دورية أكاديمية

Parkinson's Disease and MicroRNAs: A Duel Between Inhibition and Stimulation of Apoptosis in Neuronal Cells.

التفاصيل البيبلوغرافية
العنوان: Parkinson's Disease and MicroRNAs: A Duel Between Inhibition and Stimulation of Apoptosis in Neuronal Cells.
المؤلفون: Saadh MJ; Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan., Faisal A; Department of Pharmacy, Al-Noor University College, Nineveh, Iraq., Adil M; Pharmacy College, Al-Farahidi University, Baghdad, Iraq., Zabibah RS; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq., Mamadaliev AM; Department of Neurosurgery, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan., Jawad MJ; Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq., Alsaikhan F; College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia. fsaikhan@hotmail.com.; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia. fsaikhan@hotmail.com., Farhood B; Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran. bffarhood@gmail.com.
المصدر: Molecular neurobiology [Mol Neurobiol] 2024 Mar 23. Date of Electronic Publication: 2024 Mar 23.
Publication Model: Ahead of Print
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 8900963 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-1182 (Electronic) Linking ISSN: 08937648 NLM ISO Abbreviation: Mol Neurobiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Clifton, NJ : Humana Press, c1987-
مستخلص: Parkinson's disease (PD) is one of the most prevalent diseases of central nervous system that is caused by degeneration of the substantia nigra's dopamine-producing neurons through apoptosis. Apoptosis is regulated by initiators' and executioners' caspases both in intrinsic and extrinsic pathways, further resulting in neuronal damage. In that context, targeting apoptosis appears as a promising therapeutic approach for treating neurodegenerative diseases. Non-coding RNAs-more especially, microRNAs, or miRNAs-are a promising target for the therapy of neurodegenerative diseases because they are essential for a number of cellular processes, including signaling, apoptosis, cell proliferation, and gene regulation. It is estimated that a substantial portion of coding genes (more than 60%) are regulated by miRNAs. These small regulatory molecules can have wide-reaching consequences on cellular processes like apoptosis, both in terms of intrinsic and extrinsic pathways. Furthermore, it was recommended that a disruption in miRNA expression levels could also result in perturbation of typical apoptosis pathways, which may be a factor in certain diseases like PD. The latest research on miRNAs and their impact on neural cell injury in PD models by regulating the apoptosis pathway is summarized in this review article. Furthermore, the importance of lncRNA/circRNA-miRNA-mRNA network for regulating apoptosis pathways in PD models and treatment is explored. These results can be utilized for developing new strategies in PD treatment.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Jellinger KA (2015) Neuropathobiology of non-motor symptoms in Parkinson disease. J. Neural Transm 122:1429–40. (PMID: 2597643210.1007/s00702-015-1405-5)
Singh S, Dikshit M (2007) Apoptotic neuronal death in Parkinson’s disease: involvement of nitric oxide. Brain Res Rev 54(2):233–50. (PMID: 1740856410.1016/j.brainresrev.2007.02.001)
Erekat NS (2018) Apoptosis and its role in Parkinson’s disease. Exon Publications:65-82.
Vidyadhara D, Yarreiphang H, Raju TR, Alladi PA (2021) Differences in neuronal numbers, morphology, and developmental apoptosis in mice nigra provide experimental evidence of ontogenic origin of vulnerability to Parkinson’s disease. Neurotox Res 39:1892–907. (PMID: 3476229010.1007/s12640-021-00439-6)
Rahimian N, Nahand JS, Hamblin MR, Mirzaei H (2022) Exosomal microRNA profiling. MicroRNA profiling: methods and protocols:13-47.
Mirzaei H, Rahimian N, Mirzaei HR, Nahand JS, Hamblin MR (2022) Exosomes and microRNAs in biomedical science. Morgan & Claypool Publishers.
Hussen BM, Ahmadi G, Marzban H, Azar MEF, Sorayyayi S, Karampour R et al (2021) The role of HPV gene expression and selected cellular MiRNAs in lung cancer development. Microb Pathog 150:104692. (PMID: 3330185610.1016/j.micpath.2020.104692)
Hutchison ER, Okun E, Mattson MP (2009) The therapeutic potential of microRNAs in nervous system damage, degeneration, and repair. Neuromolecular Med 11(3):153–61. (PMID: 19763905275740710.1007/s12017-009-8086-x)
Hussein M, Magdy R (2021) MicroRNAs in central nervous system disorders: current advances in pathogenesis and treatment. Egypt J Neurol. Psychiatry Neurosurg 57(1):36. (PMID: 10.1186/s41983-021-00289-1)
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A et al (2019) MicroRNAs: key players in virus-associated hepatocellular carcinoma. J Cell Physiol 234(8):12188–225. (PMID: 3053667310.1002/jcp.27956)
Nahand JS, Mahjoubin-Tehran M, Moghoofei M, Pourhanifeh MH, Mirzaei HR, Asemi Z et al (2020) Exosomal miRNAs: novel players in viral infection. Epigenomics. 12(4):353–70. (PMID: 32093516771389910.2217/epi-2019-0192)
Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A et al (2021) The role of Th17 cells in viral infections. Int Immunopharmacol 91:107331. (PMID: 3341823910.1016/j.intimp.2020.107331)
Yousefpouran S, Mostafaei S, Manesh PV, Iranifar E, Bokharaei-Salim F, Nahand JS et al (2020) The assessment of selected miRNAs profile in HIV, HBV, HCV, HIV/HCV, HIV/HBV co-infection and elite controllers for determination of biomarker. Microb Pathog 147:104355. (PMID: 3256978810.1016/j.micpath.2020.104355)
Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6(11):8474–90. (PMID: 25893379449616210.18632/oncotarget.3523)
Sadri Nahand J, Shojaie L, Akhlagh SA, Ebrahimi MS, Mirzaei HR, Bannazadeh Baghi H et al (2021) Cell death pathways and viruses: role of microRNAs. Mol Ther Nucleic Acids 24:487–511. (PMID: 33898103805618310.1016/j.omtn.2021.03.011)
Latini A, Ciccacci C, Novelli G, Borgiani P (2017) Polymorphisms in miRNA genes and their involvement in autoimmune diseases susceptibility. Immunol Res 65:811–27. (PMID: 2874125810.1007/s12026-017-8937-8)
Meza-Sosa KF, Valle-García D, Pedraza-Alva G, Pérez-Martínez L (2012) Role of microRNAs in central nervous system development and pathology. J Neurosci Res 90(1):1–12. (PMID: 2192251210.1002/jnr.22701)
Petri R, Malmevik J, Fasching L, Åkerblom M, Jakobsson J (2014) miRNAs in brain development. Exp Cell Res 321(1):84–9. (PMID: 2409999010.1016/j.yexcr.2013.09.022)
Ma Z-X, Liu Z, Xiong H-H, Zhou Z-P, Ouyang L-S, Xie F-K et al (2023) MicroRNAs: protective regulators for neuron growth and development. Neural Regen Res 18(4):734. (PMID: 3620482910.4103/1673-5374.353481)
Cui J, Zhao S, Li Y, Zhang D, Wang B, Xie J et al (2021) Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Comm Signaling 19(1):1–29. (PMID: 10.1186/s12964-021-00799-8)
Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell research. 29(5):347–64. (PMID: 30948788679684510.1038/s41422-019-0164-5)
Habibi M (2017) Dopamine receptors☆. Reference Module in Neuroscience and Biobehavioral Psychology. Elsevier.
Luo Y (2012) Chapter 1 - The function and mechanisms of Nurr1 action in midbrain dopaminergic neurons, from development and maintenance to survival. In: International Review of Neurobiology. 102: Academic Press. 1–22.
Ye Q, Yuan XL, He J, Zhou J, Yuan CX, Yang XM (2016) Anti-apoptotic effect of Shudipingchan granule in the substantia nigra of rat models of Parkinson’s disease. Neural Regen Res. 11(10):1625–32. (PMID: 27904494511684210.4103/1673-5374.193242)
Sadowski K, Kotulska-Jóźwiak K, Jóźwiak S (2015) Role of mTOR inhibitors in epilepsy treatment. Pharmacol Rep 67(3):636–46. (PMID: 2593398110.1016/j.pharep.2014.12.017)
Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB et al (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci 112(38):E5308–E17. (PMID: 26324905458685310.1073/pnas.1514475112)
Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26(12):2694–701. (PMID: 2517370010.1016/j.cellsig.2014.08.019)
Chung J-Y, Lee S-J, Lee S-H, Jung YS, Ha N-C, Seol W et al (2011) Direct interaction of α-synuclein and AKT regulates IGF-1 signaling: implication of Parkinson disease. Neurosignals 19(2):86–96. (PMID: 2147491510.1159/000325028)
Khwanraj K, Madlah S, Grataitong K, Dharmasaroja P (2016) Comparative mRNA expression of eEF1A isoforms and a PI3K/Akt/mTOR pathway in a cellular model of Parkinson’s disease. Parkinson’s Dis. 2016.
Morales-García JA, Susín C, Alonso-Gil S, Pérez DI, Palomo V, Pérez C et al (2013) Glycogen synthase kinase-3 inhibitors as potent therapeutic agents for the treatment of Parkinson disease. ACS Chem Neurosci 4(2):350–60. (PMID: 2342168610.1021/cn300182g)
Armentero M, Sinforiani E, Ghezzi C, Bazzini E, Levandis G, Ambrosi G et al (2011) Peripheral expression of key regulatory kinases in Alzheimer’s disease and Parkinson’s disease. Neurobiol Aging 32(12):2142–51. (PMID: 2010655010.1016/j.neurobiolaging.2010.01.004)
Ding M-L, Ma H, Man Y-G, Lv H-Y (2017) Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice. Can J Physiol Pharmacol 95(12):1396-1405.
Zhai H, Kang Z, Zhang H, Ma J, Chen G (2019) Baicalin attenuated substantia nigra neuronal apoptosis in Parkinson’s disease rats via the mTOR/AKT/GSK-3β pathway. J Integr Neurosci 18(4):423–9. (PMID: 3191270110.31083/j.jin.2019.04.192)
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S (2021) Apoptotic pathways and Alzheimer’s disease: probing therapeutic potential. Neurochem Res 46(12):3103–22. (PMID: 3438691910.1007/s11064-021-03418-7)
O’Brien MA, Kirby R (2008) Apoptosis: a review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Care 18(6):572–85. (PMID: 10.1111/j.1476-4431.2008.00363.x)
Verbrugge I, Johnstone RW, Smyth MJ (2010) SnapShot: extrinsic apoptosis pathways. Cell 143(7):1192.e2.
Nahand JS, Shojaie L, Akhlagh SA, Ebrahimi MS, Mirzaei HR, Baghi HB et al (2021) Cell death pathways and viruses: role of microRNAs. Molecular Mol Ther Nucleic Acids 24:487–511.
Flusberg DA, Sorger PK (2015) Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol 25(8):446–58. (PMID: 25920803457002810.1016/j.tcb.2015.03.003)
Lee YT, Tan YJ, Oon CE (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834:188–96. (PMID: 3003179710.1016/j.ejphar.2018.07.034)
Pileczki V, Cojocneanu-Petric R, Maralani M, Neagoe IB, Sandulescu R (2016) MicroRNAs as regulators of apoptosis mechanisms in cancer. Clujul Med (1957) 89(1):50-5.
Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150(1):119–31. (PMID: 90063291858540)
Chen Z, Wang Y, Yi Y, Liu F (2021) Reactive oxygen species/caspase 3 promotes autophagy of nigral dopaminergic neuron in Parkinson’s disease. J Biomater Tissue Eng 11(2):320–5.
Dionísio P, Amaral J, Rodrigues C (2021) Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res Rev 67:101263. (PMID: 3354004210.1016/j.arr.2021.101263)
Akao Y, Maruyama W, Yi H, Shamoto-Nagai M, Youdim MB, Naoi M (2002) An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett 326(2):105–8. (PMID: 1205783910.1016/S0304-3940(02)00332-4)
Iaccarino C, Crosio C, Vitale C, Sanna G, Carrì MT, Barone P (2007) Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet 16(11):1319–26. (PMID: 1740919310.1093/hmg/ddm080)
Fiskum G, Starkov A, Polster BM, Chinopoulos C (2003) Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson’s disease. Ann N Y Acad Sci 991:111–119. (PMID: 1284698010.1111/j.1749-6632.2003.tb07469.x)
Taghizadieh M, Modiri N, Salmaninejad A, Khayami R, Taheri F, Moghoofei M et al (2023) Neuroprotective effects of flavonoids. Phytonutrients and Neurological Disorders. Elsevier, pp 133–200. (PMID: 10.1016/B978-0-12-824467-8.00016-4)
Gallegos S, Pacheco C, Peters C, Opazo CM, Aguayo LG (2015) Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson’s disease. Front Neurosci 9:59. (PMID: 25805964435324610.3389/fnins.2015.00059)
Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100. (PMID: 18245082243102110.1074/jbc.M710012200)
Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M et al (2014) Structural and functional analysis of novel human cytochrome C targets in apoptosis. Mol Cell Proteomics: MCP 13(6):1439–1456. (PMID: 24643968404746510.1074/mcp.M113.034322)
Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S et al (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science (New York, NY) 357(6357):1255–1261. (PMID: 10.1126/science.aam9080)
Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. (PMID: 1705120510.1038/nature05292)
Venderova K, Park DS (2012) Programmed cell death in Parkinson’s disease. Cold Spring Harb Perspect Med. 2(8).
Perier C, Bové J, Vila M (2012) Mitochondria and programmed cell death in Parkinson’s disease: apoptosis and beyond. Antioxid Redox Signal 16(9):883–895. (PMID: 2161948810.1089/ars.2011.4074)
Moujalled D, Strasser A, Liddell JR (2021) Molecular mechanisms of cell death in neurological diseases. Cell Death Differ 28(7):2029–2044. (PMID: 34099897825777610.1038/s41418-021-00814-y)
Yamato M, Kudo W, Shiba T, Yamada KI, Watanabe T, Utsumi H (2010) Determination of reactive oxygen species associated with the degeneration of dopaminergic neurons during dopamine metabolism. Free Radical Res 44(3):249–257. (PMID: 10.3109/10715760903456084)
Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491. (PMID: 24252804413531310.3233/JPD-130230)
Gomez-Lazaro M, Galindo MF, Concannon CG, Segura MF, Fernandez-Gomez FJ, Llecha N et al (2008) 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem 104(6):1599–1612. (PMID: 1799602810.1111/j.1471-4159.2007.05115.x)
Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966. (PMID: 15525708137068410.1261/rna.7135204)
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, et al (2022) Virus, exosome, and MicroRNA: new insights into autophagy Cell Biology and Translational Medicine, Volume 17 Stem. Cells in Tissue Differentiation, Regulation and Disease. Springer, p 97–162.
Mirzaei H, Rahimian N, Mirzaei HR, Nahand JS, Hamblin MR (2022) MicroRNAs in cancer. Exosomes and MicroRNAs in biomedical science: Springer, p. 11–40.
Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. (PMID: 2502764910.1038/nrm3838)
Mirzaei H, Rahimian N, Mirzaei HR, Nahand JS, Hamblin MR (2022) MicroRNA biogenesis and function. Exosomes and MicroRNAs in Biomedical Science: Springer, p 1–9.
Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA (2015) Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell 57(3):397–4077. (PMID: 2555755010.1016/j.molcel.2014.11.030)
Yousefpouran S, Mostafaei S, Manesh PV, Iranifar E, Bokharaei-Salim F, Nahand JS et al (2020) The assessment of selected MiRNAs profile in HIV, HBV, HCV, HIV/HCV, HIV/HBV co-infection and elite controllers for determination of biomarker. Microb Pathog. 147:104355. (PMID: 3256978810.1016/j.micpath.2020.104355)
Eslami M, Khazeni S, Khanaghah XM, Asadi MH, Ansari MA, Garjan JH et al (2023) MiRNA-related metastasis in oral cancer: moving and shaking. Cancer Cell Int 23(1):182. (PMID: 376352481046397110.1186/s12935-023-03022-5)
Ni W-J, Leng X-M (2015) Dynamic miRNA–mRNA paradigms: new faces of miRNAs. Biochem Biophys Rep 4:337–41. (PMID: 291242225669400)
Kiraz Y, Adan A, Kartal Yandim M, Baran Y (2016) Major apoptotic mechanisms and genes involved in apoptosis. Tumor Biol 37:8471–86. (PMID: 10.1007/s13277-016-5035-9)
Nahand JS, Taghizadeh-boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M et al (2019) MicroRNAs: new prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 234(10):17064–99. (PMID: 3089178410.1002/jcp.28457)
Donyavi T, Bokharaei-Salim F, Baghi HB, Khanaliha K, Janat-Makan MA, Karimi B et al (2021) Acute and post-acute phase of COVID-19: analyzing expression patterns of miRNA-29a-3p, 146a–3p, 155–5p, and let-7b-3p in PBMC. Int Immunopharmacol 97:107641. (PMID: 33895478802320310.1016/j.intimp.2021.107641)
Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105.
Wang P, Zhuang L, Zhang J, Fan J, Luo J, Chen H et al (2013) The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol 7(3):334–45. (PMID: 2317702610.1016/j.molonc.2012.10.011)
Acunzo M, Visone R, Romano G, Veronese A, Lovat F, Palmieri D et al (2012) miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene. 31(5):634–42. (PMID: 2170605010.1038/onc.2011.260)
Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12(9):613–26. (PMID: 2289854210.1038/nrc3318)
Hu W, Chan CS, Wu R, Zhang C, Sun Y, Song JS et al (2010) Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 38(5):689–99. (PMID: 20542001290092210.1016/j.molcel.2010.05.027)
Liu J, Zhang C, Zhao Y, Feng Z (2017) MicroRNA control of p53. J Cell Biochem 118(1):7–14. (PMID: 2721670110.1002/jcb.25609)
Wu J-H, Yao Y-L, Gu T, Wang Z-Y, Pu X-Y, Sun W-W et al (2014) MiR-421 regulates apoptosis of BGC-823 gastric cancer cells by targeting caspase-3. Asian Pac J Cancer Prev 15(13):5463–8. (PMID: 2504101910.7314/APJCP.2014.15.13.5463)
Shang J, Yang F, Wang Y, Wang Y, Xue G, Mei Q et al (2014) MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J Cell Biochem 115(4):772–84. (PMID: 2424916110.1002/jcb.24721)
Mirzaei H, Rahimian N, Mirzaei HR, Nahand JS, Hamblin MR (2022) MicroRNAs as biomarkers. Exosomes and MicroRNAs in Biomedical Science. Springer, p. 69–77.
Gupta J, Kareem Al-Hetty HRA, Aswood MS, Turki Jalil A, Azeez MD, Aminov Z et al (2023) The key role of microRNA-766 in the cancer development. Front Oncol 13:1173827. (PMID: 372051911018584210.3389/fonc.2023.1173827)
Jackson-Lewis V, Vila M, Djaldetti R, Guegan C, Liberatore G, Liu J et al (2000) Developmental cell death in dopaminergic neurons of the substantia nigra of mice. J Comp Neurol 424(3):476–88. (PMID: 1090671410.1002/1096-9861(20000828)424:3<476::AID-CNE6>3.0.CO;2-0)
Ethell DW, Fei Q (2009) Parkinson-linked genes and toxins that affect neuronal cell death through the Bcl-2 family. Antioxid Redox Signal 11(3):529–40. (PMID: 1871514610.1089/ars.2008.2228)
van der Heide LP, Smidt MP (2013) The BCL2 code to dopaminergic development and Parkinson’s disease. Trends Mol Med 19(4):211–6. (PMID: 2352305510.1016/j.molmed.2013.02.003)
Holm K, Cicchetti F, Bjorklund L, Boonman Z, Tandon P, Costantini L et al (2001) Enhanced axonal growth from fetal human bcl-2 transgenic mouse dopamine neurons transplanted to the adult rat striatum. Neuroscience. 104(2):397–405. (PMID: 1137784310.1016/S0306-4522(01)00098-7)
Liu J, Liu W, Yang H (2018) Balancing apoptosis and autophagy for Parkinson’s disease therapy: targeting BCL-2. ACS Chem Neurosci 10(2):792–802. (PMID: 10.1021/acschemneuro.8b00356)
Samuele A, Rasini E, Fancellu R, Martignoni E (2003) Peripheral markers of apoptosis in Parkinson's disease. Ann NY Acad Sci. 1010:675–8. (PMID: 1503381010.1196/annals.1299.123)
Blandini F, Cosentino M, Mangiagalli A, Marino F, Samuele A, Rasini E, et al (2004) Modifications of apoptosis-related protein levels in lymphocytes of patients with Parkinson’s disease. The effect of dopaminergic treatment. J Neural Transm 111:1017-30.
Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166(1):29–43. (PMID: 1103108110.1006/exnr.2000.7489)
Hartmann A, Michel PP, Troadec JD, Mouatt-Prigent A, Faucheux BA, Ruberg M et al (2001) Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson’s disease? J Neurochem 76(6):1785–93. (PMID: 1125949610.1046/j.1471-4159.2001.00160.x)
Perier C, Bové J, Wu D-C, Dehay B, Choi D-K, Jackson-Lewis V et al (2007) Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease. Proc Natl Acad Sci 104(19):8161–6.
Horowitz JM, Pastor DM, Goyal A, Kar S, Ramdeen N, Hallas BH et al (2003) BAX protein-immunoreactivity in midbrain neurons of Parkinson’s disease patients. Brain Res Bull 62(1):55–61. (PMID: 1459689210.1016/j.brainresbull.2003.08.005)
Bretaud S, Allen C, Ingham PW, Bandmann O (2007) p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson’s disease. J Neurochem 100(6):1626–35. (PMID: 1716617310.1111/j.1471-4159.2006.04291.x)
Seo JH, Rah JC, Choi SH, Shin JK, Min K, Kim HS et al (2002) α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J 16(13):1–20. (PMID: 10.1096/fj.02-0041fje)
Vila M, Jackson-Lewis V, Vukosavic S, Djaldetti R, Liberatore G, Offen D et al (2001) Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson’s disease. Proc Natl Acad Sci 98(5):2837–42. (PMID: 112263273022610.1073/pnas.051633998)
Mishima T, Mizuguchi Y, Kawahigashi Y, Takizawa T, Takizawa T (2007) RT-PCR-based analysis of microRNA (miR-1 and-124) expression in mouse CNS. Brain Res 1131:37–43. (PMID: 1718200910.1016/j.brainres.2006.11.035)
Doeppner TR, Doehring M, Bretschneider E, Zechariah A, Kaltwasser B, Müller B et al (2013) MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol 126(2):251–65. (PMID: 2375462210.1007/s00401-013-1142-5)
Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat Med 17(1):64–70.
Sun Y, Gui H, Li Q, Luo ZM, Zheng MJ, Duan JL et al (2013) MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS Neurosci Ther 19(10):813–9. (PMID: 23826665649364310.1111/cns.12142)
Kanagaraj N, Beiping H, Dheen S, Tay S (2014) Downregulation of miR-124 in MPTP-treated mouse model of Parkinson’s disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Neuroscience 272:167–79. (PMID: 2479271210.1016/j.neuroscience.2014.04.039)
Wang H, Ye Y, Zhu Z, Mo L, Lin C, Wang Q et al (2016) MiR-124 regulates apoptosis and autophagy process in MPTP model of Parkinson’s disease by targeting to Bim. Brain Pathol (Zurich, Switzerland) 26(2):167–76. (PMID: 10.1111/bpa.12267)
Li S, Lv X, Zhai K, Xu R, Zhang Y, Zhao S et al (2016) MicroRNA-7 inhibits neuronal apoptosis in a cellular Parkinson’s disease model by targeting Bax and Sirt2. Am J Transl Res 8(2):993–1004. (PMID: 271583854846942)
Yang X, Zhang M, Wei M, Wang A, Deng Y, Cao H (2020) MicroRNA-216a inhibits neuronal apoptosis in a cellular Parkinson’s disease model by targeting Bax. Metab Brain Dis 35:627–35. (PMID: 3214082310.1007/s11011-020-00546-x)
Li X, Cui X-X, Chen Y-J, Wu T-T, Xu H, Yin H et al (2018) Therapeutic potential of a prolyl hydroxylase inhibitor FG-4592 for Parkinson’s diseases in vitro and in vivo: regulation of redox biology and mitochondrial function. Front Aging Neurosci 10:121. (PMID: 29755339593518410.3389/fnagi.2018.00121)
Jeong J-K, Park S-Y (2013) HIF-1α-induced β-catenin activation prevents prion-mediated neurotoxicity. Int J Mol Med 32(4):931–7. (PMID: 2390056610.3892/ijmm.2013.1457)
Marchetti B, L’Episcopo F, Morale MC, Tirolo C, Testa N, Caniglia S et al (2013) Uncovering novel actors in astrocyte–neuron crosstalk in P arkinson’s disease: the W nt/β-catenin signaling cascade as the common final pathway for neuroprotection and self-repair. Eur J Neurosci 37(10):1550–63. (PMID: 23461676366018210.1111/ejn.12166)
Zhou T, Zu G, Zhang X, Wang X, Li S, Gong X et al (2016) Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson’s disease. Neuropharmacology. 101:480–9. (PMID: 2652519010.1016/j.neuropharm.2015.10.024)
Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11(2):77–86. (PMID: 2001095010.1038/nrn2755)
Xie R, Jiang R, Chen D (2011) Generation of Axin1 conditional mutant mice. Genesis (New York, NY: 2000) 49(2):98–102.
Ye X, Lin J, Lin Z, Xue A, Li L, Zhao Z et al (2017) Axin1 up-regulated 1 accelerates stress-induced cardiomyocytes apoptosis through activating Wnt/β-catenin signaling. Exp Cell Res 359(2):441–8. (PMID: 2883068410.1016/j.yexcr.2017.08.027)
Biechele TL, Kulikauskas RM, Toroni RA, Lucero OM, Swift RD, James RG, et al (2012) Wnt/β-catenin signaling and AXIN1 regulate apoptosis triggered by inhibition of the mutant kinase BRAFV600E in human melanoma. Sci Signal 5(206):ra3-ra.
Saeed M (2018) Genomic convergence of locus-based GWAS meta-analysis identifies AXIN1 as a novel Parkinson’s gene. Immunogenetics. 70(9):563–70. (PMID: 2992302810.1007/s00251-018-1068-0)
Zhang G, Chen L, Liu J, Jin Y, Lin Z, Du S et al (2020) HIF-1α/microRNA-128-3p axis protects hippocampal neurons from apoptosis via the Axin1-mediated Wnt/β-catenin signaling pathway in Parkinson’s disease models. Aging. 12(5):4067–81. (PMID: 32167488709318310.18632/aging.102636)
Zhou L, Yang L, Li Y-J, Mei R, Yu H-L, Gong Y, et al (2018) MicroRNA-128 protects dopamine neurons from apoptosis and upregulates the expression of excitatory amino acid transporter 4 in Parkinson’s disease by binding to AXIN1. Cell Physiol Biochem 51(5): 2275–89.
Li Y, Guo A, Feng Y, Zhang Y, Wang J, Jing L et al (2016) Sp1 transcription factor promotes TMEPAI gene expression and contributes to cell proliferation. Cell Prolif 49(6):710–9. (PMID: 27625141649682610.1111/cpr.12292)
Deniaud E, Baguet J, Mathieu A-L, Marvel J, Leverrier Y (2006) Overexpression of Sp1 transcription factor induces apoptosis. Oncogene 25(53):7096–105. (PMID: 1671512610.1038/sj.onc.1209696)
Yao L, Dai X, Sun Y, Wang Y, Yang Q, Chen X et al (2018) Inhibition of transcription factor SP1 produces neuroprotective effects through decreasing MAO B activity in MPTP/MPP+ Parkinson’s disease models. J Neurosci Res 96(10):1663–76. (PMID: 3000413610.1002/jnr.24266)
Wang S, Wen Q, Xiong B, Zhang L, Yu X, Ouyang X (2021) Long noncoding RNA NEAT1 knockdown ameliorates 1-methyl-4-phenylpyridine–induced cell injury through microRNA-519a-3p/SP1 axis in Parkinson disease. World Neurosurg 156:e93–e103. (PMID: 3450891010.1016/j.wneu.2021.08.147)
Wang R, Yang Y, Wang H, He Y, Li C (2020) MiR-29c protects against inflammation and apoptosis in Parkinson’s disease model in vivo and in vitro by targeting SP1. Clin Exp Pharmacol Physiol 47(3):372–82. (PMID: 3173296710.1111/1440-1681.13212)
Sun X, Zhang C, Tao H, Yao S, Wu X (2022) LINC00943 acts as miR-338-3p sponge to promote MPP+-induced SK-N-SH cell injury by directly targeting SP1 in Parkinson’s disease. Brain Res 1782:147814. (PMID: 3512392410.1016/j.brainres.2022.147814)
Han Y-P, Liu Z-J, Bao H-H, Wang Q, Su L-L (2022) miR-126-5p targets SP1 to inhibit the progression of Parkinson’s disease. Eur Neurol 85(3):235–44. (PMID: 3510871210.1159/000521525)
Han YP, Liu ZJ, Bao HH, Wang Q, Su LL (2022) miR-126-5p targets SP1 to inhibit the progression of Parkinson’s disease. Eur Neurol. 85(3):235–44. (PMID: 3510871210.1159/000521525)
Geng L, Liu W, Chen Y (2017) miR-124-3p attenuates MPP(+)-induced neuronal injury by targeting STAT3 in SH-SY5Y cells. Exp Biol Med (Maywood, NJ) 242(18):1757–64. (PMID: 10.1177/1535370217734492)
Gong X, Wang H, Ye Y, Shu Y, Deng Y, He X et al (2016) miR-124 regulates cell apoptosis and autophagy in dopaminergic neurons and protects them by regulating AMPK/mTOR pathway in Parkinson’s disease. Am J Transl Res 8(5):2127–37. (PMID: 273473204891425)
Liu W, Zhang Q, Zhang J, Pan W, Zhao J, Xu Y (2017) Long non-coding RNA MALAT1 contributes to cell apoptosis by sponging miR-124 in Parkinson disease. Cell Biosci 7(1):19. (PMID: 28439401540161010.1186/s13578-017-0147-5)
Geng L, Liu W, Chen Y (2017) miR-124-3p attenuates MPP+-induced neuronal injury by targeting STAT3 in SH-SY5Y cells. Exp Biol Med 242(18):1757–64. (PMID: 10.1177/1535370217734492)
Lu Y, Gong Z, Jin X, Zhao P, Zhang Y, Wang Z (2020) LncRNA MALAT1 targeting miR-124-3p regulates DAPK1 expression contributes to cell apoptosis in Parkinson’s disease. J Cell Biochem 121(12):4838–48. (PMID: 3227751010.1002/jcb.29711)
Angelopoulou E, Paudel YN, Piperi C (2019) miR-124 and Parkinson’s disease: a biomarker with therapeutic potential. Pharmacol Res 150:104515. (PMID: 3170703510.1016/j.phrs.2019.104515)
Kang Q, Xiang Y, Li D, Liang J, Zhang X, Zhou F et al (2017) MiR-124-3p attenuates hyperphosphorylation of Tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3β pathway in N2a/APP695swe cells. Oncotarget 8(15):24314. (PMID: 28186985542184910.18632/oncotarget.15149)
Esteves M, Abreu R, Fernandes H, Serra-Almeida C, Martins PA, Barão M et al (2022) MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson’s disease. Mol Ther 30(10):3176–92. (PMID: 35689381955281610.1016/j.ymthe.2022.06.003)
Bohush A, Niewiadomska G, Filipek A (2018) Role of mitogen activated protein kinase signaling in Parkinson’s disease. Int J Mol Sci 19(10):2973. (PMID: 30274251621353710.3390/ijms19102973)
Canals S, Casarejos MJ, de Bernardo S, Solano RM, Mena MA (2003) Selective and persistent activation of extracellular signal-regulated protein kinase by nitric oxide in glial cells induces neuronal degeneration in glutathione-depleted midbrain cultures. Mol Cell Neurosci 24(4):1012–26. (PMID: 1469766510.1016/j.mcn.2003.08.004)
Bhat NR, Zhang P (1999) Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J Neurochem 72(1):112–9. (PMID: 988606110.1046/j.1471-4159.1999.0720112.x)
Carmeille R, Degrelle SA, Plawinski L, Bouvet F, Gounou C, Evain-Brion D, et al (2015) Annexin-A5 promotes membrane resealing in human trophoblasts. Biochim Biophys Acta (BBA)-Mol Cell Res 1853(9): 2033–44.
Bauwens M, De Saint-Hubert M, Devos E, Deckers N, Reutelingsperger C, Mortelmans L et al (2011) Site-specific 68Ga-labeled Annexin A5 as a PET imaging agent for apoptosis. Nucl Med Biol 38(3):381–92. (PMID: 2149278710.1016/j.nucmedbio.2010.09.008)
Dong RF, Zhang B, Tai LW, Liu HM, Shi FK, Liu NN (2018) The neuroprotective role of MiR-124-3p in a 6-hydroxydopamine-induced cell model of Parkinson’s disease via the regulation of ANAX5. J Cell Biochem 119(1):269–77. (PMID: 2854359410.1002/jcb.26170)
Mitchell TJ, John S (2005) Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology. 114(3):301–12. (PMID: 15720432178208510.1111/j.1365-2567.2005.02091.x)
Jiang M-C, Ni J-J, Cui W-Y, Wang B-Y, Zhuo W (2019) Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res 9(7):1354. (PMID: 313920746682721)
Liu SJ, Dang HX, Lim DA, Feng FY, Maher CA (2021) Long noncoding RNAs in cancer metastasis. Nat Rev Cancer 21(7):446–60. (PMID: 33953369828880010.1038/s41568-021-00353-1)
Nahand JS, Jamshidi S, Hamblin MR, Mahjoubin-Tehran M, Vosough M, Jamali M et al (2020) Circular RNAs: new epigenetic signatures in viral infections. Front Microbiol 11:1853. (PMID: 32849445741298710.3389/fmicb.2020.01853)
Hao N-B, He Y-F, Li X-Q, Wang K, Wang R-L (2017) The role of miRNA and lncRNA in gastric cancer. Oncotarget. 8(46):81572. (PMID: 29113415565531010.18632/oncotarget.19197)
Yu Y, Gao F, He Q, Li G, Ding G (2020) lncRNA UCA1 functions as a ceRNA to promote prostate cancer progression via sponging miR143. Mol Ther Nucleic Acids 19:751–8. (PMID: 3195432910.1016/j.omtn.2019.11.021)
Wang ZY, Duan Y, Wang P (2020) SP1-mediated upregulation of lncRNA SNHG4 functions as a ceRNA for miR-377 to facilitate prostate cancer progression through regulation of ZIC5. J Cell Physiol 235(4):3916–27. (PMID: 3160899710.1002/jcp.29285)
Zeng X, Xiao J, Bai X, Liu Y, Zhang M, Liu J, et al (2022) Research progress on the circRNA/lncRNA–miRNA–mRNA axis in gastric cancer. Pathol Res Pract: 154030.
Ng S-Y, Lin L, Soh BS, Stanton LW (2013) Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 29(8):461–8. (PMID: 2356261210.1016/j.tig.2013.03.002)
Kraus TF, Haider M, Spanner J, Steinmaurer M, Dietinger V, Kretzschmar HA (2017) Altered long noncoding RNA expression precedes the course of Parkinson’s disease—a preliminary report. Mol Neurobiol 54(4):2869–77. (PMID: 2702102210.1007/s12035-016-9854-x)
Long L, Cai X, Liao J, Ma X, Liu Y, Huang Y, et al (2021) H2s alleviates Parkinson-like phenotypes by modulating lncRNA-CasC7/miR-30c/BNIP3L signaling pathway. Arch Med Res.
Yan W, Chen Z-Y, Chen J-Q, Chen H-M (2018) LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem Biophys Res Commun 496(4):1019–24. (PMID: 2928772210.1016/j.bbrc.2017.12.149)
Xie N, Qi J, Li S, Deng J, Chen Y, Lian Y (2019) Upregulated lncRNA small nucleolar RNA host gene 1 promotes 1-methyl-4-phenylpyridinium ion-induced cytotoxicity and reactive oxygen species production through miR-15b-5p/GSK3β axis in human dopaminergic SH-SY5Y cells. J Cell Biochem 120(4):5790–801. (PMID: 3030282110.1002/jcb.27865)
Wo Q, Zhang D, Hu L, Lyu J, Xiang F, Zheng W et al (2019) Long noncoding RNA SOX2-OT facilitates prostate cancer cell proliferation and migration via miR-369-3p/CFL2 axis. Biochem Biophys Res Commun 520(3):586–93. (PMID: 3162383010.1016/j.bbrc.2019.09.108)
Guo Y, Liu Y, Wang H, Liu P (2021) Long noncoding RNA SRY-box transcription factor 2 overlapping transcript participates in Parkinson’s disease by regulating the microRNA-942-5p/nuclear apoptosis-inducing factor 1 axis. Bioengineered. 12(1):8570–82. (PMID: 34607512880695210.1080/21655979.2021.1987126)
Gutschner T, Hämmerle M, Diederichs S (2013) MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med 91:791–801. (PMID: 2352976210.1007/s00109-013-1028-y)
Han Y, Liu Y, Zhang H, Wang T, Diao R, Jiang Z et al (2013) Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long non-coding RNA MALAT1. FEBS Lett 587(23):3875–82. (PMID: 2439687010.1016/j.febslet.2013.10.023)
Abbasi-Kolli M, Nahand JS, Kiani SJ, Khanaliha K, Khatami AR, Taghizadieh M et al (2022) The expression patterns of MALAT-1, NEAT-1, THRIL, and miR-155–5p in the acute to the post-acute phase of COVID-19 disease. Braz J Infect Dis: 26.
Hirata H, Hinoda Y, Shahryari V, Deng G, Nakajima K, Tabatabai ZL et al (2015) Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Can Res 75(7):1322–31. (PMID: 10.1158/0008-5472.CAN-14-2931)
Gutschner T, Hämmerle M, Eißmann M, Hsu J, Kim Y, Hung G et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Can Res 73(3):1180–9. (PMID: 10.1158/0008-5472.CAN-12-2850)
Lipovich L, Dachet F, Cai J, Bagla S, Balan K, Jia H et al (2012) Activity-dependent human brain coding/noncoding gene regulatory networks. Genetics 192(3):1133–48. (PMID: 22960213352215610.1534/genetics.112.145128)
Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29(18):3082–93. (PMID: 20729808294407010.1038/emboj.2010.199)
Lv K, Liu Y, Zheng Y, Dai S, Yin P, Miao H (2021) Long non-coding RNA MALAT1 regulates cell proliferation and apoptosis via miR-135b-5p/GPNMB axis in Parkinson’s disease cell model. Biol Res. 54(1):10. (PMID: 33726823796831610.1186/s40659-021-00332-8)
Mousavi A (2020) CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Biol Res 217:91–115.
Bagheri V, Khorramdelazad H, Hassanshahi G, Moghadam-Ahmadi A, Vakilian A (2019) CXCL12 and CXCR4 in the peripheral blood of patients with Parkinson’s disease. Neuroimmunomodulation. 25(4):201–5. (PMID: 10.1159/000494435)
Li Y, Niu M, Zhao A, Kang W, Chen Z, Luo N et al (2019) CXCL12 is involved in α-synuclein-triggered neuroinflammation of Parkinson’s disease. J Neuroinflammation 16(1):1–14. (PMID: 10.1186/s12974-019-1646-6)
Wang H, Wang X, Zhang Y, Zhao J (2021) LncRNA SNHG1 promotes neuronal injury in Parkinson’s disease cell model by miR-181a-5p/CXCL12 axis. J Mol Histol 52(2):153–63. (PMID: 3338942810.1007/s10735-020-09931-3)
Lian H, Wang B, Lu Q, Chen B, Yang H (2021) LINC00943 knockdown exerts neuroprotective effects in Parkinson’s disease through regulates CXCL12 expression by sponging miR-7-5p. Genes & Genomics 43:797–805. (PMID: 10.1007/s13258-021-01084-1)
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–8. (PMID: 2344634810.1038/nature11928)
Zhao Y, Jaber VR, Lukiw WJ (2022) Current advances in our understanding of circular RNA (circRNA) in Alzheimer’s disease (AD); the potential utilization of synthetic circRNAs as a therapeutic strategy in the clinical management of AD. Front Drug Discov 2:983030. (PMID: 10.3389/fddsv.2022.983030)
Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G (2021) CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis 12:468. (PMID: 33976116811337310.1038/s41419-021-03743-3)
Molaei P, Savari M, Mahdavinezhad A, Najafi R, Afshar S, Esfandiari N et al (2023) Highlighting functions of apoptosis and circular RNAs in colorectal cancer. Pathol Res Pract 248:154592. (PMID: 3729525810.1016/j.prp.2023.154592)
Jin Y, Yu L, Zhang B, Liu C, Chen Y (2018) Circular RNA hsa_circ_0000523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge. Braz. J Med Biol Res: 51.
Liu X, Liu B, Zhou M, Fan F, Yu M, Gao C et al (2018) Circular RNA HIPK3 regulates human lens epithelial cells proliferation and apoptosis by targeting the miR-193a/CRYAA axis. Biochem Biophys Res Commun 503(4):2277–85. (PMID: 2995992210.1016/j.bbrc.2018.06.149)
Hanan M, Simchovitz A, Yayon N, Vaknine S, Cohen-Fultheim R, Karmon M et al (2020) A Parkinson’s disease Circ RNA s resource reveals a link between circ SLC 8A1 and oxidative stress. EMBO Mol Med 12(9):e11942. (PMID: 32715657750732110.15252/emmm.201911942)
Kong F, Lv Z, Wang L, Zhang K, Cai Y, Ding Q et al (2021) RNA-sequencing of peripheral blood circular RNAs in Parkinson disease. Medicine 100(23):e25888. (PMID: 34114985820256810.1097/MD.0000000000025888)
Feng Z, Zhang L, Wang S, Hong Q (2020) Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson’s disease. Biochem Biophys Res Commun 522(2):388–94. (PMID: 3176132810.1016/j.bbrc.2019.11.102)
McMillan KJ, Murray TK, Bengoa-Vergniory N, Cordero-Llana O, Cooper J, Buckley A et al (2017) Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol Ther: J Am Soc Gene Ther 25(10):2404–14. (PMID: 10.1016/j.ymthe.2017.08.017)
Choi DC, Yoo M, Kabaria S, Junn E (2018) MicroRNA-7 facilitates the degradation of alpha-synuclein and its aggregates by promoting autophagy. Neurosci Lett 678:118–23. (PMID: 29738845599003310.1016/j.neulet.2018.05.009)
Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106(31):13052–7. (PMID: 19628698272235310.1073/pnas.0906277106)
Sang Q, Liu X, Wang L, Qi L, Sun W, Wang W et al (2018) CircSNCA downregulation by pramipexole treatment mediates cell apoptosis and autophagy in Parkinson’s disease by targeting miR-7. Aging 10(6):1281–93. (PMID: 29953413604623210.18632/aging.101466)
Ghosal S, Das S, Sen R, Basak P, Chakrabarti J (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4:283. (PMID: 24339831385753310.3389/fgene.2013.00283)
Lukiw WJ, Circular RNA (2013) circRNA) in Alzheimer’s disease (AD. Front Genet 4:307. (PMID: 24427167387587410.3389/fgene.2013.00307)
Huang R, Zhang Y, Han B, Bai Y, Zhou R, Gan G et al (2017) Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG. Autophagy 13(10):1722–41. (PMID: 28786753564020710.1080/15548627.2017.1356975)
Feng Z, Zhang L, Wang S, Hong Q (2020) Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson’s disease. Biochem Biophys Res Commun. 522(2):388–94. (PMID: 3176132810.1016/j.bbrc.2019.11.102)
Wang W, Lv R, Zhang J, Liu Y (2021) circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson’s disease. Mol Med Rep. 24(1):540. (PMID: 34080649817087110.3892/mmr.2021.12179)
Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan A, Shahba S, Malvandi AM, Mohammadipour A (2023) Roles of the miR-155 in neuroinflammation and neurological disorders: a potent biological and therapeutic target. Cell Mol Neurobiol 43(2):455–67. (PMID: 3510769010.1007/s10571-022-01200-z)
Sun XH, Song MF, Song HD, Wang YW, Luo MJ, Yin LM (2019) miR-155 mediates inflammatory injury of hippocampal neuronal cells via the activation of microglia. Mol Med Rep. 19(4):2627–35. (PMID: 307201156423572)
Gao JX, Li Y, Wang SN, Chen XC, Lin LL, Zhang H (2019) Overexpression of microRNA-183 promotes apoptosis of substantia nigra neurons via the inhibition of OSMR in a mouse model of Parkinson’s disease. Int J Mol Med. 43(1):209–20. (PMID: 30431059)
Dong Y, Han L-L, Xu Z-X (2018) Suppressed microRNA-96 inhibits iNOS expression and dopaminergic neuron apoptosis through inactivating the MAPK signaling pathway by targeting CACNG5 in mice with Parkinson’s disease. Mol Med 24(1):61. (PMID: 30486773626354310.1186/s10020-018-0059-9)
Qiu F, Wu Y, Xie G, Cao H, Du M, Jiang H (2023) MiRNA-1976 regulates the apoptosis of dopaminergic neurons by targeting the PINK1 gene. J Integr Neurosci. 22(2):45. (PMID: 3699258210.31083/j.jin2202045)
Isozaki O, Tsushima T, Miyakawa M, Emoto N, Demura H, Arai M et al (1997) Oncostatin M: a new potent inhibitor of iodine metabolism inhibits thyroid peroxidase gene expression but not DNA synthesis in porcine thyroid cells in culture. Thyroid. 7(1):71–7. (PMID: 908657510.1089/thy.1997.7.71)
Arita K, South AP, Hans-Filho G, Sakuma TH, Lai-Cheong J, Clements S et al (2008) Oncostatin M receptor-β mutations underlie familial primary localized cutaneous amyloidosis. Am J Hum Genet 82(1):73–80. (PMID: 18179886225398410.1016/j.ajhg.2007.09.002)
Deng G, Kakar S, Okudiara K, Choi E, Sleisenger MH, Kim YS (2009) Unique methylation pattern of oncostatin m receptor gene in cancers of colorectum and other digestive organs. Clin Cancer Res 15(5):1519–26. (PMID: 1922349910.1158/1078-0432.CCR-08-1778)
Auernhammer CJ, Dorn F, Vlotides G, Hengge S, Kopp FB, Spoettl G et al (2004) The oncostatin M receptor/gp130 ligand murine oncostatin M induces apoptosis in adrenocortical Y-1 tumor cells. J Endocrinol 180(3):479–86. (PMID: 1501260210.1677/joe.0.1800479)
Gao J-X, Li Y, Wang S-N, Chen X-C, Lin L-L, Zhang H (2019) Overexpression of microRNA-183 promotes apoptosis of substantia nigra neurons via the inhibition of OSMR in a mouse model of Parkinson’s disease. Int J Mol Med 43(1):209–20. (PMID: 30431059)
Pelletier JP, Martel-Pelletier J (2003) Oncostatin M: foe or friend? Arthritis & Rheum: Off J Am College of Rheumatol 48(12):3301–3. (PMID: 10.1002/art.11348)
Weiss TW, Samson AL, Niego Be, Daniel PB, Medcalf RL, Weiss TW, et al (2006) Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. The FASEB J 20(13):2369–71.
Rapti S-M, Kontos CK, Papadopoulos IN, Scorilas A (2016) High miR-96 levels in colorectal adenocarcinoma predict poor prognosis, particularly in patients without distant metastasis at the time of initial diagnosis. Tumor Biol 37(9):11815–24. (PMID: 10.1007/s13277-016-5023-0)
Li J, Li P, Chen T, Gao G, Chen X, Du Y et al (2015) Expression of microRNA-96 and its potential functions by targeting FOXO3 in non-small cell lung cancer. Tumor Biol 36:685–92. (PMID: 10.1007/s13277-014-2698-y)
Schlüter T, Berger C, Rosengauer E, Fieth P, Krohs C, Ushakov K et al (2018) miR-96 is required for normal development of the auditory hindbrain. Hum Mol Genet 27(5):860–74. (PMID: 2932511910.1093/hmg/ddy007)
Xiang L, Chen X-J, Wu K-C, Zhang C-J, Zhou G-H, Lv J-N et al (2017) miR-183/96 plays a pivotal regulatory role in mouse photoreceptor maturation and maintenance. Proc Natl Acad Sci 114(24):6376–81. (PMID: 28559309547481110.1073/pnas.1618757114)
Gan J, Cai Q, Qu Y, Zhao F, Wan C, Luo R et al (2017) miR-96 attenuates status epilepticus-induced brain injury by directly targeting Atg7 and Atg16L1. Sci Rep 7(1):10270. (PMID: 28860495557903010.1038/s41598-017-10619-0)
Guan F, Zhang T, Liu X, Han W, Lin H, Li L et al (2016) Evaluation of voltage-dependent calcium channel γ gene families identified several novel potential susceptible genes to schizophrenia. Sci Rep 6(1):24914. (PMID: 27102562484035010.1038/srep24914)
Wu DM, Wang YJ, Han XR, Wen X, Wang S, Shen M, et al. (2018) Retracted: LncRNA LINC00880 promotes cell proliferation, migration, and invasion while inhibiting apoptosis by targeting CACNG5 through the MAPK signaling pathway in spinal cord ependymoma. Wiley Online Library.
Yanagisawa S, Baker JR, Vuppusetty C, Koga T, Colley T, Fenwick P et al (2018) The dynamic shuttling of SIRT1 between cytoplasm and nuclei in bronchial epithelial cells by single and repeated cigarette smoke exposure. PLoS One 13(3):e0193921. (PMID: 29509781583957710.1371/journal.pone.0193921)
Alam F, Syed H, Amjad S, Baig M, Khan TA, Rehman R (2021) Interplay between oxidative stress, SIRT1, reproductive and metabolic functions. Curr Res Physiol 4:119–24. (PMID: 34746831856218810.1016/j.crphys.2021.03.002)
Chen C, Zhou M, Ge Y, Wang X (2020) SIRT1 and aging related signaling pathways. Mech Ageing Dev 187:111215. (PMID: 3208445910.1016/j.mad.2020.111215)
Peng X, Wang J, Peng J, Jiang H, Le K (2022) Resveratrol improves synaptic plasticity in hypoxic-ischemic brain injury in neonatal mice via alleviating SIRT1/NF-κB signaling-mediated neuroinflammation. J Mol Neurosci: MN 72(1):113–25. (PMID: 3454933910.1007/s12031-021-01908-5)
Wang J, Fivecoat H, Ho L, Pan Y, Ling E, Pasinetti GM (2010) The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Biochem Biophys Acta 1804(8):1690–4. (PMID: 19945548)
Calopa M, Bas J, Callén A, Mestre M (2010) Apoptosis of peripheral blood lymphocytes in Parkinson patients. Neurobiol Dis 38(1):1–7. (PMID: 2004400310.1016/j.nbd.2009.12.017)
Yu X, Zhang S, Zhao D, Zhang X, Xia C, Wang T et al (2019) SIRT1 inhibits apoptosis in in vivo and in vitro models of spinal cord injury via microRNA-494. Int J Mol Med. 43(4):1758–68. (PMID: 308164516414168)
Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M et al (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 94(14):7531–6. (PMID: 92071262385610.1073/pnas.94.14.7531)
Wang M, Sun H, Yao Y, Tang X, Wu B (2019) MicroRNA-217/138-5p downregulation inhibits inflammatory response, oxidative stress and the induction of neuronal apoptosis in MPP(+)-induced SH-SY5Y cells. Am J Transl Res 11(10):6619–31. (PMID: 317372126834497)
Yan L, Li L, Lei J (2021) Long noncoding RNA small nucleolar RNA host gene 12/microRNA-138-5p/nuclear factor I/B regulates neuronal apoptosis, inflammatory response, and oxidative stress in Parkinson’s disease. Bioengineered 12(2):12867–79. (PMID: 34783303881004410.1080/21655979.2021.2005928)
Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM et al (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science (New York, NY) 275(5300):661–5. (PMID: 10.1126/science.275.5300.661)
Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature. 407(6805):802–9. (PMID: 1104873210.1038/35037739)
Bhatt AP, Damania B (2012) AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol. 3:401. (PMID: 23316192)
Embi N, Rylatt DB, Cohen P (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107(2):519-27. (PMID: 624959610.1111/j.1432-1033.1980.tb06059.x)
Bhat RV, Budd Haeberlein SL, Avila J (2004) Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 89(6):1313–7. (PMID: 1518933310.1111/j.1471-4159.2004.02422.x)
Ishiguro K, Shiratsuchi A, Sato S, Omori A, Arioka M, Kobayashi S et al (1993) Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett 325(3):167–72. (PMID: 768650810.1016/0014-5793(93)81066-9)
Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32(4–5):577–95. (PMID: 1694432010.1007/s11064-006-9128-5)
Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA 97(22):11960–5.
Zhu D, Kang Q, Huang PY, He TC, Xie P (2009) Neurogenesis-related genes expression profiling of mouse fibroblastic stem cells induced by Wnt signaling. Neurol Res 31(2):200–3. (PMID: 1929876210.1179/174313209X393915)
Zhu J, Xu X, Liang Y, Zhu R (2021) Downregulation of microRNA-15b-5p targeting the Akt3-mediated GSK-3β/β-catenin signaling pathway inhibits cell apoptosis in Parkinson’s disease. Biomed Res Int 2021:8814862. (PMID: 33506036780637510.1155/2021/8814862)
Unachukwu U, Chada K, D'Armiento J (2020) High mobility group AT-Hook 2 (HMGA2) oncogenicity in mesenchymal and epithelial neoplasia. Int J Mol Sci 21(9).
Fedele M, Paciello O, De Biase D, Monaco M, Chiappetta G, Vitiello M et al (2018) HMGA2 cooperates with either p27(kip1) deficiency or Cdk 4(R24C) mutation in pituitary tumorigenesis. Cell Cycle (Georgetown, Tex) 17(5):580–8. (PMID: 2915711110.1080/15384101.2017.1403682)
Mansoori B, Mohammadi A, Ditzel HJ, Duijf PHG, Khaze V, Gjerstorff MF et al (2021) HMGA2 as a critical regulator in cancer development. Genes. 12(2).
Fujikane R, Komori K, Sekiguchi M, Hidaka M (2016) Function of high-mobility group A proteins in the DNA damage signaling for the induction of apoptosis. Sci Rep 6:31714. (PMID: 27538817499084110.1038/srep31714)
Wang WY, Cao YX, Zhou X, Wei B, Zhan L, Fu LT (2018) HMGA2 gene silencing reduces epithelial-mesenchymal transition and lymph node metastasis in cervical cancer through inhibiting the ATR/Chk1 signaling pathway. Am J Transl Res 10(10):3036–52. (PMID: 304166496220229)
Yu K-R, Shin J-H, Kim J-J, Koog MG, Lee JY, Choi SW et al (2015) Rapid and efficient direct conversion of human adult somatic cells into neural stem cells by HMGA2/let-7b. Cell Rep 10(3):441–52. (PMID: 2560087710.1016/j.celrep.2014.12.038)
Jin J, Zhou F, Zhu J, Zeng W, Liu Y (2020) MiR-26a inhibits the inflammatory response of microglia by targeting HMGA2 in intracerebral hemorrhage. J Int Med Res 48(6):0300060520929615. (PMID: 32588686732546210.1177/0300060520929615)
Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135(2):227–39. (PMID: 18957199258222110.1016/j.cell.2008.09.017)
Huang Y, Liu Y, Huang J, Gao L, Wu Z, Wang L, et al (2021) Let‑7b‑5p promotes cell apoptosis in Parkinson’s disease by targeting HMGA2. Mol Med Rep;24(5).
Pallarès-Albanell J, Zomeño-Abellán MT, Escaramís G, Pantano L, Soriano A, Segura MF et al (2019) A high-throughput screening identifies microRNA inhibitors that influence neuronal maintenance and/or response to oxidative stress. Mol Ther Nucleic Acids 17:374–87. (PMID: 31302497662686710.1016/j.omtn.2019.06.007)
Schulz JB, Weller M, Moskowitz MA (1999) Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 45(4):421–9. (PMID: 1021146510.1002/1531-8249(199904)45:4<421::AID-ANA2>3.0.CO;2-Q)
Xu L, Jia Y, Yang X-H, Han F, Zheng Y, Ni Y et al (2017) MicroRNA-130b transcriptionally regulated by histone H3 deacetylation renders Akt ubiquitination and apoptosis resistance to 6-OHDA. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1863(6):1678–89.
Wei-Fa LJ (2022) MicroRNA-486 targeting TRIM10 to inhibit Parkinson’s disease cell model damage. Acta Anat Sin 53(4):424–31.
Li L, Wang H, Li H, Lu X, Gao Y, Guo X (2022) Long noncoding RNA BACE1-antisense transcript plays a critical role in Parkinson’s disease via microRNA-214-3p/Cell death-inducing p53-target protein 1 axis. Bioengineered 13(4):10889–901. (PMID: 35481549920852210.1080/21655979.2022.2066750)
Sun S, Han X, Li X, Song Q, Lu M, Jia M, et al (2018) MicroRNA-212–5p prevents dopaminergic neuron death by inhibiting SIRT2 in MPTP-induced mouse model of Parkinson’s disease. Front Mol Neurosci 11.
Lai Y, Liu J (2020) miRNA-153 targets snail family transcriptional repressor 1 and inhibits the cell apoptosis in the model of MPP+-induced Parkinson? s disease. J Biomater Tissue Eng 10(12):1800–6. (PMID: 10.1166/jbt.2020.2497)
Yang X, Zhang M, Wei M, Wang A, Deng Y, Cao H (2020) MicroRNA-216a inhibits neuronal apoptosis in a cellular Parkinson’s disease model by targeting Bax. Metab Brain Dis 35(4):627–35. (PMID: 3214082310.1007/s11011-020-00546-x)
Wei M, Cao L-J, Zheng J-L, Xue L-J, Chen B, Xiao F et al (2017) MicroRNA-181c functions as a protective factor in a 1-methyl-4-phenylpyridinium iodide-induced cellular Parkinson’s disease model via BCL2L11. Eur Rev Med Pharmacol Sci. 21(14).
Liu T, Zhang Y, Liu W, Zhao J (2021) LncRNA NEAT1 regulates the development of Parkinson’s disease by targeting AXIN1 via sponging miR-212-3p. Neurochem Res 46(2):230–40. (PMID: 3324143210.1007/s11064-020-03157-1)
Wang H, Ye Y, Zhu Z, Mo L, Lin C, Wang Q et al (2016) MiR-124 regulates apoptosis and autophagy process in MPTP model of P arkinson’s disease by targeting to B im. Brain Pathol 26(2):167–76. (PMID: 2597606010.1111/bpa.12267)
Ye M, Chen Y, Xie J, Yu M, Shi P, Xu W et al (2018) miRNA-140-5p play an important role of Parkinson’s disease development. J Biomater Tissue Eng 8(11):1566–72. (PMID: 10.1166/jbt.2018.1905)
Fan Y, Zhao X, Lu K, Cheng G (2020) LncRNA BDNF-AS promotes autophagy and apoptosis in MPTP-induced Parkinson’s disease via ablating microRNA-125b-5p. Brain Res Bull 157:119–27. (PMID: 3205795110.1016/j.brainresbull.2020.02.003)
Xiao X, Tan Z, Jia M, Zhou X, Wu K, Ding Y et al (2021) Long noncoding RNA SNHG1 knockdown ameliorates apoptosis, oxidative stress and inflammation in models of Parkinson’s disease by inhibiting the miR-125b-5p/MAPK1 axis. Neuropsychiatr Dis Treat 17:1153–63.
Liu Y, Song Y, Zhu X (2017) MicroRNA-181a regulates apoptosis and autophagy process in Parkinson’s disease by inhibiting p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinases (JNK) signaling pathways. Med Sci Monit: Int Med J Exp Clin Res 23:1597–606. (PMID: 10.12659/MSM.900218)
Wen Z, Zhang J, Tang P, Tu N, Wang K, Wu G (2018) Overexpression of miR-185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson’s disease. Mol Med Rep. 17(1):131–7. (PMID: 29115479)
Dong Li, Zheng Y, Gao L, Luo X (2021) lncRNA NEAT1 prompts autophagy and apoptosis in MPTP-induced Parkinson’s disease by impairing miR-374c-5p Acta Biochim Biophys Sin 53(7):870–82.
Zhang Y, Xu W, Nan S, Chang M, Fan J (2019) MicroRNA-326 inhibits apoptosis and promotes proliferation of dopaminergic neurons in Parkinson’s disease through suppression of KLK7-mediated MAPK signaling pathway. J Mol Neurosci 69(2):197–214. (PMID: 3127067510.1007/s12031-019-01349-1)
Sun Q, Zhang Y, Wang S, Yang F, Cai H, Xing Y et al (2022) LncRNA HOTAIR promotes α-synuclein aggregation and apoptosis of SH-SY5Y cells by regulating miR-221-3p in Parkinson’s disease. Exp Cell Res 417(1):113132. (PMID: 3539816110.1016/j.yexcr.2022.113132)
Xu X, Zhuang C, Wu Z, Qiu H, Feng H, Wu J (2018) LincRNA-p21 inhibits cell viability and promotes cell apoptosis in Parkinson’s disease through activating-synuclein expression. Biomed Res Int; 2018.
Lv K, Liu Y, Zheng Y, Dai S, Yin P, Miao H (2021) Long non-coding RNA MALAT1 regulates cell proliferation and apoptosis via miR-135b-5p/GPNMB axis in Parkinson’s disease cell model. Biol Res 54.
Shakespear N, Ogura M, Yamaki J, Homma Y (2020) Astrocyte-derived exosomal microRNA miR-200a-3p prevents MPP+-induced apoptotic cell death through down-regulation of MKK4. Neurochem Res 45(5):1020–33. (PMID: 3201679410.1007/s11064-020-02977-5)
Wu Q, Xi D-Z, Wang Y-H (2019) MicroRNA-599 regulates the development of Parkinson’s disease through mediating LRRK2 expression. Eur Rev Med Pharmacol Sci. 23(2).
Dong L-G, Lu F-F, Zu J, Zhang W, Xu C-Y, Jin G-L et al (2020) MiR-133b inhibits MPP+-induced apoptosis in Parkinson’s disease model by inhibiting the ERK1/2 signaling pathway. Eur Rev Med Pharmacol Sci; 24(21).
Tan X, Hu J, Ming F, Lv L, Yan W, Peng X, et al (2022) MicroRNA-409–3p targeting at ATXN3 reduces the apoptosis of dopamine neurons based on the profile of miRNAs in the cerebrospinal fluid of early Parkinson’s disease. Front Cell Dev Biol; 9.
Zhu J, Xu X, Liang Y, Zhu R (2021) Downregulation of microRNA-15b-5p targeting the Akt3-mediated GSK-3/β-catenin signaling pathway inhibits cell apoptosis in Parkinson’s disease. Biomed Res Int 2021:8814862. (PMID: 33506036780637510.1155/2021/8814862)
Zhi LWWLW (2022) Protective effect of long non-coding RNA cytoskeleton regulatory RNA targeting microRNA-1246 on cell damage in Parkinson’s disease models. Acta Anat Sin 53(5):563.
Qiu F, Wu Y, Xie G, Cao H, Du M, Jiang H (2023) MiRNA-1976 regulates the apoptosis of dopaminergic neurons by targeting the PINK1 gene. J Integrative Neurosci 22(2):45. (PMID: 10.31083/j.jin2202045)
Zhang Y, Xia Q, Lin J (2020) LncRNA H19 attenuates apoptosis in MPTP-induced Parkinson’s disease through regulating miR-585-3p/PIK3R3. Neurochem Res 45(7):1700–10. (PMID: 3235619910.1007/s11064-020-03035-w)
Huang Y, Liu Y, Huang J, Gao L, Wu Z, Wang L et al (2021) Let-7b-5p promotes cell apoptosis in Parkinson’s disease by targeting HMGA2. Mol Med Rep. 24(5):820. (PMID: 34558637848512310.3892/mmr.2021.12461)
Zhao J, Yang M, Li Q, Pei X, Zhu X (2020) miR-132-5p regulates apoptosis and autophagy in MPTP model of Parkinson’s disease by targeting ULK1. Neuroreport. 31(13):959–65. (PMID: 3265812310.1097/WNR.0000000000001494)
فهرسة مساهمة: Keywords: Apoptosis; Circular RNAs; MicroRNAs; Parkinson’s disease; lncRNAs
تواريخ الأحداث: Date Created: 20240323 Latest Revision: 20240323
رمز التحديث: 20240324
DOI: 10.1007/s12035-024-04111-w
PMID: 38520611
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-1182
DOI:10.1007/s12035-024-04111-w