دورية أكاديمية

Intraoperative MRI: A Review of Applications Across Neurosurgical Specialties.

التفاصيل البيبلوغرافية
العنوان: Intraoperative MRI: A Review of Applications Across Neurosurgical Specialties.
المؤلفون: Begley SL; Department of Neurosurgery, Brain Tumor Center, Lake Success, New York, USA.; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA., McBriar JD; Department of Neurosurgery, Brain Tumor Center, Lake Success, New York, USA.; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA., Pelcher I; Department of Neurosurgery, Brain Tumor Center, Lake Success, New York, USA.; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA., Schulder M; Department of Neurosurgery, Brain Tumor Center, Lake Success, New York, USA.; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.
المصدر: Neurosurgery [Neurosurgery] 2024 Mar 26. Date of Electronic Publication: 2024 Mar 26.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins, Inc Country of Publication: United States NLM ID: 7802914 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1524-4040 (Electronic) Linking ISSN: 0148396X NLM ISO Abbreviation: Neurosurgery Subsets: MEDLINE
أسماء مطبوعة: Publication: 2022- : [Philadelphia] : Lippincott Williams & Wilkins, Inc.
Original Publication: Baltimore, Williams & Wilkins.
مستخلص: Intraoperative MRI (iMRI) made its debut to great fanfare in the mid-1990s. However, the enthusiasm for this technology with seemingly obvious benefits for neurosurgeons has waned. We review the benefits and utility of iMRI across the field of neurosurgery and present an overview of the evidence for iMRI for multiple neurosurgical disciplines: tumor, skull base, vascular, pediatric, functional, and spine. Publications on iMRI have steadily increased since 1996, plateauing with approximately 52 publications per year since 2011. Tumor surgery, especially glioma surgery, has the most evidence for the use of iMRI contributing more than 50% of all iMRI publications, with increased rates of gross total resection in both adults and children, providing a potential survival benefit. Across multiple neurosurgical disciplines, the ability to use a multitude of unique sequences (diffusion tract imaging, diffusion-weighted imaging, magnetic resonance angiography, blood oxygenation level-dependent) allows for specialization of imaging for various types of surgery. Generally, iMRI allows for consideration of anatomic changes and real-time feedback on surgical outcomes such as extent of resection and instrument (screw, lead, electrode) placement. However, implementation of iMRI is limited by cost and feasibility, including the need for installation, shielding, and compatible tools. Evidence for iMRI use varies greatly by specialty, with the most evidence for tumor, vascular, and pediatric neurosurgery. The benefits of real-time anatomic imaging, a lack of radiation, and evaluation of surgical outcomes are limited by the cost and difficulty of iMRI integration. Nonetheless, the ability to ensure patients are provided by a maximal yet safe treatment that specifically accounts for their own anatomy and highlights why iMRI is a valuable and underutilized tool across multiple neurosurgical subspecialties.
(Copyright © Congress of Neurological Surgeons 2024. All rights reserved.)
References: Alam IS, Steinberg I, Vermesh O, et al. Emerging intraoperative imaging modalities to improve surgical precision. Mol Imaging Biol. 2018;20(5):705-715.
Black PM, Moriarty T, Alexander E, et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery. 1997;41(4):831-845.
Nimsky C, Carl B. Historical, current, and future intraoperative imaging modalities. Neurosurg Clin N Am. 2017;28(4):453-464.
Mislow JMK, Golby AJ, Black PM. Origins of intraoperative MRI. Magn Reson Imaging Clin N Am. 2010;18(1):1-10.
Rogers CM, Jones PS, Weinberg JS. Intraoperative MRI for brain tumors. J Neurooncol. 2021;151(3):479-490.
Schulder M, Carmel PW. Intraoperative magnetic resonance imaging: impact on brain tumor surgery. Cancer Control. 2003;10(2):115-124.
Jenkins NW, Parrish JM, Sheha ED, Singh K. Intraoperative risks of radiation exposure for the surgeon and patient. Ann Transl Med. 2021;9(1):84.
Kent T, Jensen R. Intraoperative magnetic resonance imaging in neurosurgery: Part I—a review of history, use, and outcomes. Contemp Neurosurg. 2014;36(23):1-7.
Hollon T, Stummer W, Orringer D, Suero Molina E. Surgical adjuncts to increase the extent of resection: intraoperative MRI, fluorescence, and Raman histology. Neurosurg Clin N Am. 2019;30(1):65-74.
Black P, Alexander E, Martin C, et al. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery. 1999;45(3):423-433.
Ginat DT, Swearingen B, Curry W, Cahill D, Madsen J, Schaefer PW. 3 Tesla intraoperative MRI for brain tumor surgery. J Magn Reson Imaging. 2014;39(6):1357-1365.
Maesawa S, Fujii M, Nakahara N, et al. Clinical indications for high-field 1.5 T intraoperative magnetic resonance imaging and neuro-navigation for neurosurgical procedures. Review of initial 100 cases. Neurol Med Chir (Tokyo). 2009;49(8):340-350.
Senft C, Franz K, Blasel S, et al. Influence of iMRI-guidance on the extent of resection and survival of patients with glioblastoma multiforme. Technol Cancer Res Treat. 2010;9(4):339-346.
Multani K, Balasubramaniam A, Rajesh B, Kumar M, Manohara N, Kumar A. Utility and pitfalls of high field 3 Tesla intraoperative MRI in neurosurgery: a single centre experience of 100 cases. Neurol India. 2020;68(2):413-418.
Leroy HA, Delmaire C, Le Rhun E, Drumez E, Lejeune JP, Reyns N. High-field intraoperative MRI and glioma surgery: results after the first 100 consecutive patients. Acta Neurochir. 2019;161(7):1467-1474.
Shah AS, Sylvester PT, Yahanda AT, et al. Intraoperative MRI for newly diagnosed supratentorial glioblastoma: a multicenter-registry comparative study to conventional surgery. J Neurosurg. 2020;135(2):505-514.
Golub D, Hyde J, Dogra S, et al. Intraoperative MRI versus 5-ALA in high-grade glioma resection: a network meta-analysis. J Neurosurg. 2020;134(2):484-498.
Chicoine MR, Lim CC, Evans JA, et al. Implementation and preliminary clinical experience with the use of ceiling mounted mobile high field intraoperative magnetic resonance imaging between two operating rooms. Acta Neurochir Suppl. 2011;109:97-102.
Bergsneider M, Sehati N, Villablanca P, McArthur DL, Becker DP, Liau LM. Mahaley Clinical Research Award: extent of glioma resection using low-field (0.2 T) versus high-field (1.5 T) intraoperative MRI and image-guided frameless neuronavigation. Clin Neurosurg. 2005;52:389-399.
Hatiboglu MA, Weinberg JS, Suki D, et al. Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery. 2009;64(6):1073-1081.
Zaidi HA, De Los Reyes K, Barkhoudarian G, et al. The utility of high-resolution intraoperative MRI in endoscopic transsphenoidal surgery for pituitary macroadenomas: early experience in the Advanced Multimodality Image Guided Operating suite. Neurosurg Focus. 2016;40(3):e18.
Essayed WI, Juvekar P, Bernstock JD, et al. Multimodal intraoperative image-driven surgery for skull base chordomas and chondrosarcomas. Cancers (Basel). 2022;14(4):966.
Metwali H, Samii A, Gerganov V, Giordano M, Fahlbusch R, Samii M. The significance of intraoperative magnetic resonance imaging in resection of skull base chordomas. World Neurosurg. 2019;128:e185-e194.
Chakraborty S, Zavarella S, Salas S, Schulder M. Intraoperative MRI for resection of intracranial meningiomas. J Exp Ther Oncol. 2017;12(2):157-162.
Tuleasca C, Aboukais R, Vannod-Michel Q, Lejeune JP. Microsurgical resection under intraoperative MRI guidance and diffusion tractography for a cavernous malformation of the primary motor cortex. Acta Neurol Belg. 2023;123(4):1591-1595.
Yan Y, Kaderali Z, Chowdhury T, Shankar J. Feasibility of intraoperative MRI for endovascular coiling of intracranial aneurysms: a single centre experience. Interv Neuroradiol. 2023;29(5):520-524.
Low SYY, Lim EHL, Loh LE, et al. Use of an offsite intraoperative MRI operating theater for pediatric brain tumor surgery: experience from a Singapore Children's Hospital. World Neurosurg. 2020;135:e28-e35.
Kubben PL, ter Meulen KJ, Schijns OE, ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H. Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol. 2011;12(11):1062-1070.
Wach J, Banat M, Borger V, Vatter H, Haberl H, Sarikaya-Seiwert S. Intraoperative MRI-guided resection in pediatric brain tumor surgery: a meta-analysis of extent of resection and safety outcomes. J Neurol Surg A Cent Eur Neurosurg. 2021;82(1):64-74.
Roder C, Charyasz-Leks E, Breitkopf M, et al. Resting-state functional MRI in an intraoperative MRI setting: proof of feasibility and correlation to clinical outcome of patients. J Neurosurg. 2016;125(2):401-409.
Choudhri AF, Klimo P Jr, Auschwitz TS, Whitehead MT, Boop FA. 3T intraoperative MRI for management of pediatric CNS neoplasms. AJNR Am J Neuroradiol. 2014;35(12):2382-2387.
Rajabian A, Vinke S, Candelario-Mckeown J, et al. Accuracy, precision, and safety of stereotactic, frame-based, intraoperative MRI-guided and MRI-verified deep brain stimulation in 650 consecutive procedures. J Neurosurg. 2022;138(6):1702-1711.
Bezchlibnyk YB, Sharma VD, Naik KB, et al. Clinical outcomes of globus pallidus deep brain stimulation for Parkinson disease: a comparison of intraoperative MRI– and MER-guided lead placement. J Neurosurg. 2020;134(3):1072-1082.
Kurwale NS, Chandra SP, Chouksey P, et al. Impact of intraoperative MRI on outcomes in epilepsy surgery: preliminary experience of two years. Br J Neurosurg. 2015;29(3):380-385.
Roessler K, Hofmann A, Sommer B, et al. Resective surgery for medically refractory epilepsy using intraoperative MRI and functional neuronavigation: the Erlangen experience of 415 patients. Neurosurg Focus. 2016;40(3):e15.
Woodard EJ, Leon SP, Moriarty TM, Quinones A, Zamani AA, Jolesz FA. Initial experience with intraoperative magnetic resonance imaging in spine surgery. Spine (Phila Pa 1976). 2001;26(4):410-417.
Feigl GC, Heckl S, Kullmann M, et al. Review of first clinical experiences with a 1.5 Tesla ceiling-mounted moveable intraoperative MRI system in Europe. Bosn J Basic Med Sci. 2019;19(1):24-30.
Roder C, Breitkopf M, Bisdas S, et al. Beneficial impact of high-field intraoperative magnetic resonance imaging on the efficacy of pediatric low-grade glioma surgery. Neurosurg Focus. 2016;40(3):e13.
Azmi H, Biswal B, Salas S, Schulder M. Functional imaging in a low-field, mobile intraoperative magnetic resonance scanner: expanded paradigms. Neurosurgery. 2007;60(1):143-148.
Roder C, Bender B, Ritz R, et al. Intraoperative visualization of residual tumor: the role of perfusion-weighted imaging in a high-field intraoperative magnetic resonance scanner. Oper Neurosurg. 2013;72:151-158.
Buchfelder M, Schlaffer SM. Intraoperative magnetic resonance imaging during surgery for pituitary adenomas: pros and cons. Endocrine. 2012;42(3):483-495.
Kubben PL, van Santbrink H, ter Laak-Poort M, et al. Implementation of a mobile 0.15-T intraoperative MR system in pediatric neuro-oncological surgery: feasibility and correlation with early postoperative high-field strength MRI. Childs Nerv Syst. 2012;28(8):1171-1180.
Stanton M, Antony J, Withers T. Intraoperative MRI in trans-sphenoidal surgery using frameless stereotaxis. Surg Neurol Int. 2021;12:179.
Stark AM, Schwartz F, Mehdorn M, Nabavi A. Neuroendoscopy and high-field intraoperative MRI: first experience. J Neurol Surg A Cent Eur Neurosurg. 2014;75(5):371-375.
Goren O, Monteith SJ, Hadani M, Bakon M, Harnof S. Modern intraoperative imaging modalities for the vascular neurosurgeon treating intracerebral hemorrhage. Neurosurg Focus. 2013;34(5):e2.
Schwartz RB, Hsu L, Wong TZ, et al. Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology. 1999;211(2):477-488.
Pesce A, Frati A, D'Andrea G, et al. The real impact of an intraoperative magnetic resonance imaging-equipped operative theatre in neurovascular surgery: the Sapienza University experience. World Neurosurg. 2018;120:190-199.
Sutherland GR, Kaibara T, Wallace C, Tomanek B, Richter M. Intraoperative assessment of aneurysm clipping using magnetic resonance angiography and diffusion-weighted imaging: technical case report. Neurosurgery. 2002;50(4):893-898.
Muscas G, Bas van Niftrik CH, Fierstra J, et al. Feasibility and safety of intraoperative BOLD functional MRI cerebrovascular reactivity to evaluate extracranial-to-intracranial bypass efficacy. Neurosurg Focus. 2019;46(2):e7.
Tabakow P, Czyz M, Szewczyk P, Weiser A, Jarmundowicz W. Usefulness of intraoperative magnetic resonance ventriculography during endoscopic third ventriculostomy. Neurosurgery. 2013;73(4):730-738.
Karsy M, Akbari SH, Limbrick D, et al. Evaluation of pediatric glioma outcomes using intraoperative MRI: a multicenter cohort study. J Neurooncol. 2019;143(2):271-280.
Cui Z, Pan L, Song H, et al. Intraoperative MRI for optimizing electrode placement for deep brain stimulation of the subthalamic nucleus in Parkinson disease. J Neurosurg. 2016;124(1):62-69.
Larson PS, Starr PA, Bates G, Tansey L, Richardson RM, Martin AJ. An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery. 2012;70(1 Suppl Operative):95-103.
Englman C, Malpas CB, Harvey AS, Maixner WJ, Yang JY. Intraoperative magnetic resonance imaging in epilepsy surgery: a systematic review and meta-analysis. J Clin Neurosci. 2021;91:1-8.
Eid H, Crevier-Sorbo G, Moreau JT, et al. Eight-year experience with 3-T intraoperative MRI integration in focal pediatric epilepsy surgery: impact on extent of resection, residual volumes, and seizure outcomes. AJR Am J Roentgenol. 2020;214(6):1343-1351.
Narain AS, Hijji FY, Yom KH, Kudaravalli KT, Haws BE, Singh K. Radiation exposure and reduction in the operating room: perspectives and future directions in spine surgery. World J Orthop. 2017;8(7):524-530.
Choi G, Modi HN, Prada N, et al. Clinical results of XMR-assisted percutaneous transforaminal endoscopic lumbar discectomy. J Orthop Surg Res. 2013;8:14.
Juthani RG, Bilsky MH, Vogelbaum MA. Current management and treatment modalities for intramedullary spinal cord tumors. Curr Treat Options Oncol. 2015;16(8):39.
Desai B, Hobbs J, Hartung G, et al. Image-guidance technology and the surgical resection of spinal column tumors. J Neurooncol. 2017;131(3):425-435.
Himes NC, Chansakul T, Lee TC. Magnetic resonance imaging-guided spine interventions. Magn Reson Imaging Clin N Am. 2015;23(4):523-532.
Schichor C, Terpolilli N, Thorsteinsdottir J, Tonn JC. Intraoperative computed tomography in cranial neurosurgery. Neurosurg Clin N Am. 2017;28(4):595-602.
Velho V, Kharosekar H, Bhople L, Domkundwar S. Intraoperative ultrasound an economical tool for neurosurgeons: a single-center experience. Asian J Neurosurg. 2020;15(4):983-988.
Olah L, Olah M. Potential benefits of intraoperative ultrasound in neurosurgery. J Clin Ultrasound. 2023;51(4):739-741.
Dixon L, Lim A, Grech-Sollars M, Nandi D, Camp S. Intraoperative ultrasound in brain tumor surgery: a review and implementation guide. Neurosurg Rev. 2022;45(4):2503-2515.
Naik A, Smith EJ, Barreau A, et al. Comparison of fluorescein sodium, 5-ALA, and intraoperative MRI for resection of high-grade gliomas: a systematic review and network meta-analysis. J Clin Neurosci. 2022;98:240-247.
Riva M, Amin-Hanjani S, Giussani C, De Witte O, Bruneau M. Indocyanine green videoangiography in aneurysm surgery: systematic review and meta-analysis. Neurosurgery. 2018;83(2):166-180.
Norat P, Soldozy S, Elsarrag M, et al. Application of indocyanine green videoangiography in aneurysm surgery: evidence, techniques, practical tips. Front Surg. 2019;6:34.
Wagner CR, Phillips T, Roux S, Corrigan JP. Future directions in robotic neurosurgery. Oper Neurosurg. 2021;21(4):173-180.
Hall WA, Galicich W, Bergman T, Truwit CL. 3-Tesla intraoperative MR imaging for neurosurgery. J Neurooncol. 2006;77(3):297-303.
Abraham P, Sarkar R, Brandel MG, et al. Cost-effectiveness of intraoperative MRI for treatment of high-grade gliomas. Radiology. 2019;291(3):689-697.
Limpo H, Díez R, Albisua J, Tejada S. Intraoperative high-field resonance: how to optimize its use in our healthcare system. Neurocirugia (Astur: Engl Ed). 2022;33(6):261-268.
Bergese SD, Puente EG. Anesthesia in the intraoperative MRI environment. Neurosurg Clin N Am. 2009;20(2):155-162.
Sharma M, Wang D, Scott V, et al. Intraoperative MRI use in transsphenoidal surgery for pituitary tumors: trends and healthcare utilization. J Clin Neurosci. 2023;111:86-90.
Deora H, Ferini G, Garg K, Narayanan MDK, Umana GE. Evaluating the impact of intraoperative MRI in neuro-oncology by scientometric analysis. Life (Basel). 2022;12(2):175.
Jenkinson MD, Barone DG, Bryant A, et al. Intraoperative imaging technology to maximise extent of resection for glioma. Cochrane Database Syst Rev. 2018;1(1):CD012788.
Fenchel S, Boll DT, Lewin JS. Intraoperative MR imaging. Magn Reson Imaging Clin N Am. 2003;11(3):431-447.
Kowalik K, Truwit C, Hall W, Kucharczyk J. Initial assessment of costs and benefits of MRI-guided brain tumor resection. Eur Radiol. 2000;10(Suppl 3):S366-S367.
Schulz C, Waldeck S, Mauer UM. Intraoperative image guidance in neurosurgery: development, current indications, and future trends. Radiol Res Pract. 2012;2012:197364.
Johnston T, Moser R, Moeller K, Moriarty TM. Intraoperative MRI: safety. Neurosurg Clin N Am. 2009;20(2):147-153.
Hemingway M, Kilfoyle M. Safety planning for intraoperative magnetic resonance imaging. AORN J. 2013;98(5):508-524.
D'Amico RS, Aghi MK, Vogelbaum MA, Bruce JN. Convection-enhanced drug delivery for glioblastoma: a review. J Neurooncol. 2021;151(3):415-427.
Lonser RR, Warren KE, Butman JA, et al. Real-time image-guided direct convective perfusion of intrinsic brainstem lesions. Technical note. J Neurosurg. 2007;107(1):190-197.
Fiandaca MS, Forsayeth JR, Dickinson PJ, Bankiewicz KS. Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics. 2008;5(1):123-127.
Contreras López WO, Navarro PA, Crispin S. Intraoperative clinical application of augmented reality in neurosurgery: a systematic review. Clin Neurol Neurosurg. 2019;177:6-11.
Zhang ZY, Duan WC, Chen RK, et al. Preliminary application of mixed reality in neurosurgery: development and evaluation of a new intraoperative procedure. J Clin Neurosci. 2019;67:234-238.
تواريخ الأحداث: Date Created: 20240326 Latest Revision: 20240326
رمز التحديث: 20240326
DOI: 10.1227/neu.0000000000002933
PMID: 38530004
قاعدة البيانات: MEDLINE
الوصف
تدمد:1524-4040
DOI:10.1227/neu.0000000000002933