دورية أكاديمية

Image-based non-invasive assessment of suction blister wounds for clinical safety and efficacy.

التفاصيل البيبلوغرافية
العنوان: Image-based non-invasive assessment of suction blister wounds for clinical safety and efficacy.
المؤلفون: Wallblom K; Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden.; Department of Dermatology, Skane University Hospital, Lund, Sweden., Lundgren S; Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden.; Department of Dermatology, Skane University Hospital, Lund, Sweden., Saleh K; Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden.; Department of Dermatology, Skane University Hospital, Lund, Sweden., Schmidtchen A; Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden.; Department of Dermatology, Skane University Hospital, Lund, Sweden., Puthia M; Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden.
المصدر: Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society [Wound Repair Regen] 2024 Jul-Aug; Vol. 32 (4), pp. 343-359. Date of Electronic Publication: 2024 Mar 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Country of Publication: United States NLM ID: 9310939 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1524-475X (Electronic) Linking ISSN: 10671927 NLM ISO Abbreviation: Wound Repair Regen Subsets: MEDLINE
أسماء مطبوعة: Publication: <2010-> : Malden, MA : Blackwell Science
Original Publication: St. Louis, MO : Mosby, c1993-
مواضيع طبية MeSH: Wound Healing*/physiology , Photography*/methods , Blister*, Humans ; Suction/methods ; Erythema ; Female ; Male ; Bandages ; Exudates and Transudates ; Image Processing, Computer-Assisted/methods
مستخلص: Recognising the need for objective imaging-based technologies to assess wound healing in clinical studies, the suction blister wound model offers an easily accessible wound model that creates reproducible epidermal wounds that heal without scarring. This study provides a comprehensive methodology for implementing and evaluating photography-based imaging techniques utilising the suction blister wound model. Our method encompasses a protocol for capturing consistent, high-quality photographs and procedures for quantifying these images via a visual wound healing score and a computer-assisted colour analysis of wound exudation and wound redness. We employed this methodology on 16 suction blister wounds used as controls in a clinical phase-1 trial. Our method enabled us to discern and quantify subtle differences between individual wounds concerning healing progress, erythema and wound exudation. The wound healing score exhibited a high inter-rater agreement. There was a robust correlation between the spectrophotometer-measured erythema index and photography-based wound redness, as well as between dressing protein content and photography-based dressing yellowness. In conclusion, this study equips researchers conducting clinical wound studies with reproducible methods that may support future wound research and aid in the development of new treatments.
(© 2024 The Authors. Wound Repair and Regeneration published by Wiley Periodicals LLC on behalf of The Wound Healing Society.)
References: Sen CK. Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care (New Rochelle). 2021;10(5):281‐292.
Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399(10325):629‐655.
Nussbaum SR, Carter MJ, Fife CE, et al. An economic evaluation of the impact, cost, and Medicare policy implications of chronic nonhealing wounds. Value Health. 2018;21(1):27‐32.
Darwin E, Tomic‐Canic M. Healing chronic wounds: current challenges and potential solutions. Curr Dermatol Rep. 2018;7(4):296‐302.
Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015;4(9):560‐582.
Falanga V, Isseroff RR, Soulika AM, et al. Chronic wounds. Nat. Rev. Dis. Primers. 2022;8(1):50.
Sami DG, Heiba HH, Abdellatif A. Wound healing models: a systematic review of animal and non‐animal models. Wound Med. 2019;24(1):8‐17.
Nuutila K, Katayama S, Vuola J, Kankuri E. Human wound‐healing research: issues and perspectives for studies using wide‐scale analytic platforms. Adv Wound Care (New Rochelle). 2014;3(3):264‐271.
Bugeja L, Low JK, McGinnes RA, Team V, Sinha S, Weller C. Barriers and enablers to patient recruitment for randomised controlled trials on treatment of chronic wounds: a systematic review. Int Wound J. 2018;15(6):880‐892.
Bull RH, Staines KL, Collarte AJ, Bain DS, Ivins NM, Harding KG. Measuring progress to healing: a challenge and an opportunity. Int Wound J. 2022;19(4):734‐740.
Ågren MS, Phothong N, Burian EA, Mogensen M, Hædersdal M, Jorgensen LN. Topical zinc oxide assessed in two human wound‐healing models. Acta Derm Venereol. 2021;101(5):adv00465.
Varol AL, Anderson CD. A minimally invasive human in vivo cutaneous wound model for the evaluation of innate skin reactivity and healing status. Arch Dermatol Res. 2010;302(5):383‐393.
Wilhelm K‐P, Wilhelm D, Bielfeldt S. Models of wound healing: an emphasis on clinical studies. Skin Res Technol. 2017;23(1):3‐12.
Kottner J, Hillmann K, Fimmel S, Seité S, Blume‐Peytavi U. Characterisation of epidermal regeneration in vivo: a 60‐day follow‐up study. J Wound Care. 2013;22(8):395‐400.
Masson‐Meyers DS, Andrade TAM, Caetano GF, et al. Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol. 2020;101(1–2):21‐37.
Ahlström MG, Gjerdrum LMR, Larsen HF, et al. Suction blister lesions and epithelialization monitored by optical coherence tomography. Skin Res Technol. 2018;24(1):65‐72.
Jørgensen LB, Sørensen JA, Jemec GB, Yderstraede KB. Methods to assess area and volume of wounds ‐ a systematic review. Int Wound J. 2016;13(4):540‐553.
Li S, Mohamedi AH, Senkowsky J, Nair A, Tang L. Imaging in chronic wound diagnostics. Adv Wound Care (New Rochelle). 2020;9(5):245‐263.
Alexander H, Brown S, Danby S, Flohr C. Research techniques made simple: Transepidermal water loss measurement as a research tool. J Investig Dermatol. 2018;138(11):2295‐300.e1.
Ferraq Y, Black DR, Theunis J, Mordon S. Superficial wounding model for epidermal barrier repair studies: comparison of erbium:YAG laser and the suction blister method. Lasers Surg Med. 2012;44(7):525‐532.
Liu Z, Jiang M, Zhao J, et al. Efficacy of a wound‐dressing biomaterial on prevention of postinflammatory hyperpigmentation after suction blister epidermal grafting in stable vitiligo patients: a controlled assessor‐blinded clinical study with in vitro bioactivity investigation. Arch Dermatol Res. 2020;312(9):635‐645.
Lundgren S, Wallblom K, Fisher J, Erdmann S, Schmidtchen A, Saleh K. Study protocol for a phase 1, randomised, double‐blind, placebo‐controlled study to investigate the safety, tolerability and pharmacokinetics of ascending topical doses of TCP‐25 applied to epidermal suction blister wounds in healthy male and female volunteers. BMJ Open. 2023;13(2):e064866.
Kummerow Broman K, Gaskill CE, Faqih A, et al. Evaluation of wound photography for remote postoperative assessment of surgical site infections. JAMA Surg. 2019;154(2):117‐124.
Larsen HF, Ahlström MG, Gjerdrum LMR, et al. Noninvasive measurement of reepithelialization and microvascularity of suction‐blister wounds with benchmarking to histology. Wound Repair Regen. 2017;25(6):984‐993.
Puthia M, Butrym M, Petrlova J, et al. A dual‐action peptide‐containing hydrogel targets wound infection and inflammation. Sci Transl Med. 2020;12(524):eaax6601.
Schindelin J, Arganda‐Carreras I, Frise E, et al. Fiji: an open‐source platform for biological‐image analysis. Nat Methods. 2012;9(7):676‐682.
Weatherall IL, Coombs BD. Skin color measurements in terms of CIELAB color space values. J Investig Dermatol. 1992;99(4):468‐473.
Sigrid L, Ganna P, Karl W, et al. Analysis of bacteria, inflammation, and exudation in epidermal suction blister wounds reveals dynamic changes during wound healing. medRxiv. 2023;2023.12.07.23299659.
Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth. Analg. 2018;126(5):1763‐1768.
Long J. Calculating Krippendorff's Alpha in R, 2021. https://rpubs.com/jacoblong/content-analysis-krippendorff-alpha-R.
Wilson APR, Weavill C, Burridge J, Kelsey MC. The use of the wound scoring method ‘ASEPSIS’ in postoperative wound surveillance. J Hosp Infect. 1990;16(4):297‐309.
Stotts NA, Rodeheaver GT, Thomas DR, et al. An instrument to measure healing in pressure ulcers: development and validation of the pressure ulcer scale for healing (PUSH). J Gerontol A. 2001;56(12):M795‐M799.
Grey JE, Enoch S, Harding KG. Wound assessment. BMJ. 2006;332(7536):285‐288.
Thompson N, Gordey L, Bowles H, Parslow N, Houghton P. Reliability and validity of the revised photographic wound assessment tool on digital images taken of various types of chronic wounds. Adv Skin Wound Care. 2013;26(8):360‐373.
Tiwari S, Chauhan M, Shahapurkar VV, et al. Importance of Southampton wound grading system in surgical site infection. J Evol Med Dent Sci. 2014;3:5491‐5495.
Bates‐Jensen BM, McCreath HE, Harputlu D, Patlan A. Reliability of the Bates‐Jensen wound assessment tool for pressure injury assessment: the pressure ulcer detection study. Wound Repair Regen. 2019;27(4):386‐395.
Zhang L, de Salvo R, Trapp S, et al. Evaluation of BepanGel hydrogel efficacy and tolerability using an abrasive wound model in a within‐person, single‐center, randomized, investigator‐blind clinical investigation. Dermatol Therapy. 2020;10(5):1075‐1088.
Harding K, Carville k, Chadwick P, et al. WUWHS consensus document: Wound exudate, effective assessment and management 2019. 2019.
Paul S, Peter A, Pietrobon N, Hämmerle CHF. Visual and spectrophotometric shade analysis of human teeth. J Dent Res. 2002;81(8):578‐582.
James TJ, Hughes MA, Cherry GW, Taylor RP. Simple biochemical markers to assess chronic wounds. Wound Repair Regen. 2000;8(4):264‐269.
Taeger CD, Wallner S, Martini T, et al. Analysis of rinsing fluid during negative pressure wound therapy with instillation: a potential monitoring tool in acute and chronic wound treatment. A pilot study. Cells. 2021;10(4). https://www.mdpi.com/about/announcements/784.
Pan Y, Gareau DS, Scope A, Rajadhyaksha M, Mullani NA, Marghoob AA. Polarized and nonpolarized Dermoscopy: the explanation for the observed differences. Arch Dermatol. 2008;144(6):828‐829.
Ferreira AV, Perelshtein I, Perkas N, Gedanken A, Cunha J, Cavaco‐Paulo A. Detection of human neutrophil elastase (HNE) on wound dressings as marker of inflammation. Appl Microbiol Biotechnol. 2017;101(4):1443‐1454.
Hasmann A, Wehrschuetz‐Sigl E, Marold A, et al. Analysis of myeloperoxidase activity in wound fluids as a marker of infection. Ann Clin Biochem. 2013;50(Pt 3):245‐254.
Prader J, Rumpler M, Kamolz LP, Hajnsek M. Myeloperoxidase‐based in‐vitro test strip sensor for early detection of wound infections at the patient's bedside. Sens Actuators B. 2022;372:132628.
Ly BCK, Dyer EB, Feig JL, Chien AL, Del Bino S. Research techniques made simple: cutaneous colorimetry: a reliable technique for objective skin color measurement. J Investig Dermatol. 2020;140(1):3‐12.e1.
Filius PM, Gyssens IC. Impact of increasing antimicrobial resistance on wound management. Am J Clin Dermatol. 2002;3(1):1‐7.
Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763‐771.
Saberwal G. Biobusiness in brief what ails clinical trials? Curr Sci. 2018;115(9):1648‐1652.
Vivas AC, Maderal AD, Than MP, Kirsner RS. Designing clinical trials to bring wound products to market. Int Wound J. 2013;10(1):114‐115.
Pretorius S, Grignolo A. Phase III trial failures: costly, but preventable. Appl Clin Trials. 2016;25(8):36‐42.
Alexis AF, Wilson DC, Todhunter JA, Stiller MJ. Reassessment of the suction blister model of wound healing: introduction of a new higher pressure device. Int J Dermatol. 1999;38(8):613‐617.
Burian EA, Sabah L, Kirketerp‐Møller K, Gundersen G, Ågren MS. Effect of stabilized hypochlorous acid on re‐epithelialization and bacterial bioburden in acute wounds: a randomized controlled trial in healthy volunteers. Acta Derm Venereol. 2022;102:adv00727.
Woodley DT, Kim YH. A double‐blind comparison of adhesive bandages with the use of uniform suction blister wounds. Arch Dermatol. 1992;128(10):1354‐1357.
Herbin M, Venot A, Devaux JY, Piette C. Color quantitation through image processing in dermatology. IEEE Trans Med Imaging. 1990;9(3):262‐269.
Bengtsson E, Engström N, Hellgren L, Vincent J. Computerized wound analysis: a new method for assessment of healing. In: Altmeyer P, Hoffmann K, el Gammal S, Hutchinson J, eds. Proceedings of the Wound Healing and Skin Physiology. Springer Berlin Heidelberg; 1995:481‐483.
Hansen GL, Sparrow EM, Kokate JY, Leland KJ, Iaizzo PA. Wound status evaluation using color image processing. IEEE Trans Med Imaging. 1997;16(1):78‐86.
Pershing LK, Tirumala VP, Nelson JL, et al. Reflectance spectrophotometer: the Dermatologists' sphygmomanometer for skin Phototyping? J Investig Dermatol. 2008;128(7):1633‐1640.
Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol. 2007;127(3):514‐525.
Cowin AJ, Bayat A, Murray RZ, Kopecki Z. Inflammation in healing and regeneration of cutaneous wounds. Front Immunol. 2021;4950.
McDaniel JC, Belury M, Ahijevych K, Blakely W. Omega‐3 fatty acids effect on wound healing. Wound Repair Regen. 2008;16(3):337‐345.
Ågren MS, Mirastschijski U, Karlsmark T, Saarialho‐Kere UK. Topical synthetic inhibitor of matrix metalloproteinases delays epidermal regeneration of human wounds*. Exp Dermatol. 2001;10(5):337‐348.
Leivo T, Kiistala U, Vesterinen M, et al. Re‐epithelialization rate and protein expression in the suction‐induced wound model: comparison between intact blisters, open wounds and calcipotriol‐pretreated open wounds. Br J Dermatol. 2000;142(5):991‐1002.
Malminen M, Koivukangas V, Peltonen J, Karvonen S‐L, Oikarinen A, Peltonen S. Immunohistological distribution of the tight junction components ZO‐1 and occludin in regenerating human epidermis. Br J Dermatol. 2003;149(2):255‐260.
Gohel MS, Windhaber RA, Tarlton JF, Whyman MR, Poskitt KR. The relationship between cytokine concentrations and wound healing in chronic venous ulceration. J Vasc Surg. 2008;48(5):1272‐1277.
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: from clinical significance to quantification. Adv Sci (Weinh). 2021;8(15):e2004433.
Fredriksson T, Pettersson U. Severe psoriasis: oral therapy with a new retinoid. Dermatologica. 2009;157(4):238‐244.
Oranje AP, Glazenburg EJ, Wolkerstorfer A, Waard‐van D, der Spek FB. Practical issues on interpretation of scoring atopic dermatitis: the SCORAD index, objective SCORAD and the three‐item severity score. Br J Dermatol. 2007;157(4):645‐648.
Spear M. Wound exudate: the good, the bad, and the ugly. Plast Surg Nurs. 2012;32(2):77‐79.
Walker A, Brace J. A multipurpose dressing: role of a Hydrofiber foam dressing in managing wound exudate. J Wound Care. 2019;28(Supp 9):S4‐s10.
Falanga V, Saap LJ, Ozonoff A. Wound bed score and its correlation with healing of chronic wounds. Dermatol Ther. 2006;19(6):383‐390.
Kalakonda AJB, John S. Physiology, bilirubin. Physiology, bilirubin. In: [Internet] S, editor: Treasure Island (FL). 2023.
Vowden P, Bond E, Meuleneire F. Managing high viscosity exudate. Wounds UK. 2015;11(1):56‐60.
Kaartinen IS, Kuokkanen HO. Suprathel® causes less bleeding and scarring than Mepilex® transfer in the treatment of donor sites of split‐thickness skin grafts. J Plast Surg Hand Surg. 2011;45(4–5):200‐203.
معلومات مُعتمدة: Crafoordska Stiftelsen; 2020-02016 Vetenskapsrådet; Alfred Österlunds Stiftelse; HudFonden; Swedish Government Funds for Clinical Research (ALF); Xinnate AB
فهرسة مساهمة: Keywords: clinical photography; clinical studies; clinical trial; imaging; wound healing
تواريخ الأحداث: Date Created: 20240321 Date Completed: 20240710 Latest Revision: 20240710
رمز التحديث: 20240710
DOI: 10.1111/wrr.13172
PMID: 38511666
قاعدة البيانات: MEDLINE
الوصف
تدمد:1524-475X
DOI:10.1111/wrr.13172