulators of autophagy in cancer. Pharmacol Res. 2018;129:151‐155.
Choudhry H, Harris AL, McIntyre A. The tumour hypoxia induced non‐coding transcriptome. Mol Aspects Med. 2016;47‐48:35‐53.
Esteller M. Non‐coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861‐874.
Ma L, Bajic VB, Zhang Z. On the classification of long non‐coding RNAs. RNA Biol. 2013;10(6):924‐933.
Yin Q, Feng W, Shen X, Ju S. Regulatory effects of lncRNAs and miRNAs on autophagy in malignant tumorigenesis. Biosci Rep. 2018;38(5):BSR20180516.
Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193(3):651‐669.
Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253‐1261.
YiRen H, YingCong Y, Sunwu Y, et al. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR‐23b‐3p sequestration in gastric cancer. Mol Cancer. 2017;16(1):174.
Sanchez LR, Borriello L, Entenberg D, Condeelis JS, Oktay MH, Karagiannis GS. The emerging roles of macrophages in cancer metastasis and response to chemotherapy. J Leukocyte Biol. 2019;106(2):259‐274.
Zhao Y, Wang Z, Zhang W, Zhang L. Non‐coding RNAs regulate autophagy process via influencing the expression of associated protein. Prog Biophys Mol Biol. 2020;151:32‐39.
Mercer TR, Dinger ME, Mattick JS. Long non‐coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155‐159.
Xu Z, Yan Y, Qian L, Gong Z. Long non‐coding RNAs act as regulators of cell autophagy in diseases. Oncol Rep. 2017;37(3):1359‐1366.
Sun Q, Hao Q, Prasanth KV. Nuclear long noncoding RNAs: key regulators of gene expression. TIG. 2018;34(2):142‐157.
Guttman M, Rinn JL. Modular regulatory principles of large non‐coding RNAs. Nature. 2012;482(7385):339‐346.
Zhao T, Xu J, Liu L, et al. Identification of cancer‐related lncRNAs through integrating genome, regulome and transcriptome features. Mol BioSyst. 2015;11(1):126‐136.
Gibb EA, Brown CJ, Lam WL. The functional role of long non‐coding RNA in human carcinomas. Mol Cancer. 2011;10(1):38.
Hergt PH. Pump research and development: past, present, and future. Fluids Eng. 1999;121(2):248‐253.
Reilly SK, Noonan JP. Evolution of gene regulation in humans. Annu Rev Genomics Hum Genet. 2016;17:45‐67.
Mitsis T, Efthimiadou A, Bacopoulou F, Vlachakis D, Chrousos GP, Eliopoulos E. Transcription factors and evolution: an integral part of gene expression. World Academy of Sciences Journal. 2020;2(1):3‐8.
Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell. 2018;172(4):650‐665.
Liu Y, Li P, Fan L, Wu M. The nuclear transportation routes of membrane‐bound transcription factors. Cell Commun Signaling. 2018;16(1):12.
Powell RV, Willett CR, Goertzen LR, Rashotte AM. Lineage specific conservation of cis‐regulatory elements in cytokinin response factors. Sci Rep. 2019;9(1):13387.
Rebeiz M, Tsiantis M. Enhancer evolution and the origins of morphological novelty. Curr Opin Genet Dev. 2017;45:115‐123.
Yesudhas D, Batool M, Anwar M, Panneerselvam S, Choi S. Proteins recognizing DNA: structural uniqueness and versatility of DNA‐Binding domains in stem cell transcription factors. Genes. 2017;8(8):192.
Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152(6):1237‐1251.
Bushweller JH. Targeting transcription factors in cancer—from undruggable to reality. Nat Rev Cancer. 2019;19(11):611‐624.
Darnell JE. Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2002;2(10):740‐749.
You L, Wang Z, Li H, et al. The role of STAT3 in autophagy. Autophagy. 2015;11(5):729‐739.
Laribee RN, Boucher AB, Madireddy S, Pfeffer LM. The STAT3‐Regulated autophagy pathway in glioblastoma. Pharmaceuticals. 2023;16(5):671.
Cao Y, Wang J, Tian H, Fu G‐H. Mitochondrial ROS accumulation inhibiting JAK2/STAT3 pathway is a critical modulator of CYT997‐induced autophagy and apoptosis in gastric cancer. J Exp Clin Cancer Res. 2020;39(1):119.
Yu Z, Wang D, Tang Y. PKM2 promotes cell metastasis and inhibits autophagy via the JAK/STAT3 pathway in hepatocellular carcinoma. Mol Cell Biochem. 2021;476(5):2001‐2010.
Zhai C, Shi W, Feng W, et al. Activation of AMPK prevents monocrotaline‐induced pulmonary arterial hypertension by suppression of NF‐κB‐mediated autophagy activation. Life Sci. 2018;208:87‐95.
Djavaheri‐Mergny M, Amelotti M, Mathieu J, Besançon F, Bauvy C, Codogno P. Regulation of autophagy by NF‐kappaB transcription factor and reactives oxygen species. Autophagy. 2007;3(4):390‐392.
Hernández Borrero LJ, El‐Deiry WS. Tumor suppressor p53: biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188556.
Rahman MA, Park MN, Rahman MH, et al. p53 modulation of autophagy signaling in cancer therapies: perspectives mechanism and therapeutic targets. Front Cell Dev Biol. 2022;10:761080.
Mrakovcic M, Fröhlich L. p53‐mediated molecular control of autophagy in tumor cells. Biomolecules. 2018;8(2):14.
Shim D, Duan L, Maki CG. P53‐regulated autophagy and its impact on drug resistance and cell fate. Cancer Drug Resist. 2021;4(1):85.
Cordani M, Oppici E, Dando I, et al. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition. Mol Oncol. 2016;10(7):1008‐1029.
Aschauer L, Muller PAJ. Novel targets and interaction partners of mutant p53 Gain‐Of‐Function. Biochem Soc Trans. 2016;44(2):460‐466.
Hemesath TJ, Steingrímsson E, McGill G, et al. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994;8(22):2770‐2780.
Palmieri M, Impey S, Kang H, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20(19):3852‐3866.
Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429‐1433.
Settembre C, Ballabio A. Lysosome: regulator of lipid degradation pathways. Trends Cell Biol. 2014;24(12):743‐750.
Settembre C, De Cegli R, Mansueto G, et al. TFEB controls cellular lipid metabolism through a starvation‐induced autoregulatory loop. Nat Cell Biol. 2013;15(6):647‐658.
Perera RM, Di Malta C, Ballabio A. MiT/TFE family of transcription factors, lysosomes, and cancer. Ann Rev Cancer Biol. 2019;3:203‐222.
Martina JA, Diab HI, Lishu L, et al. The nutrient‐responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signaling. 2014;7(309):ra9.
Ploper D, Taelman VF, Robert L, et al. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc Natl Acad Sci. 2015;112(5):E420‐E429.
Li C, Wang L. TFEB‐dependent autophagy is involved in scavenger receptor OLR1/LOX‐1‐mediated tumor progression. Autophagy. 2022;18(2):462‐464.
He R, Wang M, Zhao C, et al. TFEB‐driven autophagy potentiates TGF‐β induced migration in pancreatic cancer cells. J Exp Clin Cancer Res. 2019;38(1):340.
Toh PPC, Luo S, Menzies FM, Raskó T, Wanker EE, Rubinsztein DC. Myc inhibition impairs autophagosome formation. Hum Mol Genet. 2013;22(25):5237‐5248.
Li H, Liu J, Cao W, et al. C‐Myc/miR‐150/EPG5 axis mediated dysfunction of autophagy promotes development of non‐small cell lung cancer. Theranostics. 2019;9(18):5134‐5148.
Le MT, Nguyen HT, Nguyen XH, et al. Regulation and therapeutic potentials of microRNAs to non‐small cell lung cancer. Heliyon. 2023;9(11):e22080.
Mo H, He J, Yuan Z, et al. PLK1 contributes to autophagy by regulating MYC stabilization in osteosarcoma cells. Onco Targets Ther. 2019;12:7527.
Jahangiri L, Pucci P, Ishola T, et al. The contribution of autophagy and LncRNAs to MYC‐driven gene regulatory networks in cancers. Int J Mol Sci. 2021;22(16):8527.
Cianfanelli V, Fuoco C, Lorente M, et al. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c‐Myc dephosphorylation and degradation. Nat Cell Biol. 2015;17(1):20‐30.
Hart LS, Cunningham JT, Datta T, et al. ER stress–mediated autophagy promotes Myc‐dependent transformation and tumor growth. J Clin Invest. 2012;122(12):4621‐4634.
Kim Y, Lee DH, Park SH, Jeon TI, Jung CH. The interplay of microRNAs and transcription factors in autophagy regulation in nonalcoholic fatty liver disease. Exp Mol Med. 2021;53(4):548‐559.
Shi Y, Liu M, Huang Y, Zhang J, Yin L. Promotion of cell autophagy and apoptosis in cervical cancer by inhibition of long noncoding RNA LINC00511 via transcription factor RXRA‐regulated PLD1. J Cell Physiol. 2020;235(10):6592‐6604.
Tan M, Jiang B, Wang H, et al. Dihydromyricetin induced lncRNA MALAT1‐TFEB‐dependent autophagic cell death in cutaneous squamous cell carcinoma. J Cancer. 2019;10(18):4245‐4255.
Wang Z, Wang X, Zhang T, et al. LncRNA MALAT1 promotes gastric cancer progression via inhibiting autophagic flux and inducing fibroblast activation. Cell Death Dis. 2021;12(4):368.
Pawłowska E, Szczepanska J, Blasiak J. The long noncoding RNA HOTAIR in breast cancer: does autophagy play a role? Int J Mol Sci. 2017;18(11):2317.
Salmerón‐Bárcenas EG, Illades‐Aguiar B, Del Moral‐Hernández O, Ortega‐Soto A, Hernández‐Sotelo D. HOTAIR knockdown decreased the activity Wnt/β‐Catenin signaling pathway and increased the mRNA levels of its negative regulators in Hela cells. Cell Physiol Biochem. 2019;53(6):948‐960.
Shao Q, Wang Q, Wang J. LncRNA SCAMP1 regulates ZEB1/JUN and autophagy to promote pediatric renal cell carcinoma under oxidative stress via miR‐429. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019;120:109460.
Zhou J, Wang M, Mao A, et al. Long noncoding RNA MALAT1 sponging miR‐26a‐5p to modulate Smad1 contributes to colorectal cancer progression by regulating autophagy. Carcinogenesis. 2021;42(11):1370‐1379.
Zhang W, Yuan W, Song J, Wang S, Gu X. LncRNA CPS1‐IT1 suppresses EMT and metastasis of colorectal cancer by inhibiting hypoxia‐induced autophagy through inactivation of HIF‐1α. Biochimie. 2018;144:21‐27.
Peng D, Li W, Zhang B, Liu X. Overexpression of lncRNA SLC26A4‐AS1 inhibits papillary thyroid carcinoma progression through recruiting ETS1 to promote ITPR1‐mediated autophagy. J Cell Mol Med. 2021;25(17):8148‐8158.
Zhou C, Yi C, Yi Y, et al. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β‐catenin and autophagy pathway through modulating the miR‐619‐5p/Pygo2 and miR‐619‐5p/ATG14 axes. Mol Cancer. 2020;19(1):118.
Song Y, Du J, Lu P, et al. LncRNA NFYC‐AS1 promotes the development of lung adenocarcinomas through autophagy, apoptosis, and MET/c‐Myc oncogenic proteins. Ann Transl Med. 2021;9(21):1621.
Wang CZ, Yan GX, Dong DS, Xin H, Liu ZY. LncRNA‐ATB promotes autophagy by activating Yes‐associated protein and inducing autophagy‐related protein 5 expression in hepatocellular carcinoma. World J Gastroenterol. 2019;25(35):5310‐5322.
Zhang XH, Li BF, Ding J, et al. LncRNA DANCR‐miR‐758‐3p‐PAX6 molecular network regulates apoptosis and autophagy of breast cancer cells. Cancer Manag Res. 2020;12:4073‐4084.
Yang C, Shen S, Zheng X, et al. Long non‐coding RNA LINC00337 induces autophagy and chemoresistance to cisplatin in esophageal squamous cell carcinoma cells via upregulation of TPX2 by recruiting E2F4. FASEB J. 2020;34(5):6055‐6069.
Li F, Zhou X, Chen M, Fan W. Regulatory effect of LncRNA DRAIC/miR‐149‐5p/NFIB molecular network on autophagy of esophageal cancer cells and its biological behavior. Exp Mol Pathol. 2020;116:104491.
Wu C, Lin W, Fu F. Long non‐coding RNA DLX6‐AS1 knockdown suppresses the tumorigenesis and progression of non‐small cell lung cancer through microRNA‐16‐5p/BMI1 axis. Trans Cancer Res. 2021;10(8):3772‐3787.
Gupta S, Silveira DA, Mombach JCM, Hashimoto RF. The lncRNA DLX6‐AS1/miR‐16‐5p axis regulates autophagy and apoptosis in non‐small cell lung cancer: A Boolean model of cell death. Non‐coding RNA Res. 2023;8(4):605‐614.
Chen JF, Wu P, Xia R, et al. STAT3‐induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal‐mediated inhibition of autophagy. Mol Cancer. 2018;17(1):6.
Zhang L, Zhang Z, Li E, Xu P. c‐Myc‐regulated lncRNA‐IGFBP4 suppresses autophagy in cervical Cancer‐originated HeLa cells. Dis Markers. 2022;2022:1‐12.
Qin Y, Sun W, Wang Z, et al. ATF2‐induced lncRNA GAS8‐AS1 promotes autophagy of thyroid cancer cells by targeting the miR‐187‐3p/ATG5 and miR‐1343‐3p/ATG7 axes. Mol Ther Nucleic Acids. 2020;22:584‐600.
Zhou W, Zhang S, Li J, Li Z, Wang Y, Li X. lncRNA TINCR participates in ALA‐PDT‐induced apoptosis and autophagy in cutaneous squamous cell carcinoma. J Cell Biochem. 2019;120(8):13893‐13902.
Xu H, Yu X, Yang Z, et al. PAX5‐activated lncRNA ARRDC1‐AS1 accelerates the autophagy and progression of DLBCL through sponging miR‐2355‐5p to regulate ATG5. Life Sci. 2021;286:119932.
Zhang F, Chen Q, Chen P, Liu C, Wang H, Zhao L. The lncRNA CRNDE is regulated by E2F6 and sensitizes gastric cancer cells to chemotherapy by inhibiting autophagy. J Cancer. 2022;13(10):3061‐3072.
Chang Y‐T, Lin T‐P, Tang J‐T, et al. HOTAIR is a REST‐regulated lncRNA that promotes neuroendocrine differentiation in castration resistant prostate cancer. Cancer Lett. 2018;433:43‐52.
معلومات مُعتمدة: RGP.02/557/44 King Khalid University
فهرسة مساهمة: Keywords: autophagy; cancer; lncRNA; transcription factor
المشرفين على المادة: 0 (RNA, Long Noncoding)
0 (Transcription Factors)
تواريخ الأحداث: Date Created: 20240321 Date Completed: 20240322 Latest Revision: 20240322
رمز التحديث: 20240322
DOI: 10.1002/cbf.3971
PMID: 38509767
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-0844
DOI:10.1002/cbf.3971