دورية أكاديمية

Responsive Anionophores with AND Logic Multi-Stimuli Activation.

التفاصيل البيبلوغرافية
العنوان: Responsive Anionophores with AND Logic Multi-Stimuli Activation.
المؤلفون: Ahmad M; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK., Johnson TG; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK., Flerin M; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK., Duarte F; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK., Langton MJ; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
المصدر: Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2024 May 27; Vol. 63 (22), pp. e202403314. Date of Electronic Publication: 2024 Apr 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 0370543 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3773 (Electronic) Linking ISSN: 14337851 NLM ISO Abbreviation: Angew Chem Int Ed Engl Subsets: MEDLINE
أسماء مطبوعة: Publication: <2004-> : Weinheim : Wiley-VCH
Original Publication: Weinheim/Bergstr. : New York, : Verlag Chemie ; Academic Press, c1962-
مواضيع طبية MeSH: Hydrogen Bonding*, Anions/chemistry ; Ionophores/chemistry ; Oxidation-Reduction ; Molecular Structure ; Ion Transport
مستخلص: Artificial ion transport systems have emerged as an important class of compounds that promise applications in chemotherapeutics as anticancer agents or to treat channelopathies. Stimulus-responsive systems that offer spatiotemporally controlled activity for targeted applications remain rare. Here we utilize dynamic hydrogen bonding interactions of a 4,6-dihydroxy-isophthalamide core to generate a modular platform enabling access to stimuli-responsive ion transporters that can be activated in response to a wide variety of external stimuli, including light, redox, and enzymes, with excellent OFF-ON activation profiles. Alkylation of the two free hydroxyl groups with stimulus-responsive moieties locks the amide bonds through intramolecular hydrogen bonding and hence makes them unavailable for anion binding and transport. Triggering using a particular stimulus to cleave both cages reverses the hydrogen bonding arrangement, to generate a highly preorganized anion binding cavity for efficient transmembrane transport. Integration of two cages that are responsive to orthogonal stimuli enables multi-stimuli activation, where both stimuli are required to trigger transport in an AND logic process. Importantly, the strategy provides a facile method to post-functionalize the highly active transporter core with a variety of stimulus-responsive moieties for targeted activation with multiple triggers.
(© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)
References: .
W. D. C. Stein, Carriers, and Pumps: An Introduction toMembrane Transport, Academic Press: San Diego, CA 1990;.
S. B. H. Hladky, D. A. Ion, Movement in GramicidinChannels. InCurrent Topics in Membranes and Transport, F. Bronner, Ed.; Academic Press: New York 1984, Vol.21, pp 327–372;.
B. Hille, Ion Channels of Excitable Membranes, 3rd Edition 2001, Sinauer.
 .
G. Nagel, D. Ollig, M. Fuhrmann, S. Kateriya, A. M. Musti, E. Bamberg, P. Hegemann, Science 2002, 296, 2395;.
W. A. Catterall, Annu. Rev. Biochem. 1995, 64, 493–531;.
M. Jaiteh, A. Taly, J. Hénin, PLoS One 2016, 11, e0151934.
 .
R. D. Vaughan-Jones, K. W. Spitzer, P. Swietach, J. Mol. Cell. Cardiol. 2009, 46, 318–331;.
T. J. Jentsch, C. A. Hübner, J. C. Fuhrmann, Nat. Cell Biol. 2004, 6, 1039–1047;.
J. Y. Choi, D. Muallem, K. Kiselyov, M. G. Lee, P. J. Thomas, S. Muallem, Nature 2001, 410, 94–97.
 .
J. T. Davis, P. A. Gale, R. Quesada, Chem. Soc. Rev. 2020, 49, 6056–6086;.
A. P. Davis, D. N. Sheppard, B. D. Smith, Chem. Soc. Rev. 2007, 36, 348–357;.
J. T. Davis, O. Okunola, R. Quesada, Chem. Soc. Rev. 2010, 39, 3843–3862;.
S. Matile, A. Vargas Jentzsch, J. Montenegro, A. Fin, Chem. Soc. Rev. 2011, 40, 2453–2474;.
N. Busschaert, C. Caltagirone, W. Van Rossom, P. A. Gale, Chem. Rev. 2015, 115, 8038–8155;.
P. A. Gale, J. T. Davis, R. Quesada, Chem. Soc. Rev. 2017, 46, 2497–2519;.
L. E. Bickerton, T. G. Johnson, A. Kerckhoffs, M. J. Langton, Chem. Sci. 2021, 12, 11252–11274.
 .
M. J. Langton, Nat. Chem. Rev. 2021, 5, 46–61;.
M. Ahmad, S. A. Gartland, M. J. Langton, Angew. Chem. Int. Ed. 2023, 62, e202308842;.
J. de Jong, J. E. Bos, S. J. Wezenberg, Chem. Rev. 2023, 123, 8530–8574.
 .
E. N. W. Howe, N. Busschaert, X. Wu, S. N. Berry, J. Ho, M. E. Light, D. D. Czech, H. A. Klein, J. A. Kitchen, P. A. Gale, J. Am. Chem. Soc. 2016, 138, 8301–8308;.
A. Roy, O. Biswas, P. Talukdar, Chem. Commun. 2017, 53, 3122–3125;.
Y. R. Choi, G. C. Kim, H.-G. Jeon, J. Park, W. Namkung, K.-S. Jeong, Chem. Commun. 2014, 50, 15305–15308;.
E. B. Park, K.-S. Jeong, Chem. Commun. 2015, 51, 9197–9200;.
M. M. Tedesco, B. Ghebremariam, N. Sakai, S. Matile, Angew. Chem. Int. Ed. 1999, 38, 540–543;.
G. A. Woolley, M. K. Kapral, C. M. Deber, FEBS Lett. 1987, 224, 337–342;.
N. Akhtar, N. Pradhan, A. Saha, V. Kumar, O. Biswas, S. Dey, M. Shah, S. Kumar, D. Manna, Chem. Commun. 2019, 55, 8482–8485;.
M. Fares, X. Wu, D. Ramesh, W. Lewis, P. A. Keller, E. N. W. Howe, R. Pérez-Tomás, P. A. Gale, Angew. Chem. Int. Ed. 2020, 59, 17614–17621;.
A. Docker, T. G. Johnson, H. Kuhn, Z. Zhang, M. J. Langton, J. Am. Chem. Soc. 2023, 145, 2661–2668;.
X. Wu, J. R. Small, A. Cataldo, A. M. Withecombe, P. Turner, P. A. Gale, Angew. Chem. Int. Ed. 2019, 58, 15142–15147.
 .
M. Ahmad, S. Metya, A. Das, P. Talukdar, Chem. Eur. J. 2020, 26, 8703–8708;.
A. Kerckhoffs, Z. Bo, S. E. Penty, F. Duarte, M. J. Langton, Org. Biomol. Chem. 2021, 19, 9058–9067;.
A. Kerckhoffs, M. J. Langton, Chem. Sci. 2020, 11, 6325–6331.
S. J. Wezenberg, L.-J. Chen, J. E. Bos, B. L. Feringa, E. N. W. Howe, X. Wu, M. A. Siegler, P. A. Gale, J. Am. Chem. Soc. 2022, 144, 331–338.
 .
M. Ahmad, D. Mondal, N. J. Roy, T. Vijayakanth, P. Talukdar, ChemPhotoChem 2022, n/a, e202200002;.
M. Ahmad, S. Chattopadhayay, D. Mondal, T. Vijayakanth, P. Talukdar, Org. Lett. 2021, 23, 7319–7324.
T. G. Johnson, A. Sadeghi-Kelishadi, M. J. Langton, J. Am. Chem. Soc. 2022, 144, 10455–10461.
C. Wang, S. Wang, H. Yang, Y. Xiang, X. Wang, C. Bao, L. Zhu, H. Tian, D.-H. Qu, Angew. Chem. Int. Ed. 2021, 60, 14836–14840.
 .
M. Ahmad, N. J. Roy, A. Singh, D. Mondal, A. Mondal, T. Vijayakanth, M. Lahiri, P. Talukdar, Chem. Sci. 2023, 14, 8897–8904;.
S. B. Salunke, J. A. Malla, P. Talukdar, Angew. Chem. Int. Ed. 2019, 58, 5354–5358.
C. Bao, M. Ma, F. Meng, Q. Lin, L. Zhu, New J. Chem. 2015, 39, 6297–6302.
L. E. Bickerton, M. J. Langton, Chem. Sci. 2022, 13, 9531–9536.
 .
G. Park, F. P. Gabbaï, Chem. Sci. 2020, 11, 10107–10112;.
B. Zhou, F. P. Gabbaï, Chem. Sci. 2020, 11, 7495–7500.
Y. R. Choi, B. Lee, J. Park, W. Namkung, K.-S. Jeong, J. Am. Chem. Soc. 2016, 138, 15319–15322.
C. Li, Y. Wu, Y. Zhu, J. Yan, S. Liu, J. Xu, S. Fa, T. Yan, D. Zhu, Y. Yan, J. Liu, Adv. Mater. 2024, 2312352.
P. V. Santacroce, J. T. Davis, M. E. Light, P. A. Gale, J. C. Iglesias-Sánchez, P. Prados, R. Quesada, J. Am. Chem. Soc. 2007, 129, 1886–1887.
Q. Zhong, Y. Cao, X. Xie, Y. Wu, Z. Chen, Q. Zhang, C. Jia, Z. Wu, P. Xin, X. Yan, Z. Zeng, C. Ren, Angew. Chem. Int. Ed. 2024, 63, e202314666.
D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380–387.
M. López-Lázaro, Cancer Lett. 2007, 252, 1–8.
 .
C. Szabo, C. Coletta, C. Chao, K. Módis, B. Szczesny, A. Papapetropoulos, M. R. Hellmich, Proc. Natl. Acad. Sci. USA 2013, 110, 12474–12479;.
Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide (Eds. P. K. Moore, M. Whiteman), Springer International Publishing Switzerland 2015.
H. Dong, L. Pang, H. Cong, Y. Shen, B. Yu, Drug Delivery 2019, 26, 416–432.
P. Chauhan, S. Jos, H. Chakrapani, Org. Lett. 2018, 20, 3766–3770.
P. Chauhan, P. Bora, G. Ravikumar, S. Jos, H. Chakrapani, Org. Lett. 2017, 19, 62–65.
H. Chen, X. He, M. Su, W. Zhai, H. Zhang, C. Li, J. Am. Chem. Soc. 2017, 139, 10157–10163.
معلومات مُعتمدة: RPG-2020-130 Leverhulme Trust; Royal Society
فهرسة مساهمة: Keywords: anion transport; anions; hydrogen bonding; membranes; stimuli-responsive
تواريخ الأحداث: Date Created: 20240322 Date Completed: 20240517 Latest Revision: 20240517
رمز التحديث: 20240517
DOI: 10.1002/anie.202403314
PMID: 38517056
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3773
DOI:10.1002/anie.202403314