دورية أكاديمية

Nucleic acid-based vaccine for ovarian cancer cells; bench to bedside.

التفاصيل البيبلوغرافية
العنوان: Nucleic acid-based vaccine for ovarian cancer cells; bench to bedside.
المؤلفون: Al-Hawary SIS; Department of Business Administration, Business School, Al al-Bayt University, Mafraq, Jordan., Jasim SA; Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq.; Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq., Hjazi A; Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia., Oghenemaro EF; Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria., Kaur I; Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India.; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India., Kumar A; Department of Nuclear and Renewable Energy, Ural Federal University Named after The First President of Russia, Yekaterinburg, Russia., Al-Ani AM; Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq., Alwaily ER; Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq., Redhee AH; Medical Laboratory Technique College, The Islamic University, Najaf, Iraq.; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq., Mustafa YF; Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq.
المصدر: Cell biochemistry and function [Cell Biochem Funct] 2024 Mar; Vol. 42 (2), pp. e3978.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 8305874 Publication Model: Print Cited Medium: Internet ISSN: 1099-0844 (Electronic) Linking ISSN: 02636484 NLM ISO Abbreviation: Cell Biochem Funct Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, England : Wiley-Blackwell
Original Publication: Guildford, Surrey : Butterworth Scientific Ltd., c1983-
مواضيع طبية MeSH: Ovarian Neoplasms*/drug therapy , Cancer Vaccines*/therapeutic use, Humans ; Female ; Nucleic Acid-Based Vaccines ; Antigens, Neoplasm
مستخلص: Ovarian cancer continues to be a difficult medical issue that affects millions of individuals worldwide. Important platforms for cancer immunotherapy include checkpoint inhibitors, chimeric antigen receptor T cells, bispecific antibodies, cancer vaccines, and other cell-based treatments. To avoid numerous infectious illnesses, conventional vaccinations based on synthetic peptides, recombinant subunit vaccines, and live attenuated and inactivated pathogens are frequently utilized. Vaccine manufacturing processes, however, are not entirely safe and carry a significant danger of contaminating living microorganisms. As a result, the creation of substitute vaccinations is required for both viral and noninfectious illnesses, including cancer. Recently, there has been testing of nucleic acid vaccines, or NAVs, as a cancer therapeutic. Tumor antigens (TAs) are genetically encoded by DNA and mRNA vaccines, which the host uses to trigger immune responses against ovarian cancer cells that exhibit the TAs. Despite being straightforward, safe, and easy to produce, NAVs are not currently thought to be an ideal replacement for peptide vaccines. Some obstacles to this strategy include selecting the appropriate therapeutic agents (TAs), inadequate immunogenicity, and the immunosuppressive characteristic of ovarian cancer. We focus on strategies that have been employed to increase NAVs' effectiveness in the fight against ovarian cancer in this review.
(© 2024 John Wiley & Sons Ltd.)
References: Siminiak N, Czepczyński R, Zaborowski MP, Iżycki D. Immunotherapy in ovarian cancer. Arch Immunol Ther Exp. 2022;70(1):19.
Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol. 2018;834:188‐196.
Yang C, Xia BR, Zhang ZC, Zhang YJ, Lou G, Jin WL. Immunotherapy for ovarian cancer: adjuvant, combination, and neoadjuvant. Front Immunol. 2020;11:577869.
Veneziani AC, Gonzalez‐Ochoa E, Oza AM. Emerging peptide therapeutics for the treatment of ovarian cancer. Expert Opin Emerging Drugs. 2023;28(2):129‐144.
Odunsi K. Immunotherapy in ovarian cancer. Ann Oncol. 2017;28(suppl 8):viii1‐viii7.
Chandra A, Pius C, Nabeel M, et al. Ovarian cancer: current status and strategies for improving therapeutic outcomes. Cancer Med. 2019;8(16):7018‐7031.
Kandalaft LE, Dangaj Laniti D, Coukos G. Immunobiology of high‐grade serous ovarian cancer: lessons for clinical translation. Nat Rev Cancer. 2022;22(11):640‐656.
Jahanafrooz Z, Baradaran B, Mosafer J, et al. Comparison of DNA and mRNA vaccines against cancer. Drug Discovery Today. 2020;25(3):552‐560.
Amanpour S. The rapid development and early success of covid 19 vaccines have raised hopes for accelerating the cancer treatment mechanism. Archiv Razi Institute. 2021;76(1):1‐6.
Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W. Induction of cytotoxic T‐lymphocyte responses in vivo after vaccinations with peptide‐pulsed dendritic cells. Blood. 2000;96(9):3102‐3108.
Loveland BE, Zhao A, White S, et al. Mannan‐MUC1‐pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma. Clin Cancer Res. 2006;12(3 Pt 1):869‐877.
Hernando JJ, Park TW, Fischer HP, et al. Vaccination with dendritic cells transfected with mRNA‐encoded folate‐receptor‐α for relapsed metastatic ovarian cancer. Lancet Oncol. 2007;8(5):451‐454.
Chu CS, Boyer J, Schullery DS, et al. Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission. Cancer Immunol Immunother. 2012;61(5):629‐641.
Hernando JJ, Park TW, Kübler K, Offergeld R, Schlebusch H, Bauknecht T. Vaccination with autologous tumour antigen‐pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol Immunother. 2002;51(1):45‐52.
Kandalaft LE, Powell Jr. DJ, Chiang CL, et al. Autologous lysate‐pulsed dendritic cell vaccination followed by adoptive transfer of vaccine‐primed ex vivo co‐stimulated T cells in recurrent ovarian cancer. Oncoimmunology. 2013;2(1):e22664.
Diefenbach CSM, Gnjatic S, Sabbatini P, et al. Safety and immunogenicity study of NY‐ESO‐1b peptide and montanide ISA‐51 vaccination of patients with epithelial ovarian cancer in high‐risk first remission. Clin Cancer Res. 2008;14(9):2740‐2748.
Ohno S, Kyo S, Myojo S, et al. Wilms' tumor 1 (WT1) peptide immunotherapy for gynecological malignancy. Anticancer Res. 2009;29(11):4779‐4784.
Miyatake T, Ueda Y, Morimoto A, et al. WT1 peptide immunotherapy for gynecologic malignancies resistant to conventional therapies: a phase II trial. J Cancer Res Clin Oncol. 2013;139(3):457‐463.
Leffers N, Vermeij R, Hoogeboom BN, et al. Long‐term clinical and immunological effects of p53‐SLP® vaccine in patients with ovarian cancer. Int J Cancer. 2012;130(1):105‐112.
Rahma OE, Ashtar E, Czystowska M, et al. A gynecologic oncology group phase II trial of two p53 peptide vaccine approaches: subcutaneous injection and intravenous pulsed dendritic cells in high recurrence risk ovarian cancer patients. Cancer Immunol Immunother. 2012;61(3):373‐384.
Reinartz S, Köhler S, Schlebusch H, et al. Vaccination of patients with advanced ovarian carcinoma with the anti‐idiotype ACA125. Clin Cancer Res. 2004;10(5):1580‐1587.
Chianese‐Bullock KA, Irvin Jr. WP, Petroni GR, et al. A multipeptide vaccine is safe and elicits T‐cell responses in participants with advanced stage ovarian cancer. J Immunother. 2008;31(4):420‐430.
Kawano K, Tsuda N, Matsueda S, et al. Feasibility study of personalized peptide vaccination for recurrent ovarian cancer patients. Immunopharmacol Immunotoxicol. 2014;36(3):224‐236.
Kalli KR, Block MS, Kasi PM, et al. Folate receptor alpha peptide vaccine generates immunity in breast and ovarian cancer patients. Clin Cancer Res. 2018;24(13):3014‐3025.
Mohebtash M, Tsang KY, Madan RA, et al. A pilot study of MUC‐1/CEA/TRICOM poxviral‐based vaccine in patients with metastatic breast and ovarian cancer. Clin Cancer Res. 2011;17(22):7164‐7173.
Senzer N, Barve M, Kuhn J, et al. Phase I trial of “bi‐shRNAi(furin)/GMCSF DNA/autologous tumor cell” vaccine (FANG) in advanced cancer. Mol Ther. 2012;20(3):679‐686.
Buckanovich RJ. Ovarian cancer vaccine trials and tribulations. Expert Opin Biol Ther. 2007;7(1):103‐112.
Bobisse S, Bianchi V, Tanyi JL, et al. A phase 1 trial of adoptive transfer of vaccine‐primed autologous circulating T cells in ovarian cancer. Nature cancer. 2023;4(10):1410‐1417.
Zhao J, Du G, Sun X. Tumor antigen‐based nanovaccines for cancer immunotherapy: a review. J Biomed Nanotechnol. 2021;17(11):2099‐2113.
Yee C, Lizee GA. Personalized therapy: tumor antigen discovery for adoptive cellular therapy. Cancer J. 2017;23(2):144‐148.
Darragh LB, Karam SD. Amateur antigen‐presenting cells in the tumor microenvironment. Mol Carcinog. 2022;61(2):153‐164.
Zhang Z, Lu M, Qin Y, et al. Neoantigen: a new breakthrough in tumor immunotherapy. Front Immunol. 2021;12:672356.
Wang RF, Rosenberg SA. Human tumor antigens for cancer vaccine development. Immunol Rev. 1999;170:85‐100.
Smith CC, Selitsky SR, Chai S, Armistead PM, Vincent BG, Serody JS. Alternative tumour‐specific antigens. Nat Rev Cancer. 2019;19(8):465‐478.
Wang RF. Human tumor antigens: implications for cancer vaccine development. J Mol Med. 1999;77(9):640‐655.
Sun Z, Jing C, Zhan H, et al. Identification of tumor antigens and immune landscapes for bladder urothelial carcinoma mRNA vaccine. Front Immunol. 2023;14:1097472.
Shemesh CS, Hsu JC, Hosseini I, et al. Personalized cancer vaccines: clinical landscape, challenges, and opportunities. Mol Ther. 2021;29(2):555‐570.
Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science. 2018;359(6382):1355‐1360.
Sadeghi Najafabadi SA, Bolhassani A, Aghasadeghi MR. Tumor cell‐based vaccine: an effective strategy for eradication of cancer cells. Immunotherapy. 2022;14(8):639‐654.
Peng M, Mo Y, Wang Y, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019;18(1):128.
Nomura T, Hirata K, Shimaoka T, et al. Cancer vaccine therapy using tumor endothelial cells as antigens suppresses solid tumor growth and metastasis. Biol Pharm Bull. 2017;40(10):1661‐1668.
Liu W, Tang H, Li L, Wang X, Yu Z, Li J. Peptide‐based therapeutic cancer vaccine: current trends in clinical application. Cell Proliferation. 2021;54(5):e13025.
Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater. 2017;16(4):489‐496.
Huang X, Tang T, Zhang G, Liang T. Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol Cancer. 2021;20(1):50.
Guan H, Wu Y, Li L, et al. Tumor neoantigens: novel strategies for application of cancer immunotherapy. Oncol Res. 2023;31(4):437‐448.
Cai J, Wang H, Wang D, Li Y. Improving cancer vaccine efficiency by nanomedicine. Advanced Biosys. 2019;3(3):e1800287.
Accolla RS, Buonaguro L, Melief C, Rammensee HG, Bassani‐Sternberg M. Editorial: novel strategies for anti‐tumor vaccines. Front Immunol. 2020;10:3117.
Rose S, Poh A. Personalized DNA vaccine tamps down HCC. Cancer Discovery. 2022;12(1):7‐8.
Hilf N, Kuttruff‐Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 2019;565(7738):240‐245.
Xiao M, Xie L, Cao G, et al. CD4(+) T‐cell epitope‐based heterologous prime‐boost vaccination potentiates anti‐tumor immunity and PD‐1/PD‐L1 immunotherapy. J Immunother Cancer. 2022;10(5):e004022.
Wang Y, Song W, Xu Q, et al. Adjuvant DNA vaccine pNMM promotes enhanced specific immunity and anti‐tumor effects. Hum Vaccines Immunother. 2023;19(1):2202127.
Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur J Immunol. 2019;49(8):1140‐1146.
Frey B, Rubner Y, Wunderlich R, et al. Induction of abscopal anti‐tumor immunity and immunogenic tumor cell death by ionizing irradiation: implications for cancer therapies. Curr Med Chem. 2012;19(12):1751‐1764.
Crinier A, Narni‐Mancinelli E, Ugolini S, Vivier E. SnapShot: natural killer cells. Cell. 2020;180(6):1280.
Cheuk AT, Wells JW, Chan L, et al. Anti‐tumor immunity in a model of acute myeloid leukemia. Leuk Lymphoma. 2009;50(3):447‐454.
Kalafati L, Kourtzelis I, Schulte‐Schrepping J, et al. Innate immune training of granulopoiesis promotes anti‐tumor activity. Cell. 2020;183(3):771‐785.
Vella JL, Molodtsov A, Angeles CV, Branchini BR, Turk MJ, Huang YH. Dendritic cells maintain anti‐tumor immunity by positioning CD8 skin‐resident memory T cells. Life Sci Alliance. 2021;4(10):e202101056.
Mysore V, Cullere X, Mears J, et al. FcγR engagement reprograms neutrophils into antigen cross‐presenting cells that elicit acquired anti‐tumor immunity. Nat Commun. 2021;12(1):4791.
Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021;20(1):41.
Martin K, Schreiner J, Zippelius A. Modulation of APC function and anti‐tumor immunity by anti‐cancer drugs. Front Immunol. 2015;6:501.
Krombach J, Hennel R, Brix N, et al. Priming anti‐tumor immunity by radiotherapy: dying tumor cell‐derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology. 2019;8(1):e1523097.
Kang T, Huang Y, Zhu Q, et al. Necroptotic cancer cells‐mimicry nanovaccine boosts anti‐tumor immunity with tailored immune‐stimulatory modality. Biomaterials. 2018;164:80‐97.
Espinosa‐Carrasco G, Scrivo A, Zumbo P, et al. Intratumoral immune triads are required for adoptive T cell therapy‐mediated elimination of solid tumors. bioRxiv. 2023;12:5474.
Dalyot‐Herman N, Bathe OF, Malek TR. Reversal of CD8+ T cell ignorance and induction of anti‐tumor immunity by peptide‐pulsed APC. The Journal of Immunology. 2000;165(12):6731‐6737.
Bou Nasser Eddine F, Ramia E, Tosi G, Forlani G, Accolla RS. Tumor immunology meets immunology: modified cancer cells as professional APC for priming naïve tumor‐specific CD4+ T cells. Oncoimmunology. 2017;6(11):e1356149.
Barrio‐Calvo M, Kofoed SV, Holste SC, et al. Corrigendum: targeting neoantigens to APC‐surface molecules improves the immunogenicity and anti‐tumor efficacy of a DNA cancer vaccine. Front Immunol. 2023;14:1234912.
Zhu X, Li K, Liu G, et al. Microbial metabolite butyrate promotes anti‐PD‐1 antitumor efficacy by modulating T cell receptor signaling of cytotoxic CD8 T cell. Gut Microbes. 2023;15(2):2249143.
Ye D, Desai J, Shi J, et al. Co‐enrichment of CD8‐positive T cells and macrophages is associated with clinical benefit of tislelizumab in solid tumors. Biomark Res. 2023;11(1):25.
Faghih Z, Shobeiri SS, Ariafar A, et al. CD8+ T lymphocyte subsets in bladder tumor draining lymph nodes. Iranian J Immunol: IJI. 2016;13(4):237‐248.
Wang Z, Chen T, Lin W, et al. Functional tumor specific CD8 + T cells in spleen express a high level of PD‐1. Int Immunopharmacol. 2020;80:106242.
St Paul M, Saibil SD, Han S, et al. Coenzyme A fuels T cell anti‐tumor immunity. Cell Metab. 2021;33(12):2415‐2427.
Qiu K, Duan X, Mao M, et al. mRNA‐LNP vaccination‐based immunotherapy augments CD8(+) T cell responses against HPV‐positive oropharyngeal cancer. NPJ Vaccines. 2023;8(1):144.
Huang H, Huang Z, Ge J, et al. CD226 identifies functional CD8(+)T cells in the tumor microenvironment and predicts a better outcome for human gastric cancer. Front Immunol. 2023;14:1150803.
Bohner P, Chevalier MF, Cesson V, et al. Double positive CD4(+)CD8(+) T cells are enriched in urological cancers and favor T helper‐2 polarization. Front Immunol. 2019;10:622.
Zajac MD, Sangewar N, Lokhandwala S, et al. Adenovirus‐vectored African swine fever virus pp220 induces robust antibody, IFN‐γ, and CTL responses in pigs. Front Vet Sci. 2022;9:921481.
Yamaguchi S, Tashiro‐Yamaji J, Lee K, et al. IFN‐gamma: a cytokine essential for rejection of CTL‐resistant, virus‐infected cells. J Interf Cytokine Res. 2005;25(6):328‐337.
Puliaev R, Nguyen P, Finkelman FD, Via CS. Differential requirement for IFN‐gamma in CTL maturation in acute murine graft‐versus‐host disease. J Immunol. 2004;173(2):910‐919.
Hidalgo LG, Urmson J, Halloran PF. IFN‐gamma decreases CTL generation by limiting IL‐2 production: a feedback loop controlling effector cell production. Am J Transplantation. 2005;5(4 Pt 1):651‐661.
Yan Y, Huang L, Liu Y, et al. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: implications for antitumor immunity. J Hematol Oncol. 2022;15(1):104.
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 2020;19(1):116.
Itahashi K, Irie T, Nishikawa H. Regulatory T‐cell development in the tumor microenvironment. Eur J Immunol. 2022;52(8):1216‐1227.
Chen D, Zhang X, Li Z, Zhu B. Metabolic regulatory crosstalk between tumor microenvironment and tumor‐associated macrophages. Theranostics. 2021;11(3):1016‐1030.
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discovery. 2018;17(4):261‐279.
Jorritsma SHT, Gowans EJ, Grubor‐Bauk B, Wijesundara DK. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine. 2016;34(46):5488‐5494.
Santos PM, Butterfield LH. Dendritic cell–based cancer vaccines. J Immunol. 2018;200(2):443‐449.
Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr Opin Immunol. 2020;65:14‐20.
Arunachalam PS, Scott MKD, Hagan T, et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature. 2021;596(7872):410‐416.
Wu Y, Li Z, Lin H, Wang H. Identification of tumor antigens and immune subtypes of high‐grade serous ovarian cancer for mRNA vaccine development. J Cancer. 2023;14(14):2655‐2669.
del Carmen MG, Birrer M, Schorge JO. Carcinosarcoma of the ovary: a review of the literature. Gynecol Oncol. 2012;125(1):271‐277.
Yamamoto S, Tsuda H, Kita T, et al. Clinicopathological significance of WT1 expression in ovarian cancer: a possible accelerator of tumor progression in serous adenocarcinoma. Virchows Arch. 2007;451:27‐35.
Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15(17):5323‐5337.
Coosemans A, Vanderstraeten A, Tuyaerts S, et al. Immunological response after WT1 mRNA‐loaded dendritic cell immunotherapy in ovarian carcinoma and carcinosarcoma. Anticancer Res. 2013;33(9):3855‐3859.
Ponsaerts P, Van Tendeloo VF, Berneman ZN. Cancer immunotherapy using RNA‐loaded dendritic cells. Clin Exp Immunol. 2003;134(3):378‐384.
Cheng J, Tang Q, Cao X, Burwinkel B. Cell‐free circulating DNA integrity based on peripheral blood as a biomarker for diagnosis of cancer. 2017.
Zhang R, Pu W, Zhang S, et al. Clinical value of ALU concentration and integrity index for the early diagnosis of ovarian cancer: a retrospective cohort trial. PLoS One. 2018;13(2):e0191756.
Waki K, Yokomizo K, Kawano K, Tsuda N, Komatsu N, Yamada A. Integrity of plasma DNA is inversely correlated with vaccine‐induced antitumor immunity in ovarian cancer patients. Cancer Immunol Immunother. 2020;69:2001‐2007.
Wang H, Rosen DG, Wang H, Fuller GN, Zhang W, Liu J. Insulin‐like growth factor‐binding protein 2 and 5 are differentially regulated in ovarian cancer of different histologic types. Mod Pathol. 2006;19(9):1149‐1156.
Cecil DL, Liao JB, Dang Y, et al. Immunization with a plasmid DNA vaccine encoding the N‐terminus of insulin‐like growth factor binding protein‐2 in advanced ovarian cancer leads to high‐level type I immune responses. Clin Cancer Res. 2021;27(23):6405‐6412.
Bristow RE, Baldwin RL, Yamada SD, Korc M, Karlan BY. Altered expression of transforming growth factor‐β ligands and receptors in primary and recurrent ovarian carcinoma. Cancer. 1999;85(3):658‐668.
Oh J, Barve M, Matthews CM, et al. Phase II study of Vigil® DNA engineered immunotherapy as maintenance in advanced stage ovarian cancer. Gynecol Oncol. 2016;143(3):504‐510.
Sabbatini P, Tsuji T, Ferran L, et al. Phase I trial of overlapping long peptides from a tumor self‐antigen and poly‐ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res. 2012;18(23):6497‐6508.
Odunsi K, Matsuzaki J, James SR, et al. Epigenetic potentiation of NY‐ESO‐1 vaccine therapy in human ovarian cancer. Cancer Immunol Res. 2014;2(1):37‐49.
Tanyi JL, Chiang CL‐L, Chiffelle J, et al. Personalized cancer vaccine strategy elicits polyfunctional T cells and demonstrates clinical benefits in ovarian cancer. NPJ Vaccines. 2021;6(1):36.
Bhojnagarwala PS, Perales‐Puchalt A, Cooch N, Sardesai NY, Weiner DB. A synDNA vaccine delivering neoAg collections controls heterogenous, multifocal murine lung and ovarian tumors via robust T cell generation. Mol Therapy‐Oncolytics. 2021;21:278‐287.
Zendman AJW, Ruiter DJ, Van Muijen GNP. Cancer/testis‐associated genes: identification, expression profile, and putative function. J Cell Physiol. 2003;194(3):272‐288.
Adair SJ, Hogan KT. Treatment of ovarian cancer cell lines with 5‐aza‐2′‐deoxycytidine upregulates the expression of cancer‐testis antigens and class I major histocompatibility complex‐encoded molecules. Cancer Immunol Immunother. 2009;58:589‐601.
Saleh R, Elkord E. Acquired resistance to cancer immunotherapy: Role of tumor‐mediated immunosuppression. Paper presented at: seminars in cancer biology. 2020.
Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21(5):298‐312.
Yang L, Li A, Lei Q, Zhang Y. Tumor‐intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment. J Hematol Oncol. 2019;12(1):1‐14.
Spranger S, Bao R, Gajewski TF. Melanoma‐intrinsic β‐catenin signalling prevents anti‐tumour immunity. Nature. 2015;523(7559):231‐235.
Chesney JA, Mitchell RA, Yaddanapudi K. Myeloid‐derived suppressor cells—a new therapeutic target to overcome resistance to cancer immunotherapy. J Leukoc Biol. 2017;102(3):727‐740.
Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X. Tumor‐associated macrophages: recent insights and therapies. Front Oncol. 2020;10:188.
Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD‐L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544‐548.
Veglia F, Sanseviero E, Gabrilovich DI. Myeloid‐derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21(8):485‐498.
Mao X, Xu J, Wang W, et al. Crosstalk between cancer‐associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):131.
Enderlin Vaz da Silva Z, Lehr H‐A, Velin D. In vitro and in vivo repair activities of undifferentiated and classically and alternatively activated macrophages. Pathobiology. 2014;81(2):86‐93.
Chazaud B. Macrophages: supportive cells for tissue repair and regeneration. Immunobiology. 2014;219(3):172‐178.
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno‐therapeutics: platforms and current progress. J Hematol Oncol. 2022;15(1):28.
Saade F, Petrovsky N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines. 2012;11(2):189‐209.
Fioretti D, Iurescia S, Fazio VM, Rinaldi M. DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol. 2010;2010:174378.
Strioga MM, Darinskas A, Pasukoniene V, Mlynska A, Ostapenko V, Schijns V. Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: to use or not to use? Vaccine. 2014;32(32):4015‐4024.
Occhipinti S, Sponton L, Rolla S, et al. Chimeric rat/human HER2 efficiently circumvents HER2 tolerance in cancer patients. Clin Cancer Res. 2014;20(11):2910‐2921.
Riccardo F, Bolli E, Macagno M, Arigoni M, Cavallo F, Quaglino E. Chimeric DNA vaccines: an effective way to overcome immune tolerance. Curr Top Microbiol Immunol. 2017;405:99‐122.
Bae J, Prabhala R, Voskertchian A, et al. A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma‐specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia. 2015;29(1):218‐229.
Duperret EK, Perales‐Puchalt A, Stoltz R, et al. A synthetic DNA, multi‐neoantigen vaccine drives predominately MHC class I CD8+ T‐cell responses, impacting tumor challenge. Cancer Immunol Res. 2019;7(2):174‐182.
Shuman S. What messenger RNA capping tells us about eukaryotic evolution. Nat Rev Mol Cell Biol. 2002;3(8):619‐625.
Cao J, He L, Lin G, et al. Cap‐dependent translation initiation factor, eIF4E, is the target for Ouabain‐mediated inhibition of HIF‐1α. Biochem Pharmacol. 2014;89(1):20‐30.
Roy B, Jacobson A. The intimate relationships of mRNA decay and translation. TIG. 2013;29(12):691‐699.
Lima SA, Chipman LB, Nicholson AL, et al. Short poly (A) tails are a conserved feature of highly expressed genes. Nat Struct Mol Biol. 2017;24(12):1057‐1063.
Linares‐Fernández S, Lacroix C, Exposito J‐Y, Verrier B. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol Med. 2020;26(3):311‐323.
فهرسة مساهمة: Keywords: cancer vaccine; nucleic acid; ovarian cancer; therapy; tumors
المشرفين على المادة: 0 (Nucleic Acid-Based Vaccines)
0 (Antigens, Neoplasm)
0 (Cancer Vaccines)
تواريخ الأحداث: Date Created: 20240322 Date Completed: 20240325 Latest Revision: 20240325
رمز التحديث: 20240325
DOI: 10.1002/cbf.3978
PMID: 38515237
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-0844
DOI:10.1002/cbf.3978