دورية أكاديمية

Deep learning-based image reconstruction for the multi-arterial phase images: improvement of the image quality to assess the small hypervascular hepatic tumor on gadoxetic acid-enhanced liver MRI.

التفاصيل البيبلوغرافية
العنوان: Deep learning-based image reconstruction for the multi-arterial phase images: improvement of the image quality to assess the small hypervascular hepatic tumor on gadoxetic acid-enhanced liver MRI.
المؤلفون: Yun SM; Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea., Hong SB; Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea. cinematiclife7@hanmail.net.; Department of Radiology and Research Institute of Radiology, Pusan National University Hospital, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, Korea. cinematiclife7@hanmail.net., Lee NK; Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea., Kim S; Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea., Ji YH; Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea., Seo HI; Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea., Park YM; Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea., Noh BG; Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea., Nickel MD; Siemens Healthcare GmbH, Erlangen, Germany.
المصدر: Abdominal radiology (New York) [Abdom Radiol (NY)] 2024 Jun; Vol. 49 (6), pp. 1861-1869. Date of Electronic Publication: 2024 Mar 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101674571 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2366-0058 (Electronic) NLM ISO Abbreviation: Abdom Radiol (NY) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [New York] : Springer, [2016]-
مواضيع طبية MeSH: Gadolinium DTPA* , Liver Neoplasms*/diagnostic imaging , Contrast Media* , Deep Learning* , Magnetic Resonance Imaging*/methods, Humans ; Female ; Male ; Middle Aged ; Retrospective Studies ; Aged ; Adult ; Image Enhancement/methods ; Image Interpretation, Computer-Assisted/methods ; Liver/diagnostic imaging ; Signal-To-Noise Ratio
مستخلص: Purpose: To evaluated the impact of a deep learning (DL)-based image reconstruction on multi-arterial-phase magnetic resonance imaging (MA-MRI) for small hypervascular hepatic masses in patients who underwent gadoxetic acid-enhanced liver MRI.
Methods: We retrospectively enrolled 55 adult patients (aged ≥ 18 years) with small hepatic hypervascular mass (≤ 3 cm) between December 2022 and February 2023. All patients underwent MA-MRI, subsequently reconstructed with a DL-based application. Qualitative assessment with Linkert scale including motion artifact (MA), liver edge (LE), hepatic vessel clarity (HVC) and image quality (IQ) was performed. Quantitative image analysis including signal to noise ratio (SNR), contrast to noise ratio (CNR) and noise was performed.
Results: On both arterial phases (APs), all qualitative parameters were significantly improved after DL-based image reconstruction. (LE on 1st AP, 1.22 vs 1.61; LE on 2nd AP, 1.21 vs 1.65; HVC on 1st AP, 1.24 vs 1.39; HVC on 2nd AP, 1.24 vs 1.44; IQ on 1st AP, 1.17 vs 1.45; IQ on 2nd AP, 1.17 vs 1.47, all p values < 0.05). The SNR, CNR and noise were significantly improved after DL-based image reconstruction. (SNR on AP1, 279.08 vs 176.14; SNR on AP2, 334.34 vs 199.24; CNR on AP1, 106.09 vs 64.14; CNR on AP2, 129.66 vs 73.73; noise on AP1, 1.51 vs 2.33; noise on AP2, 1.45 vs 2.28, all p values < 0.05).
Conclusions: Gadoxetic acid-enhanced MA-MRI with DL-based image reconstruction improved the qualitative and quantitative parameters. Despite the short acquisition time, high-quality MA-MRI is now achievable.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Low R. N. (2007). Abdominal MRI advances in the detection of liver tumours and characterisation. Lancet Oncol, 8(6), 525-535. https://doi.org/10.1016/S1470-2045(07)70170-5. (PMID: 10.1016/S1470-2045(07)70170-517540304)
Keogan M. T., Edelman R. R. (2001). Technologic advances in abdominal MR imaging. Radiology, 220(2), 310-320. https://doi.org/10.1148/radiology.220.2.r01au22310. (PMID: 10.1148/radiology.220.2.r01au2231011477231)
Yoon J. H., Nickel M. D., Peeters J. M. & Lee J. M. (2019). Rapid Imaging: Recent Advances in Abdominal MRI for Reducing Acquisition Time and Its Clinical Applications. Korean J Radiol, 20(12), 1597-1615. https://doi.org/10.3348/kjr.2018.0931. (PMID: 10.3348/kjr.2018.0931318541486923214)
Nikolaou K. (2020). Technological Advances of Magnetic Resonance Imaging in Today's Healthcare Environment. Invest Radiol, 55(9), 543-544. https://doi.org/10.1097/RLI.0000000000000683. (PMID: 10.1097/RLI.000000000000068332404628)
Ueda T., Ohno Y., Yamamoto K., Murayama K., Ikedo M., Yui M., Hanamatsu S., Tanaka Y., Obama Y., Ikeda H. & Toyama H. (2022). Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging. Radiology, 303(2), 373-381. https://doi.org/10.1148/radiol.204097. (PMID: 10.1148/radiol.20409735103536)
Gassenmaier S., Afat S., Nickel D., Kannengiesser S., Herrmann J., Hoffmann R. & Othman A. E. (2021). Application of a Novel Iterative Denoising and Image Enhancement Technique in T1-Weighted Precontrast and Postcontrast Gradient Echo Imaging of the Abdomen: Improvement of Image Quality and Diagnostic Confidence. Invest Radiol, 56(5), 328-334. https://doi.org/10.1097/RLI.0000000000000746. (PMID: 10.1097/RLI.000000000000074633214390)
Almansour H., Gassenmaier S., Nickel D., Kannengiesser S., Afat S., Weiss J., Hoffmann R. & Othman A. E. (2021). Deep Learning-Based Superresolution Reconstruction for Upper Abdominal Magnetic Resonance Imaging: An Analysis of Image Quality, Diagnostic Confidence, and Lesion Conspicuity. Invest Radiol, 56(8), 509-516. https://doi.org/10.1097/RLI.0000000000000769. (PMID: 10.1097/RLI.000000000000076933625063)
Afat S., Wessling D., Afat C., Nickel D., Arberet S., Herrmann J., Othman A. E. & Gassenmaier S. (2022). Analysis of a Deep Learning-Based Superresolution Algorithm Tailored to Partial Fourier Gradient Echo Sequences of the Abdomen at 1.5 T: Reduction of Breath-Hold Time and Improvement of Image Quality. Invest Radiol, 57(3), 157–162. https://doi.org/10.1097/RLI.0000000000000825.
Wang X., Ma J., Bhosale P., Ibarra Rovira J. J., Qayyum A., Sun J., Bayram E. & Szklaruk J. (2021). Novel deep learning-based noise reduction technique for prostate magnetic resonance imaging. Abdom Radiol (NY), 46(7), 3378-3386. https://doi.org/10.1007/s00261-021-02964-6. (PMID: 10.1007/s00261-021-02964-633580348)
Lee Y. J., Lee J. M., Lee J. S., Lee H. Y., Park B. H., Kim Y. H., Han J. K. & Choi B. I. (2015). Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology, 275(1), 97-109. https://doi.org/10.1148/radiol.14140690. (PMID: 10.1148/radiol.1414069025559230)
Choi S. H., Byun J. H., Lim Y. S., Yu E., Lee S. J., Kim S. Y., Won H. J., Shin Y. M. & Kim P. N. (2016). Diagnostic criteria for hepatocellular carcinoma ⩽3 cm with hepatocyte-specific contrast-enhanced magnetic resonance imaging. J Hepatol, 64(5), 1099-1107. https://doi.org/10.1016/j.jhep.2016.01.018. (PMID: 10.1016/j.jhep.2016.01.01826820629)
Tirkes T., Mehta P., Aisen A. M., Lall C. & Akisik F. (2015). Comparison of Dynamic Phase Enhancement of Hepatocellular Carcinoma Using Gadoxetate Disodium vs Gadobenate Dimeglumine. J Comput Assist Tomogr, 39(4), 479-482. https://doi.org/10.1097/RCT.0000000000000234. (PMID: 10.1097/RCT.000000000000023425783800)
European Association for the Study of the Liver. Electronic address e. e. e., European Association for the Study of the L. (2018). EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol, 69(1), 182-236. https://doi.org/10.1016/j.jhep.2018.03.019. (PMID: 10.1016/j.jhep.2018.03.019)
Marrero J. A., Kulik L. M., Sirlin C. B., Zhu A. X., Finn R. S., Abecassis M. M., Roberts L. R. & Heimbach J. K. (2018). Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 68(2), 723-750. https://doi.org/10.1002/hep.29913. (PMID: 10.1002/hep.2991329624699)
Huh J., Kim S. Y., Yeh B. M., Lee S. S., Kim K. W., Wu E. H., Wang Z. J., Zhao L. Q. & Chang W. C. (2015). Troubleshooting Arterial-Phase MR Images of Gadoxetate Disodium-Enhanced Liver. Korean J Radiol, 16(6), 1207-1215. https://doi.org/10.3348/kjr.2015.16.6.1207. (PMID: 10.3348/kjr.2015.16.6.1207265761094644741)
Rohrer M., Bauer H., Mintorovitch J., Requardt M. & Weinmann H. J. (2005). Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol, 40(11), 715-724. https://doi.org/10.1097/01.rli.0000184756.66360.d3. (PMID: 10.1097/01.rli.0000184756.66360.d316230904)
Davenport M. S., Caoili E. M., Kaza R. K. & Hussain H. K. (2014). Matched within-patient cohort study of transient arterial phase respiratory motion-related artifact in MR imaging of the liver: gadoxetate disodium versus gadobenate dimeglumine. Radiology, 272(1), 123-131. https://doi.org/10.1148/radiol.14132269. (PMID: 10.1148/radiol.1413226924617733)
Pietryga J. A., Burke L. M., Marin D., Jaffe T. A. & Bashir M. R. (2014). Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology, 271(2), 426-434. https://doi.org/10.1148/radiol.13131988. (PMID: 10.1148/radiol.1313198824475864)
Grazioli L., Faletti R., Frittoli B., Battisti G., Ambrosini R., Romanini L., Gatti M. & Fonio P. (2018). Evaluation of incidence of acute transient dyspnea and related artifacts after administration of gadoxetate disodium: a prospective observational study. Radiol Med, 123(12), 910-917. https://doi.org/10.1007/s11547-018-0927-y. (PMID: 10.1007/s11547-018-0927-y30084108)
Ichikawa S., Motosugi U., Sato K., Shimizu T., Wakayama T. & Onishi H. (2021). Transient Respiratory-motion Artifact and Scan Timing during the Arterial Phase of Gadoxetate Disodium-enhanced MR Imaging: The Benefit of Shortened Acquisition and Multiple Arterial Phase Acquisition. Magn Reson Med Sci, 20(3), 280-289. https://doi.org/10.2463/mrms.mp.2020-0064. (PMID: 10.2463/mrms.mp.2020-006432863326)
Xiao Y. D., Ma C., Liu J., Li H. B., Zhou S. K. & Zhang Z. S. (2018). Transient severe motion during arterial phase in patients with Gadoxetic acid administration: Can a five hepatic arterial subphases technique mitigate the artifact? Exp Ther Med, 15(3), 3133-3139. https://doi.org/10.3892/etm.2018.5760. (PMID: 10.3892/etm.2018.5760294567165795548)
Yoon J. H., Lee J. M., Yu M. H., Kim E. J. & Han J. K. (2016). Triple Arterial Phase MR Imaging with Gadoxetic Acid Using a Combination of Contrast Enhanced Time Robust Angiography, Keyhole, and Viewsharing Techniques and Two-Dimensional Parallel Imaging in Comparison with Conventional Single Arterial Phase. Korean J Radiol, 17(4), 522-532. https://doi.org/10.3348/kjr.2016.17.4.522. (PMID: 10.3348/kjr.2016.17.4.522273905434936174)
Gruber L., Rainer V., Plaikner M., Kremser C., Jaschke W. & Henninger B. (2018). CAIPIRINHA-Dixon-TWIST (CDT)-VIBE MR imaging of the liver at 3.0T with gadoxetate disodium: a solution for transient arterial-phase respiratory motion-related artifacts? Eur Radiol, 28(5), 2013–2021. https://doi.org/10.1007/s00330-017-5210-4.
Hong S., Choi S. H., Hong S. B., Kim S. Y. & Lee S. S. (2022). Clinical usefulness of multiple arterial-phase images in gadoxetate disodium-enhanced magnetic resonance imaging: a systematic review and meta-analysis. Eur Radiol, 32(8), 5413-5423. https://doi.org/10.1007/s00330-022-08620-x. (PMID: 10.1007/s00330-022-08620-x35192009)
Hong S. B., Hong S., Choi S. H., Park S. Y., Shim J. H., Kim S. Y., Lee S. S. & Kim S. (2023). Multiple arterial-phase MRI with gadoxetic acid improves diagnosis of hepatocellular carcinoma https://doi.org/10.1111/liv.15470.
Almansour H., Herrmann J., Gassenmaier S., Lingg A., Nickel M. D., Kannengiesser S., Arberet S., Othman A. E. & Afat S. (2023). Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity. Acad Radiol, 30(5), 863-872. https://doi.org/10.1016/j.acra.2022.06.003. (PMID: 10.1016/j.acra.2022.06.00335810067)
Hammernik K., Klatzer T., Kobler E., Recht M. P., Sodickson D. K., Pock T. & Knoll F. (2018). Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med, 79(6), 3055-3071. https://doi.org/10.1002/mrm.26977. (PMID: 10.1002/mrm.2697729115689)
Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L., Desmaison A., Köpf A., Yang E., DeVito Z., Raison M., Tejani A., Chilamkurthy S., Steiner B., Fang L., Bai J. & Chintala S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. Neural Information Processing Systems.
ONYX RUNTIME Developers (2021) Acceleraterd PyTorch Machine Learning. ONNX RUNTIME Web site. https://onnxruntime.ai/ . Accessed 22 September 2023.
Kaltenbach B., Bucher A. M., Wichmann J. L., Nickel D., Polkowski C., Hammerstingl R., Vogl T. J. & Bodelle B. (2017). Dynamic Liver Magnetic Resonance Imaging in Free-Breathing: Feasibility of a Cartesian T1-Weighted Acquisition Technique With Compressed Sensing and Additional Self-Navigation Signal for Hard-Gated and Motion-Resolved Reconstruction. Invest Radiol, 52(11), 708-714. https://doi.org/10.1097/RLI.0000000000000396. (PMID: 10.1097/RLI.000000000000039628622249)
Hong S. B., Lee N. K., Kim S., Seo H. I., Kim H. S., Kim D. U., Kim T. U. & Ryu H. S. (2019). Modified CAIPIRINHA-VIBE without view-sharing on gadoxetic acid-enhanced multi-arterial phase MR imaging for diagnosing hepatocellular carcinoma: comparison with the CAIPIRINHA-Dixon-TWIST-VIBE. Eur Radiol, 29(7), 3574-3583. https://doi.org/10.1007/s00330-019-06095-x. (PMID: 10.1007/s00330-019-06095-x30993435)
Tanaka O., Ito H., Yamada K., Kubota T., Kizu O., Kato T., Yamagami T. & Nishimura T. (2005). Higher lesion conspicuity for SENSE dynamic MRI in detecting hypervascular hepatocellular carcinoma: analysis through the measurements of liver SNR and lesion-liver CNR comparison with conventional dynamic MRI. Eur Radiol, 15(12), 2427-2434. https://doi.org/10.1007/s00330-005-2863-1. (PMID: 10.1007/s00330-005-2863-116041592)
Hallgren K. A. (2012). Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. Tutor Quant Methods Psychol, 8(1), 23–34. https://doi.org/10.20982/tqmp.08.1.p023.
Riffel P., Attenberger U. I., Kannengiesser S., Nickel M. D., Arndt C., Meyer M., Schoenberg S. O. & Michaely H. J. (2013). Highly accelerated T1-weighted abdominal imaging using 2-dimensional controlled aliasing in parallel imaging results in higher acceleration: a comparison with generalized autocalibrating partially parallel acquisitions parallel imaging. Invest Radiol, 48(7), 554-561. https://doi.org/10.1097/RLI.0b013e31828654ff. (PMID: 10.1097/RLI.0b013e31828654ff23462674)
فهرسة مساهمة: Keywords: Deep-learning image reconstruction; Gadoxetic acid; Liver; Magnetic resonance imaging; Multi-arterial-phase magnetic resonance imaging
المشرفين على المادة: 0 (gadolinium ethoxybenzyl DTPA)
K2I13DR72L (Gadolinium DTPA)
0 (Contrast Media)
تواريخ الأحداث: Date Created: 20240321 Date Completed: 20240628 Latest Revision: 20240628
رمز التحديث: 20240628
DOI: 10.1007/s00261-024-04236-5
PMID: 38512517
قاعدة البيانات: MEDLINE
الوصف
تدمد:2366-0058
DOI:10.1007/s00261-024-04236-5