دورية أكاديمية

Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities.

التفاصيل البيبلوغرافية
العنوان: Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities.
المؤلفون: Stroope C; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA., Nettersheim FS; La Jolla Institute for Immunology, La Jolla, CA, USA.; Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany., Coon B; Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.; Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA.; Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA., Finney AC; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA., Schwartz MA; Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.; Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA., Ley K; La Jolla Institute for Immunology, La Jolla, CA, USA.; Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.; Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA., Rom O; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA., Yurdagul A Jr; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA. arif.yurdagul@lsuhs.edu.; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA. arif.yurdagul@lsuhs.edu.
المصدر: Nature metabolism [Nat Metab] 2024 Apr; Vol. 6 (4), pp. 617-638. Date of Electronic Publication: 2024 Mar 26.
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: Germany NLM ID: 101736592 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2522-5812 (Electronic) Linking ISSN: 25225812 NLM ISO Abbreviation: Nat Metab Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Nature, [2019]-
مواضيع طبية MeSH: Atherosclerosis*/metabolism, Humans ; Animals ; Macrophages/metabolism ; Endothelial Cells/metabolism ; Muscle, Smooth, Vascular/metabolism ; T-Lymphocytes/metabolism
مستخلص: Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
(© 2024. Springer Nature Limited.)
References: Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Primers 5, 56 (2019). (PMID: 10.1038/s41572-019-0106-z31420554)
Rahman, M. S., Murphy, A. J. & Woollard, K. J. Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nat. Rev. Cardiol. 14, 387–400 (2017). (PMID: 10.1038/nrcardio.2017.3428300081)
Lim, G. B. Hyperglycaemia-induced trained immunity promotes atherosclerosis. Nat. Rev. Cardiol. 18, 687 (2021). (PMID: 10.1038/s41569-021-00606-434312499)
Nitz, K., Lacy, M. & Atzler, D. Amino acids and their metabolism in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 39, 319–330 (2019). (PMID: 10.1161/ATVBAHA.118.31157230650999)
Yurdagul, A. Jr., Finney, A. C., Woolard, M. D. & Orr, A. W. The arterial microenvironment: the where and why of atherosclerosis. Biochem. J. 473, 1281–1295 (2016). (PMID: 10.1042/BJ2015084427208212)
Hansson, G. K., Libby, P. & Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med. 278, 483–493 (2015). (PMID: 10.1111/joim.12406262603075082111)
Partida, R. A., Libby, P., Crea, F. & Jang, I. K. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur. Heart J. 39, 2070–2076 (2018). (PMID: 10.1093/eurheartj/ehx786293293845991215)
Michos, E. D., McEvoy, J. W. & Blumenthal, R. S. Lipid management for the prevention of atherosclerotic cardiovascular disease. N. Engl. J. Med. 381, 1557–1567 (2019). (PMID: 10.1056/NEJMra180693931618541)
Tsao, C. W. et al. Heart Disease and Stroke Statistics–2023 Update: a report from the American Heart Association. Circulation 147, e93–e621 (2023). (PMID: 10.1161/CIR.000000000000112336695182)
Back, M., Yurdagul, A. Jr., Tabas, I., Oorni, K. & Kovanen, P. T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16, 389–406 (2019). (PMID: 308468756727648)
Doran, A. C. Inflammation resolution: implications for atherosclerosis. Circ. Res. 130, 130–148 (2022). (PMID: 10.1161/CIRCRESAHA.121.319822349951378842990)
Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017). (PMID: 10.1056/NEJMoa170791428845751)
Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019). (PMID: 10.1056/NEJMoa191238831733140)
Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009). (PMID: 10.1038/nrm2596191973322719300)
Mullick, A. E. et al. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J. Exp. Med. 205, 373–383 (2008). (PMID: 10.1084/jem.20071096182501942271019)
Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014). (PMID: 10.1038/nrm3896253555054513363)
Boren, J. & Williams, K. J. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr. Opin. Lipidol. 27, 473–483 (2016). (PMID: 10.1097/MOL.000000000000033027472409)
Ramirez, C. M. et al. Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation. Circulation 140, 225–239 (2019). (PMID: 10.1161/CIRCULATIONAHA.118.038571311548256778687)
Huang, L. et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 569, 565–569 (2019). (PMID: 10.1038/s41586-019-1140-4310193076631346)
Camejo, G., Olofsson, S. O., Lopez, F., Carlsson, P. & Bondjers, G. Identification of Apo B-100 segments mediating the interaction of low density lipoproteins with arterial proteoglycans. Arteriosclerosis 8, 368–377 (1988). (PMID: 10.1161/01.ATV.8.4.3683395272)
Tsiantoulas, D. et al. APRIL limits atherosclerosis by binding to heparan sulfate proteoglycans. Nature 597, 92–96 (2021). (PMID: 10.1038/s41586-021-03818-334433968)
Li, Y. et al. Cholesterol-induced apoptotic macrophages elicit an inflammatory response in phagocytes, which is partially attenuated by the Mer receptor. J. Biol. Chem. 281, 6707–6717 (2006). (PMID: 10.1074/jbc.M51057920016380374)
Schrijvers, D. M., De Meyer, G. R., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb. Vasc. Biol. 25, 1256–1261 (2005). (PMID: 10.1161/01.ATV.0000166517.18801.a715831805)
Kojima, Y., Weissman, I. L. & Leeper, N. J. The role of efferocytosis in atherosclerosis. Circulation 135, 476–489 (2017). (PMID: 10.1161/CIRCULATIONAHA.116.025684281379635302553)
Humphrey, J. D. & Schwartz, M. A. Vascular mechanobiology: homeostasis, adaptation, and disease. Annu. Rev. Biomed. Eng. 23, 1–27 (2021). (PMID: 10.1146/annurev-bioeng-092419-060810342559948719655)
Rohlenova, K., Veys, K., Miranda-Santos, I., De Bock, K. & Carmeliet, P. Endothelial cell metabolism in health and disease. Trends Cell Biol. 28, 224–236 (2018). (PMID: 10.1016/j.tcb.2017.10.01029153487)
Enzo, E. et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 34, 1349–1370 (2015). (PMID: 10.15252/embj.201490379257964464491996)
White, S. M. et al. YAP/TAZ inhibition induces metabolic and signaling rewiring resulting in targetable vulnerabilities in NF2-deficient tumor cells. Dev. Cell 49, 425–443 (2019). (PMID: 10.1016/j.devcel.2019.04.014310637586524954)
Wang, K. C. et al. Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc. Natl Acad. Sci. USA 113, 11525–11530 (2016). (PMID: 10.1073/pnas.1613121113276716575068257)
Wu, D. et al. HIF-1alpha is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. Elife https://doi.org/10.7554/eLife.25217 (2017).
Yang, Q. et al. PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nat. Commun. 9, 4667 (2018). (PMID: 10.1038/s41467-018-07132-x304051006220207)
Atkins, G. B. & Jain, M. K. Role of Kruppel-like transcription factors in endothelial biology. Circ. Res. 100, 1686–1695 (2007). (PMID: 10.1161/01.RES.0000267856.00713.0a17585076)
Doddaballapur, A. et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler. Thromb. Vasc. Biol. 35, 137–145 (2015). (PMID: 10.1161/ATVBAHA.114.30427725359860)
Coon, B. G. et al. A mitochondrial contribution to anti-inflammatory shear stress signaling in vascular endothelial cells. J. Cell Biol. https://doi.org/10.1083/jcb.202109144 (2022).
Goldberg, I. J. et al. Lipolytic enzymes and free fatty acids at the endothelial interface. Atherosclerosis 329, 1–8 (2021). (PMID: 10.1016/j.atherosclerosis.2021.05.01834130222)
Mehrotra, D., Wu, J., Papangeli, I. & Chun, H. J. Endothelium as a gatekeeper of fatty acid transport. Trends Endocrinol. Metab. 25, 99–106 (2014). (PMID: 10.1016/j.tem.2013.11.00124315207)
Abumrad, N. A. et al. Endothelial cell receptors in tissue lipid uptake and metabolism. Circ. Res. 128, 433–450 (2021). (PMID: 10.1161/CIRCRESAHA.120.318003335392247959116)
Ibrahim, A., Yucel, N., Kim, B. & Arany, Z. Local mitochondrial ATP production regulates endothelial fatty acid uptake and transport. Cell Metab. 32, 309–319 (2020). (PMID: 10.1016/j.cmet.2020.05.018325212327415739)
Kraehling, J. R. et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat. Commun. 7, 13516 (2016). (PMID: 10.1038/ncomms13516278691175121336)
Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011). (PMID: 10.1038/nature1014621593864)
Zhou, Z. et al. Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing CXCL1 from the endothelium. Cell Metab. 13, 592–600 (2011). (PMID: 10.1016/j.cmet.2011.02.01621531341)
Chen, P. Y. et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest. 125, 4514–4528 (2015). (PMID: 10.1172/JCI82719265176964665771)
Evrard, S. M. et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 7, 11853 (2016). (PMID: 10.1038/ncomms11853273400174931033)
Chen, P. Y. et al. Endothelial TGF-beta signalling drives vascular inflammation and atherosclerosis. Nat. Metab. 1, 912–926 (2019). (PMID: 10.1038/s42255-019-0102-3315729766767930)
Zhu, X. et al. Acetate controls endothelial-to-mesenchymal transition. Cell Metab. https://doi.org/10.1016/j.cmet.2023.05.010 (2023). (PMID: 10.1016/j.cmet.2023.05.0103811388710430883)
Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016). (PMID: 10.1161/CIRCRESAHA.115.306361268929674762053)
Sorokin, V. et al. Role of vascular smooth muscle cell plasticity and interactions in vessel wall inflammation. Front Immunol. 11, 599415 (2020). (PMID: 10.3389/fimmu.2020.599415333244167726011)
Worssam, M. D. & Jorgensen, H. F. Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases. Biochem. Soc. Trans. 49, 2101–2111 (2021). (PMID: 10.1042/BST20210138344953268589433)
Liu, M. & Gomez, D. Smooth muscle cell phenotypic diversity. Arterioscler. Thromb. Vasc. Biol. 39, 1715–1723 (2019). (PMID: 10.1161/ATVBAHA.119.312131313406686986347)
Dobnikar, L. et al. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat. Commun. 9, 4567 (2018). (PMID: 10.1038/s41467-018-06891-x303857456212435)
Kovacic, J. C. et al. Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 190–209 (2019). (PMID: 10.1016/j.jacc.2018.09.089306548926865825)
Chen, J., Kitchen, C. M., Streb, J. W. & Miano, J. M. Myocardin: a component of a molecular switch for smooth muscle differentiation. J. Mol. Cell. Cardiol. 34, 1345–1356 (2002). (PMID: 10.1006/jmcc.2002.208612392995)
Shankman, L. S. et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 21, 628–637 (2015). (PMID: 10.1038/nm.3866259853644552085)
Yap, C., Mieremet, A., de Vries, C. J. M., Micha, D. & de Waard, V. Six shades of vascular smooth muscle cells illuminated by KLF4 (kruppel-like factor 4). Arterioscler. Thromb. Vasc. Biol. 41, 2693–2707 (2021). (PMID: 10.1161/ATVBAHA.121.316600344704778545254)
Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019). (PMID: 10.1038/s41591-019-0512-5313590017274198)
Pan, H. et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142, 2060–2075 (2020). (PMID: 10.1161/CIRCULATIONAHA.120.048378329624128104264)
Vengrenyuk, Y. et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler. Thromb. Vasc. Biol. 35, 535–546 (2015). (PMID: 10.1161/ATVBAHA.114.304029255738534344402)
Alencar, G. F. et al. Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation 142, 2045–2059 (2020). (PMID: 10.1161/CIRCULATIONAHA.120.046672326745997682794)
Malhotra, R. et al. HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype. Nat. Genet. 51, 1580–1587 (2019). (PMID: 10.1038/s41588-019-0514-8316593256858575)
Sangiorgi, G. et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J. Am. Coll. Cardiol. 31, 126–133 (1998). (PMID: 10.1016/S0735-1097(97)00443-99426030)
Bos, D. et al. Comparison of atherosclerotic calcification in major vessel beds on the risk of all-cause and cause-specific mortality: The Rotterdam Study. Circ. Cardiovasc. Imaging https://doi.org/10.1161/CIRCIMAGING.115.003843 (2015).
Guillermier, C. et al. Imaging mass spectrometry reveals heterogeneity of proliferation and metabolism in atherosclerosis. JCI Insight https://doi.org/10.1172/jci.insight.128528 (2019).
Perez, J., Hill, B. G., Benavides, G. A., Dranka, B. P. & Darley-Usmar, V. M. Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor. Biochem. J. 428, 255–267 (2010). (PMID: 10.1042/BJ2010009020331438)
Wall, V. Z. et al. Smooth muscle glucose metabolism promotes monocyte recruitment and atherosclerosis in a mouse model of metabolic syndrome. JCI Insight 3, e96544 (2018). (PMID: 10.1172/jci.insight.96544298753246124428)
Jain, M. et al. Smooth muscle cell-specific PKM2 (pyruvate kinase muscle 2) promotes smooth muscle cell phenotypic switching and neointimal hyperplasia. Arterioscler. Thromb. Vasc. Biol. 41, 1724–1737 (2021). (PMID: 10.1161/ATVBAHA.121.316021336914778062279)
Zhao, X. et al. PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis. Acta Biochim. Biophys. Sin. 52, 9–17 (2020). (PMID: 10.1093/abbs/gmz13531867609)
Newman, A. A. C. et al. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRbeta and bioenergetic mechanisms. Nat. Metab. 3, 166–181 (2021). (PMID: 10.1038/s42255-020-00338-8336193827905710)
Perry, R. N., Albarracin, D., Aherrahrou, R. & Civelek, M. Network preservation analysis reveals dysregulated metabolic pathways in human vascular smooth muscle cell phenotypic switching. Circ. Genom. Precis. Med. 16, e003781 (2023). (PMID: 10.1161/CIRCGEN.122.003781)
Seeley, E. H. et al. Spatially resolved metabolites in stable and unstable human atherosclerotic plaques identified by mass spectrometry imaging. Arterioscler. Thromb. Vasc. Biol. https://doi.org/10.1161/ATVBAHA.122.318684 (2023). (PMID: 10.1161/ATVBAHA.122.31868437381983)
Yang, L. et al. Lactate promotes synthetic phenotype in vascular smooth muscle cells. Circ. Res. 121, 1251–1262 (2017). (PMID: 10.1161/CIRCRESAHA.117.311819290212965681426)
Shi, J., Yang, Y., Cheng, A., Xu, G. & He, F. Metabolism of vascular smooth muscle cells in vascular diseases. Am. J. Physiol. Heart Circ. Physiol. 319, H613–H631 (2020). (PMID: 10.1152/ajpheart.00220.202032762559)
Peiro, C. et al. Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway. Cardiovasc. Diabetol. 15, 82 (2016). (PMID: 10.1186/s12933-016-0397-2272452244888494)
Dong, L. H. et al. TRAF6-mediated SM22alpha K21 ubiquitination promotes G6PD activation and NADPH production, contributing to GSH homeostasis and VSMC survival in vitro and in vivo. Circ. Res. 117, 684–694 (2015). (PMID: 10.1161/CIRCRESAHA.115.30623326291555)
Clarke, M. C. et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat. Med. 12, 1075–1080 (2006). (PMID: 10.1038/nm145916892061)
Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020). (PMID: 10.1038/s41580-019-0199-y319379357102936)
Reho, J. J., Guo, D. F., Morgan, D. A. & Rahmouni, K. mTORC1 (mechanistic target of rapamycin complex 1) signaling in endothelial and smooth muscle cells is required for vascular function. Hypertension 77, 594–604 (2021). (PMID: 10.1161/HYPERTENSIONAHA.120.1470833356400)
Li, G. et al. Chronic mTOR activation induces a degradative smooth muscle cell phenotype. J. Clin. Invest. 130, 1233–1251 (2020). (PMID: 10.1172/JCI131048320399157269581)
Zhao, Y., Vanhoutte, P. M. & Leung, S. W. Vascular nitric oxide: beyond eNOS. J. Pharm. Sci. 129, 83–94 (2015). (PMID: 10.1016/j.jphs.2015.09.002)
Tzeng, H. P., Lan, K. C., Yang, T. H., Chung, M. N. & Liu, S. H. Benzo[a]pyrene activates interleukin-6 induction and suppresses nitric oxide-induced apoptosis in rat vascular smooth muscle cells. PLoS ONE 12, e0178063 (2017). (PMID: 10.1371/journal.pone.0178063285312075439712)
Ignarro, L. J. et al. Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc. Natl Acad. Sci. USA 98, 4202–4208 (2001). (PMID: 10.1073/pnas.0710546981125967131203)
Grossi, M. et al. Inhibition of polyamine formation antagonizes vascular smooth muscle cell proliferation and preserves the contractile phenotype. Basic Clin. Pharmacol. Toxicol. 115, 379–388 (2014). (PMID: 10.1111/bcpt.1223724666424)
Wang, X. P. et al. Arginase I enhances atherosclerotic plaque stabilization by inhibiting inflammation and promoting smooth muscle cell proliferation. Eur. Heart J. 35, 911–919 (2014). (PMID: 10.1093/eurheartj/eht32923999450)
Michiels, C. F., Kurdi, A., Timmermans, J. P., De Meyer, G. R. Y. & Martinet, W. Spermidine reduces lipid accumulation and necrotic core formation in atherosclerotic plaques via induction of autophagy. Atherosclerosis 251, 319–327 (2016). (PMID: 10.1016/j.atherosclerosis.2016.07.89927450786)
Ouyang, L. et al. Indoleamine 2,3-dioxygenase 1 deletion-mediated kynurenine insufficiency in vascular smooth muscle cells exacerbates arterial calcification. Circulation 145, 1784–1798 (2022). (PMID: 10.1161/CIRCULATIONAHA.121.057868355829489197997)
Kim, J. B. et al. Environment-sensing aryl hydrocarbon receptor inhibits the chondrogenic fate of modulated smooth muscle cells in atherosclerotic lesions. Circulation 142, 575–590 (2020). (PMID: 10.1161/CIRCULATIONAHA.120.045981324411238066499)
Li, M., Kwok, M. K., Fong, S. S. M. & Schooling, C. M. Indoleamine 2,3-dioxygenase and ischemic heart disease: a Mendelian randomization study. Sci. Rep. 9, 8491 (2019). (PMID: 10.1038/s41598-019-44819-7311864426560130)
Niinisalo, P. et al. Indoleamine 2,3-dioxygenase activity associates with cardiovascular risk factors: the Health 2000 study. Scand. J. Clin. Lab. Invest. 68, 767–770 (2008). (PMID: 10.1080/0036551080224568518622801)
Brouns, R. et al. The role of tryptophan catabolism along the kynurenine pathway in acute ischemic stroke. Neurochem. Res. 35, 1315–1322 (2010). (PMID: 10.1007/s11064-010-0187-220490917)
Wang, Q. et al. Tryptophan-derived 3-hydroxyanthranilic acid contributes to angiotensin II-induced abdominal aortic aneurysm formation in mice in vivo. Circulation 136, 2271–2283 (2017). (PMID: 10.1161/CIRCULATIONAHA.117.030972289785525716872)
Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011). (PMID: 10.1016/j.cell.2011.04.005215297103111065)
Galvan-Pena, S. & O’Neill, L. A. Metabolic reprograming in macrophage polarization. Front. Immunol. 5, 420 (2014). (PMID: 252289024151090)
Viola, A., Munari, F., Sanchez-Rodriguez, R., Scolaro, T. & Castegna, A. The metabolic signature of macrophage responses. Front. Immunol. 10, 1462 (2019). (PMID: 10.3389/fimmu.2019.01462313336426618143)
Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. & Sancho, D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol. Immunol. 19, 384–408 (2022). (PMID: 10.1038/s41423-021-00791-934876704)
Sarrazy, V. et al. Maintenance of macrophage redox status by ChREBP limits inflammation and apoptosis and protects against advanced atherosclerotic lesion formation. Cell Rep. 13, 132–144 (2015). (PMID: 10.1016/j.celrep.2015.08.06826411684)
Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012). (PMID: 10.1016/j.cmet.2012.04.023226822223370649)
Puleston, D. J. et al. Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. Cell Metab. 30, 352–363 (2019). (PMID: 10.1016/j.cmet.2019.05.003311304656688828)
Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018). (PMID: 10.1161/CIRCRESAHA.117.31250929545365)
Guo, X. et al. TREM2 promotes cholesterol uptake and foam cell formation in atherosclerosis. Cell. Mol. Life Sci. 80, 137 (2023). (PMID: 10.1007/s00018-023-04786-937133566)
Wang, N. & Westerterp, M. ABC transporters, cholesterol efflux, and implications for cardiovascular diseases. Adv. Exp. Med. Biol. 1276, 67–83 (2020). (PMID: 10.1007/978-981-15-6082-8_632705595)
Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013). (PMID: 10.1038/ni.2639238120993720827)
Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010). (PMID: 10.1038/nature08938204281722946640)
Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ. Res. 123, 1127–1142 (2018). (PMID: 10.1161/CIRCRESAHA.118.312804303592006945121)
Park, Y. M., Febbraio, M. & Silverstein, R. L. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J. Clin. Invest. 119, 136–145 (2009). (PMID: 19065049)
van Gils, J. M. et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 13, 136–143 (2012). (PMID: 10.1038/ni.2205222315193262880)
Hou, P. et al. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 14, 691 (2023). (PMID: 10.1038/s41419-023-06206-z3786389410589261)
Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012). (PMID: 10.1016/j.cell.2012.06.054230212213464914)
Doran, A. C., Yurdagul, A. Jr. & Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 20, 254–267 (2020). (PMID: 10.1038/s41577-019-0240-631822793)
Dang, E. V. & Cyster, J. G. Loss of sterol metabolic homeostasis triggers inflammasomes - how and why. Curr. Opin. Immunol. 56, 1–9 (2019). (PMID: 10.1016/j.coi.2018.08.00130172069)
de la Roche, M. et al. Trafficking of cholesterol to the ER is required for NLRP3 inflammasome activation. J. Cell Biol. 217, 3560–3576 (2018). (PMID: 10.1083/jcb.201709057300544506168277)
Tall, A. R. & Westerterp, M. Inflammasomes, neutrophil extracellular traps, and cholesterol. J. Lipid Res. 60, 721–727 (2019). (PMID: 10.1194/jlr.S091280307829616446695)
Grebe, A., Hoss, F. & Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 122, 1722–1740 (2018). (PMID: 10.1161/CIRCRESAHA.118.31136229880500)
Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat. Rev. Drug Discov. 20, 589–610 (2021). (PMID: 10.1038/s41573-021-00198-1339763848112476)
Hendrikx, T. et al. Bone marrow-specific caspase-1/11 deficiency inhibits atherosclerosis development in Ldlr −/− mice. FEBS J. 282, 2327–2338 (2015). (PMID: 10.1111/febs.1327925817537)
Zeng, W. et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci. Rep. 11, 19305 (2021). (PMID: 10.1038/s41598-021-98437-3345884888481539)
Fukuzumi, M., Shinomiya, H., Shimizu, Y., Ohishi, K. & Utsumi, S. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infect. Immun. 64, 108–112 (1996). (PMID: 10.1128/iai.64.1.108-112.19968557327173734)
Nishizawa, T. et al. Testing the role of myeloid cell glucose flux in inflammation and atherosclerosis. Cell Rep. 7, 356–365 (2014). (PMID: 10.1016/j.celrep.2014.03.028247263644021396)
Ruiz-Garcia, A. et al. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J. Biol. Chem. 286, 19247–19258 (2011). (PMID: 10.1074/jbc.M110.190298214641363103303)
Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015). (PMID: 10.1016/j.cmet.2014.12.005255652065198835)
Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013). (PMID: 10.1038/nature11986235355954031686)
Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 38, 395–406 (2017). (PMID: 10.1016/j.it.2017.03.00128396078)
O’Rourke, S. A. et al. Cholesterol crystals drive metabolic reprogramming and M1 macrophage polarisation in primary human macrophages. Atherosclerosis 352, 35–45 (2022). (PMID: 10.1016/j.atherosclerosis.2022.05.01535667162)
Rogers, I. S. et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc. Imaging 3, 388–397 (2010). (PMID: 10.1016/j.jcmg.2010.01.00420394901)
Rudd, J. H. et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J. Nucl. Med. 49, 871–878 (2008). (PMID: 10.2967/jnumed.107.05029418483100)
Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016). (PMID: 10.1016/j.cell.2016.08.064276676875863951)
Galvan-Pena, S. et al. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat. Commun. 10, 338 (2019). (PMID: 10.1038/s41467-018-08187-6306591836338787)
Di Gioia, M. et al. Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nat. Immunol. 21, 42–53 (2020). (PMID: 10.1038/s41590-019-0539-231768073)
Baardman, J. et al. Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques. Nat. Commun. 11, 6296 (2020). (PMID: 10.1038/s41467-020-20141-z332935587722882)
Sarrazy, V. et al. Disruption of Glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE −/− mice. Circ. Res. 118, 1062–1077 (2016). (PMID: 10.1161/CIRCRESAHA.115.307599269264694824305)
Freemerman, A. J. et al. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. J. Immunol. 202, 1265–1286 (2019). (PMID: 10.4049/jimmunol.1800002306591086360258)
Divakaruni, A. S. et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab. 28, 490–503 (2018). (PMID: 10.1016/j.cmet.2018.06.001300437526125190)
Nomura, M. et al. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17, 216–217 (2016). (PMID: 10.1038/ni.3366268822496033271)
Nomura, M. et al. Macrophage fatty acid oxidation inhibits atherosclerosis progression. J. Mol. Cell. Cardiol. 127, 270–276 (2019). (PMID: 10.1016/j.yjmcc.2019.01.003306394129124604)
Chen, Y. et al. Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses. Circ. Res. 125, 1087–1102 (2019). (PMID: 10.1161/CIRCRESAHA.119.315833316258106921463)
Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017). (PMID: 10.1126/science.aal3535284735846260791)
Zhang, S. et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 29, 443–456 (2019). (PMID: 10.1016/j.cmet.2018.12.00430595481)
Nelson, V. L. et al. PPARγ is a nexus controlling alternative activation of macrophages via glutamine metabolism. Genes Dev. 32, 1035–1044 (2018). (PMID: 10.1101/gad.312355.118300064806075146)
Babaev, V. R. et al. Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler Thromb. Vasc. Biol. 25, 1647–1653 (2005). (PMID: 10.1161/01.ATV.0000173413.31789.1a15947238)
Cordes, T. et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem. 291, 14274–14284 (2016). (PMID: 10.1074/jbc.M115.685792271899374933182)
Ganta, V. C. et al. A MicroRNA93-interferon regulatory factor-9-immunoresponsive gene-1-itaconic acid pathway modulates m2-like macrophage polarization to revascularize ischemic muscle. Circulation 135, 2403–2425 (2017). (PMID: 10.1161/CIRCULATIONAHA.116.025490283564435503157)
O’Neill, L. A. J. & Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19, 273–281 (2019). (PMID: 10.1038/s41577-019-0128-530705422)
Merlin, J. et al. Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. Nat. Metab. 3, 1313–1326 (2021). (PMID: 10.1038/s42255-021-00471-y346502737611882)
Albina, J. E., Mills, C. D., Henry, W. L. Jr. & Caldwell, M. D. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J. Immunol. 144, 3877–3880 (1990). (PMID: 10.4049/jimmunol.144.10.38772332635)
Bauer, P. M., Buga, G. M., Fukuto, J. M., Pegg, A. E. & Ignarro, L. J. Nitric oxide inhibits ornithine decarboxylase via S-nitrosylation of cysteine 360 in the active site of the enzyme. J. Biol. Chem. 276, 34458–34464 (2001). (PMID: 10.1074/jbc.M10521920011461922)
Lee, J., Ryu, H., Ferrante, R. J., Morris, S. M. Jr. & Ratan, R. R. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc. Natl Acad. Sci. USA 100, 4843–4848 (2003). (PMID: 10.1073/pnas.073587610012655043153643)
El-Gayar, S., Thuring-Nahler, H., Pfeilschifter, J., Rollinghoff, M. & Bogdan, C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol. 171, 4561–4568 (2003). (PMID: 10.4049/jimmunol.171.9.456114568929)
Bussiere, F. I. et al. Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J. Biol. Chem. 280, 2409–2412 (2005). (PMID: 10.1074/jbc.C40049820015548540)
Teupser, D. et al. Identification of macrophage arginase I as a new candidate gene of atherosclerosis resistance. Arterioscler. Thromb. Vasc. Biol. 26, 365–371 (2006). (PMID: 10.1161/01.ATV.0000195791.83380.4c16284191)
Yurdagul, A. Jr. et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31, 518–533 (2020). (PMID: 10.1016/j.cmet.2020.01.001320044767173557)
Ravishankar, B. et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity. Proc. Natl Acad. Sci. USA 112, 10774–10779 (2015). (PMID: 10.1073/pnas.1504276112262613404553766)
Baumgartner, R. et al. Evidence that a deviation in the kynurenine pathway aggravates atherosclerotic disease in humans. J. Intern. Med. 289, 53–68 (2021). (PMID: 10.1111/joim.1314232794238)
Pedersen, E. R. et al. Associations of plasma kynurenines with risk of acute myocardial infarction in patients with stable angina pectoris. Arterioscler. Thromb. Vasc. Biol. 35, 455–462 (2015). (PMID: 10.1161/ATVBAHA.114.30467425524770)
Berg, M. et al. 3-Hydroxyanthralinic acid metabolism controls the hepatic SREBP/lipoprotein axis, inhibits inflammasome activation in macrophages, and decreases atherosclerosis in Ldlr -/- mice. Cardiovasc. Res. 116, 1948–1957 (2020). (PMID: 10.1093/cvr/cvz25831589306)
Zhang, L. et al. The tryptophan metabolite 3-hydroxyanthranilic acid lowers plasma lipids and decreases atherosclerosis in hypercholesterolaemic mice. Eur. Heart J. 33, 2025–2034 (2012). (PMID: 10.1093/eurheartj/ehs17522711758)
Cole, J. E. et al. Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development. Proc. Natl Acad. Sci. USA 112, 13033–13038 (2015). (PMID: 10.1073/pnas.1517820112264388374620898)
Polyzos, K. A. et al. Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoe −/− mice. Cardiovasc. Res. 106, 295–302 (2015). (PMID: 10.1093/cvr/cvv10025750192)
Nakajima, K. et al. Orally administered eicosapentaenoic acid induces rapid regression of atherosclerosis via modulating the phenotype of dendritic cells in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 1963–1972 (2011). (PMID: 10.1161/ATVBAHA.111.22944321817104)
Holmes, D. R. Jr. et al. Results of prevention of restenosis with tranilast and its outcomes (PRESTO) trial. Circulation 106, 1243–1250 (2002). (PMID: 10.1161/01.CIR.0000028335.31300.DA12208800)
Tamai, H. et al. Impact of tranilast on restenosis after coronary angioplasty: tranilast restenosis following angioplasty trial (TREAT). Am. Heart J. 138, 968–975 (1999). (PMID: 10.1016/S0002-8703(99)70025-610539831)
Chen, S. et al. Novel role for tranilast in regulating NLRP3 ubiquitination, vascular inflammation, and atherosclerosis. J. Am. Heart Assoc. 9, e015513 (2020). (PMID: 10.1161/JAHA.119.015513324765367429049)
Liang, H. et al. The proatherosclerotic function of indoleamine 2, 3-dioxygenase 1 in the developmental stage of atherosclerosis. Signal. Transduct. Target. Ther. 4, 23 (2019). (PMID: 10.1038/s41392-019-0058-5316370036799842)
Metghalchi, S. et al. Indoleamine 2,3-dioxygenase fine-tunes immune homeostasis in atherosclerosis and colitis through repression of interleukin-10 production. Cell Metab. 22, 460–471 (2015). (PMID: 10.1016/j.cmet.2015.07.00426235422)
Afarideh, M. et al. Association of peripheral 5-hydroxyindole-3-acetic acid, a serotonin derivative, with metabolic syndrome and low-grade inflammation. Endocr. Pract. 21, 711–718 (2015). (PMID: 10.4158/EP14442.OR25716631)
Colpo, G. D., Venna, V. R., McCullough, L. D. & Teixeira, A. L. Systematic review on the involvement of the kynurenine pathway in stroke: pre-clinical and clinical evidence. Front Neurol. 10, 778 (2019). (PMID: 10.3389/fneur.2019.00778313797276659442)
Yang, M. & Vousden, K. H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016). (PMID: 10.1038/nrc.2016.8127634448)
Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013). (PMID: 10.1038/nrc3557238229833806315)
Rodriguez, A. E. et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 29, 1003–1011 (2019). (PMID: 10.1016/j.cmet.2019.01.014307734646447453)
Yu, W. et al. One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol. Cell 75, 1147–1160 (2019). (PMID: 10.1016/j.molcel.2019.06.03931420217)
Rosenblat, M., Coleman, R. & Aviram, M. Increased macrophage glutathione content reduces cell-mediated oxidation of LDL and atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 163, 17–28 (2002). (PMID: 10.1016/S0021-9150(01)00744-412048118)
Callegari, A. et al. Gain and loss of function for glutathione synthesis: impact on advanced atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 2473–2482 (2011). (PMID: 10.1161/ATVBAHA.111.229765218687083415243)
Hitzel, J. et al. Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nat. Commun. 9, 2292 (2018). (PMID: 10.1038/s41467-018-04602-0298958275997752)
Ding, Y. et al. Plasma glycine and risk of acute myocardial infarction in patients with suspected stable angina pectoris. J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.115.002621 (2015).
Wittemans, L. B. L. et al. Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nat. Commun. 10, 1060 (2019). (PMID: 10.1038/s41467-019-08936-1308374656400990)
Rom, O. et al. Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis. Redox Biol. 52, 102313 (2022). (PMID: 10.1016/j.redox.2022.102313354474129044008)
Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 25, 2255–2264 (2005). (PMID: 10.1161/01.ATV.0000184783.04864.9f16141399)
Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010). (PMID: 10.1038/nri267519960040)
Linton, M. F. et al. Macrophage apoptosis and efferocytosis in the pathogenesis of atherosclerosis. Circ. J. 80, 2259–2268 (2016). (PMID: 10.1253/circj.CJ-16-0924277255265459487)
Thorp, E., Cui, D., Schrijvers, D. M., Kuriakose, G. & Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of Apoe −/− mice. Arterioscler. Thromb. Vasc. Biol. 28, 1421–1428 (2008). (PMID: 10.1161/ATVBAHA.108.167197184513322575060)
Kojima, Y. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86–90 (2016). (PMID: 10.1038/nature18935274375764980260)
Tao, W. et al. siRNA nanoparticles targeting CaMKIIgamma in lesional macrophages improve atherosclerotic plaque stability in mice. Sci. Transl. Med. 12, eaay1063 (2020). (PMID: 10.1126/scitranslmed.aay1063327189907476570)
Cai, B. et al. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J. Clin. Invest. 127, 564–568 (2017). (PMID: 10.1172/JCI90520280676705272169)
Flores, A. M. et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat. Nanotechnol. 15, 154–161 (2020). (PMID: 10.1038/s41565-019-0619-3319885067254969)
Morioka, S. et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563, 714–718 (2018). (PMID: 10.1038/s41586-018-0735-5304643436331005)
Park, D. et al. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477, 220–224 (2011). (PMID: 10.1038/nature10340218576823513690)
Trzeciak, A., Wang, Y. T. & Perry, J. S. A. First we eat, then we do everything else: the dynamic metabolic regulation of efferocytosis. Cell Metab. 33, 2126–2141 (2021). (PMID: 10.1016/j.cmet.2021.08.001344330748568659)
Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015). (PMID: 10.1038/ncb3192260985764612372)
Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007). (PMID: 10.1038/nature0642118097414)
Yurdagul, A. Jr. Metabolic consequences of efferocytosis and its impact on atherosclerosis. Immunometabolism 3, e210017 (2021). (PMID: 10.20900/immunometab20210017339278968081385)
Kumar, D., Pandit, R. & Yurdagul, A. Jr. Mechanisms of continual efferocytosis by macrophages and its role in mitigating atherosclerosis. Immunometabolism 5, e00017 (2023). (PMID: 10.1097/IN9.000000000000001736710920)
Viaud, M. et al. Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ. Res. 122, 1369–1384 (2018). (PMID: 10.1161/CIRCRESAHA.117.312333295235546034181)
Cui, D. et al. Pivotal advance: macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. J. Leukoc. Biol. 82, 1040–1050 (2007). (PMID: 10.1189/jlb.030719217576822)
Fond, A. M., Lee, C. S., Schulman, I. G., Kiss, R. S. & Ravichandran, K. S. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. J. Clin. Invest. 125, 2748–2758 (2015). (PMID: 10.1172/JCI80300260758244563683)
Kiss, R. S., Elliott, M. R., Ma, Z., Marcel, Y. L. & Ravichandran, K. S. Apoptotic cells induce a phosphatidylserine-dependent homeostatic response from phagocytes. Curr. Biol. 16, 2252–2258 (2006). (PMID: 10.1016/j.cub.2006.09.04317113390)
A-Gonzalez, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009). (PMID: 10.1016/j.immuni.2009.06.018196469052791787)
Yvan-Charvet, L. et al. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ. Res. 106, 1861–1869 (2010). (PMID: 10.1161/CIRCRESAHA.110.217281204310582995809)
Patterson M. T., et al. Trem2 promotes foamy macrophage lipid uptake and survival in atherosclerosis. Nat. Cardiovasc. Res. https://doi.org/10.1038/s44161-023-00354-3 (2023).
Piollet, M. et al. TREM2 limits necrotic core formation during atherogenesis by controlling macrophage survival and efferocytosis. Preprint at bioRxiv https://doi.org/10.1101/2023.05.15.539977 (2023).
Yurdagul, A. Jr. et al. ODC (ornithine decarboxylase)-dependent putrescine synthesis maintains MerTK (MER tyrosine-protein kinase) expression to drive resolution. Arterioscler. Thromb. Vasc. Biol. 41, e144–e159 (2021). (PMID: 10.1161/ATVBAHA.120.315622334068548034502)
Ampomah, P. B. et al. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat. Metab. 4, 444–457 (2022). (PMID: 10.1038/s42255-022-00551-7353619559050866)
Gerlach, B. D. et al. Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab. 33, 2445–2463 (2021). (PMID: 10.1016/j.cmet.2021.10.015347845018665147)
Zhang, X. et al. Loss of macrophage mTORC2 drives atherosclerosis via FoxO1 and IL-1beta signaling. Circ. Res. 133, 200–219 (2023). (PMID: 10.1161/CIRCRESAHA.122.32154237350264)
Schilperoort, M., Ngai, D., Katerelos, M., Power, D. A. & Tabas, I. PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages. Nat. Metab. https://doi.org/10.1038/s42255-023-00736-8 (2023). (PMID: 10.1038/s42255-023-00736-83801241410050103)
Jha, M. K. et al. Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. J. Clin. Invest. 131, e141964 (2021). (PMID: 10.1172/JCI141964344919138553554)
Tabas, I. & Bornfeldt, K. E. Intracellular and Intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ. Res. 126, 1209–1227 (2020). (PMID: 10.1161/CIRCRESAHA.119.315939323245047392397)
Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019). (PMID: 10.1038/s41586-019-1678-1316457326818755)
Susser, L. I. et al. Mitochondrial fragmentation promotes inflammation resolution responses in macrophages via histone lactylation. Mol. Cell. Biol. 43, 531–546 (2023). (PMID: 10.1080/10985549.2023.22531313780765210569354)
Wang, Y. et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171, 331–345 (2017). (PMID: 10.1016/j.cell.2017.08.041289429215679712)
Wang, Y. T. et al. Metabolic adaptation supports enhanced macrophage efferocytosis in limited-oxygen environments. Cell Metab. 35, 316–331 (2023). (PMID: 10.1016/j.cmet.2022.12.00536584675)
Fredman, G. et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7, 12859 (2016). (PMID: 10.1038/ncomms12859276596795036151)
Sakaguchi, S. Naturally arising Foxp3-expressing CD25 + CD4 + regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005). (PMID: 10.1038/ni117815785760)
Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401 (2020). (PMID: 10.1038/s41569-020-0352-5322032867872210)
Proto, J. D. et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49, 666–677 (2018). (PMID: 10.1016/j.immuni.2018.07.01530291029)
Sharma, M. et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ. Res. 127, 335–353 (2020). (PMID: 10.1161/CIRCRESAHA.119.316461323361977367765)
Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019). (PMID: 10.1161/CIRCRESAHA.118.313591306534426342482)
Conrad, N. et al. Autoimmune diseases and cardiovascular risk: a population-based study on 19 autoimmune diseases and 12 cardiovascular diseases in 22 million individuals in the UK. Lancet 400, 733–743 (2022). (PMID: 10.1016/S0140-6736(22)01349-636041475)
Nettersheim, F. S., Picard, F. S. R., Hoyer, F. F. & Winkels, H. Immunotherapeutic strategies in cancer and atherosclerosis—two sides of the same coin. Front. Cardiovas. Med. 8, 812702 (2022). (PMID: 10.3389/fcvm.2021.812702)
Wolf, D. et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective ApoB 100 -reactive CD4 + T-regulatory cells. Circulation https://doi.org/10.1161/CIRCULATIONAHA.119.042863 (2020).
Roy, P. et al. Immunodominant MHC-II (major histocompatibility complex II) restricted epitopes in human apolipoprotein B. Circ. Res. 131, 258–276 (2022). (PMID: 10.1161/CIRCRESAHA.122.321116357660259536649)
Depuydt, M. A. C. et al. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat. Cardiovasc. Res. 2, 112–125 (2023). (PMID: 10.1038/s44161-022-00208-43866590311041750)
Wang, Z. et al. Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis. Nat. Cardiovasc. Res. 2, 290–306 (2023). (PMID: 10.1038/s44161-023-00218-w3762176510448629)
Kimura, T. et al. Regulatory CD4+ T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 138, 1130–1143 (2018). (PMID: 10.1161/CIRCULATIONAHA.117.031420295883166160361)
Saigusa, R. et al. Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. Nat. Cardiovas. Res. 1, 462–475 (2022). (PMID: 10.1038/s44161-022-00063-3)
Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci USA 92, 3893–3897 (1995). (PMID: 10.1073/pnas.92.9.3893773200342068)
Kimura, T. et al. Atheroprotective vaccination with MHC-II-restricted ApoB peptides induces peritoneal IL-10-producing CD4 T cells. Am. J. Physiol. Heart Circ. Physiol. 312, H781–H790 (2017). (PMID: 10.1152/ajpheart.00798.2016280875205407161)
Tse, K. et al. Atheroprotective vaccination with MHC-II restricted peptides from ApoB-100. Front. Immunol. 4, 493 (2013). (PMID: 10.3389/fimmu.2013.00493244160333873602)
Li, J. et al. CCR5 + T-bet + FoxP3 + effector CD4 T cells drive atherosclerosis. Circ. Res. 118, 1540–1552 (2016). (PMID: 10.1161/CIRCRESAHA.116.308648270212964867125)
Freuchet, A. et al. Identification of human exT reg cells as CD16 + CD56 + cytotoxic CD4 + T cells. Nat. Immunol. 24, 1748–1761 (2023). (PMID: 10.1038/s41590-023-01589-937563308)
Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun. 9, 1095 (2018). (PMID: 10.1038/s41467-018-03493-5295456165854619)
Freuchet, A. et al. Identification of human exT reg cells as CD16 + CD56 + cytotoxic CD4 + T cells. Nat. Immunol. 24, 1748–1761 (2023).
Saxena, V., Lakhan, R., Iyyathurai, J. & Bromberg, J. S. Mechanisms of exT reg induction. Eur. J. Immunol. 51, 1956–1967 (2021). (PMID: 10.1002/eji.202049123339753798338747)
Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2019). (PMID: 10.1038/s41577-019-0203-y31406325)
Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 + T cell subsets. J. Immunol. 186, 3299–3303 (2011). (PMID: 10.4049/jimmunol.100361321317389)
Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4 + T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015). (PMID: 10.1172/JCI7601225437876)
Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014). (PMID: 10.1016/j.cmet.2014.05.004249309704079750)
Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T H 17 and T reg cells. J. Exp. Med. 208, 1367–1376 (2011). (PMID: 10.1084/jem.20110278217089263135370)
Hochrein, S. M. et al. The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metab. 34, 516–532 (2022). (PMID: 10.1016/j.cmet.2022.02.015353166579019065)
Forteza, M. J. et al. Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk. Cardiovasc. Res. 119, 1524–1536 (2023). (PMID: 10.1093/cvr/cvad0383686643610318388)
He, N. et al. Metabolic control of regulatory T cell (T reg ) survival and function by Lkb1. Proc. Natl Acad. Sci. USA 114, 12542–12547 (2017). (PMID: 10.1073/pnas.1715363114291092515703326)
Shrestha, S. et al. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 16, 178–187 (2015). (PMID: 10.1038/ni.3076255592584297581)
Huynh, A. et al. Control of PI 3 kinase in T reg cells maintains homeostasis and lineage stability. Nat. Immunol. 16, 188–196 (2015). (PMID: 10.1038/ni.3077255592574297515)
Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance T reg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016). (PMID: 10.1038/ni.3577276950035215903)
Gaddis, D. E. et al. Atherosclerosis impairs naive CD4 T-cell responses via disruption of glycolysis. Arterioscler. Thromb. Vasc. Biol. 41, 2387–2398 (2021). (PMID: 10.1161/ATVBAHA.120.3141893432083510206822)
Maganto-García, E., Tarrio, M. L., Grabie, N., Bu, D. X. & Lichtman, A. H. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 124, 185–195 (2011). (PMID: 10.1161/CIRCULATIONAHA.110.006411216904903145407)
Bazioti, V. et al. T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice. Nat. Commun. 13, 3799 (2022). (PMID: 10.1038/s41467-022-31135-4357784079249754)
Iqbal, R. et al. Dietary patterns and the risk of acute myocardial infarction in 52 countries: results of the INTERHEART study. Circulation 118, 1929–1937 (2008). (PMID: 10.1161/CIRCULATIONAHA.107.73871618936332)
Kelly, R. K. et al. Associations between types and sources of dietary carbohydrates and cardiovascular disease risk: a prospective cohort study of UK Biobank participants. BMC Med. 21, 34 (2023). (PMID: 10.1186/s12916-022-02712-7367822099926727)
Kedia-Mehta, N. & Finlay, D. K. Competition for nutrients and its role in controlling immune responses. Nat. Commun. 10, 2123 (2019). (PMID: 10.1038/s41467-019-10015-4310731806509329)
Zhang, D. et al. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity 51, 671–681 (2019). (PMID: 10.1016/j.immuni.2019.08.001314513979811990)
Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013). (PMID: 10.1038/ni.2556235250883672957)
Matias, M. I. et al. Regulatory T cell differentiation is controlled by aKG- induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Rep. https://doi.org/10.1016/j.celrep.2021.109911 (2021).
Klysz, D. et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015). (PMID: 10.1126/scisignal.aab261026420908)
Johnson, M. O. et al. Distinct regulation of T h 17 and T h 1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795 (2018). (PMID: 10.1016/j.cell.2018.10.001303929586361668)
Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017). (PMID: 10.1016/j.cmet.2016.12.01128111214)
Roy, D. G. et al. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab. 31, 250–266 (2020). (PMID: 10.1016/j.cmet.2020.01.00632023446)
Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010). (PMID: 10.4049/jimmunol.090367020720200)
Yan, Y. et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J. Immunol. 185, 5953–5961 (2010). (PMID: 10.4049/jimmunol.100162820944000)
Sharma, M. D. et al. Indoleamine 2,3-dioxygenase controls conversion of Foxp3 + Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113, 6102–6111 (2009). (PMID: 10.1182/blood-2008-12-195354193669862699232)
Cuffy, M. C. et al. Induction of Indoleamine 2,3-dioxygenase in vascular smooth muscle cells by interferon-γ contributes to medial immunoprivilege1. J. Immunol. 179, 5246–5254 (2007). (PMID: 10.4049/jimmunol.179.8.524617911610)
Forteza, M. J. et al. Activation of the regulatory T-cell/indoleamine 2,3-dioxygenase axis reduces vascular inflammation and atherosclerosis in hyperlipidemic mice. Front. Immunol. https://doi.org/10.3389/fimmu.2018.00950 (2018).
Zhu, Y. et al. Lactate accelerates calcification in VSMCs through suppression of BNIP3-mediated mitophagy. Cell Signal. 58, 53–64 (2019). (PMID: 10.1016/j.cellsig.2019.03.00630851408)
Tsai, T. L. et al. Multiomics reveal the central role of pentose phosphate pathway in resident thymic macrophages to cope with efferocytosis-associated stress. Cell Rep. 40, 111065 (2022). (PMID: 10.1016/j.celrep.2022.11106535830797)
Yurdagul, A. Jr. Crosstalk between macrophages and vascular smooth muscle cells in atherosclerotic plaque stability. Arterioscler. Thromb. Vasc. Biol. 42, 372–380 (2022). (PMID: 10.1161/ATVBAHA.121.316233351726058957544)
Medina, C. B. et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 580, 130–135 (2020). (PMID: 10.1038/s41586-020-2121-3322389267217709)
Howangyin, K. Y. et al. Myeloid-epithelial-reproductive receptor tyrosine kinase and milk fat globule epidermal growth factor 8 coordinately improve remodeling after myocardial infarction via local delivery of vascular endothelial growth factor. Circulation 133, 826–839 (2016). (PMID: 10.1161/CIRCULATIONAHA.115.020857268193734767109)
Virmani, R. et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol. 25, 2054–2061 (2005). (PMID: 10.1161/01.ATV.0000178991.71605.1816037567)
de Vries, M. R. et al. Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels. J. Intern. Med. 285, 59–74 (2019). (PMID: 10.1111/joim.1282130102798)
Michel, J. B., Virmani, R., Arbustini, E. & Pasterkamp, G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur. Heart J. 32, 1977–1985 (2011). (PMID: 10.1093/eurheartj/ehr054213986433155759)
Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004). (PMID: 10.1126/science.109313314963329)
Borcherding, N. et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab. 34, 1499–1513 (2022). (PMID: 10.1016/j.cmet.2022.08.010360707569547954)
Brestoff, J. R. et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab. 33, 270–282 (2021). (PMID: 10.1016/j.cmet.2020.11.00833278339)
Gurke, S. et al. Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp. Cell. Res. 314, 3669–3683 (2008). (PMID: 10.1016/j.yexcr.2008.08.02218845141)
Certo, M. et al. Endothelial cell and T-cell crosstalk: targeting metabolism as a therapeutic approach in chronic inflammation. Br. J. Pharmacol. 178, 2041–2059 (2021). (PMID: 10.1111/bph.1500231999357)
Lukacs-Kornek, V. et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat. Immunol. 12, 1096–1104 (2011). (PMID: 10.1038/ni.2112219269863457791)
Doulias, P. T., Tenopoulou, M., Greene, J. L., Raju, K. & Ischiropoulos, H. Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci. Signal. 6, rs1 (2013). (PMID: 10.1126/scisignal.2003252232813694010156)
Mendoza, A. et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature 546, 158–161 (2017). (PMID: 10.1038/nature22352285387375683179)
Lu, Z. et al. GPR40/FFA1 and neutral sphingomyelinase are involved in palmitate-boosted inflammatory response of microvascular endothelial cells to LPS. Atherosclerosis 240, 163–173 (2015). (PMID: 10.1016/j.atherosclerosis.2015.03.013257955584397186)
Gerriets, V. A. & Rathmell, J. C. Metabolic pathways in T cell fate and function. Trends Immunol. 33, 168–173 (2012). (PMID: 10.1016/j.it.2012.01.010223427413319512)
Wu, H., Gong, J. & Liu, Y. Indoleamine 2, 3-dioxygenase regulation of immune response (Review). Mol. Med. Rep. 17, 4867–4873 (2018). (PMID: 29393500)
Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. & Schwartz, T. W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017). (PMID: 10.1016/j.cmet.2017.03.00828380372)
He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004). (PMID: 10.1038/nature0248815141213)
Xu, J. et al. Succinate/IL-1beta signaling axis promotes the inflammatory progression of endothelial and exacerbates atherosclerosis. Front. Immunol. 13, 817572 (2022). (PMID: 10.3389/fimmu.2022.817572352736008901997)
Divorty, N., Mackenzie, A. E., Nicklin, S. A. & Milligan, G. G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease. Front. Pharmacol. 6, 41 (2015). (PMID: 10.3389/fphar.2015.00041258059944354270)
Baumgartner, R. et al. Disruption of GPR35 signaling in bone marrow-derived cells does not influence vascular inflammation and atherosclerosis in hyperlipidemic mice. Metabolites 11, 411 (2021). (PMID: 10.3390/metabo11070411342015268303390)
Recio, C. et al. Activation of the immune-metabolic receptor GPR84 enhances inflammation and phagocytosis in macrophages. Front. Immunol. 9, 1419 (2018). (PMID: 10.3389/fimmu.2018.01419299739406019444)
Natarajan, N. et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol. Genomics 48, 826–834 (2016). (PMID: 10.1152/physiolgenomics.00089.2016276641836223570)
Pluznick, J. L. et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013). (PMID: 10.1073/pnas.1215927110234014983600440)
McFarlane, S. I., Muniyappa, R., Francisco, R. & Sowers, J. R. Clinical review 145: pleiotropic effects of statins: lipid reduction and beyond. J. Clin. Endocrinol. Metab. 87, 1451–1458 (2002). (PMID: 10.1210/jcem.87.4.841211932263)
Pruefer, D., Scalia, R. & Lefer, A. M. Simvastatin inhibits leukocyte-endothelial cell interactions and protects against inflammatory processes in normocholesterolemic rats. Arterioscler. Thromb. Vasc. Biol. 19, 2894–2900 (1999). (PMID: 10.1161/01.ATV.19.12.289410591666)
Perticone, F. et al. Effects of atorvastatin and vitamin C on endothelial function of hypercholesterolemic patients. Atherosclerosis 152, 511–518 (2000). (PMID: 10.1016/S0021-9150(00)00370-110998481)
Mital, S. et al. Simvastatin upregulates coronary vascular endothelial nitric oxide production in conscious dogs. Am. J. Physiol. Heart Circ. Physiol. 279, H2649–H2657 (2000). (PMID: 10.1152/ajpheart.2000.279.6.H264911087217)
Parmar, K. M. et al. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J. Biol. Chem. 280, 26714–26719 (2005). (PMID: 10.1074/jbc.C50014420015878865)
Bu, D. X. et al. Statin-induced Kruppel-like factor 2 expression in human and mouse T cells reduces inflammatory and pathogenic responses. J. Clin. Invest. 120, 1961–1970 (2010). (PMID: 10.1172/JCI41384204400762877947)
Koushki, K. et al. Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and Toll-like receptor pathways. Clin. Rev. Allergy Immunol. 60, 175–199 (2021). (PMID: 10.1007/s12016-020-08791-932378144)
Aday, A. W. & Ridker, P. M. Targeting residual inflammatory risk: a shifting paradigm for atherosclerotic disease. Front. Cardiovasc. Med. 6, 16 (2019). (PMID: 10.3389/fcvm.2019.00016308734166403155)
Nilsson, J. Atherosclerotic plaque vulnerability in the statin era. Eur. Heart J. 38, 1638–1644 (2017). (PMID: 10.1093/eurheartj/ehx14328387815)
Libby, P., Pasterkamp, G., Crea, F. & Jang, I. K. Reassessing the mechanisms of acute coronary syndromes. Circ. Res. 124, 150–160 (2019). (PMID: 10.1161/CIRCRESAHA.118.311098306054196447371)
Chow, O. A. et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8, 445–454 (2010). (PMID: 10.1016/j.chom.2010.10.005210753553008410)
Tsourouktsoglou, T. D. et al. Histones, DNA, and citrullination promote neutrophil extracellular trap inflammation by regulating the localization and activation of TLR4. Cell Rep. 31, 107602 (2020). (PMID: 10.1016/j.celrep.2020.10760232375035)
Molinaro, R. et al. Targeted delivery of protein arginine deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity. Cardiovasc. Res. 117, 2652–2663 (2021). (PMID: 337510348783386)
Feng, X., Zhang, L., Xu, S. & Shen, A. Z. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review. Prog. Lipid Res. 77, 101006 (2020). (PMID: 10.1016/j.plipres.2019.10100631499095)
Pinkosky, S. L. et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J. Lipid Res. 54, 134–151 (2013). (PMID: 10.1194/jlr.M030528231184443520520)
Nissen, S. E. et al. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N. Engl. J. Med. 388, 1353–1364 (2023). (PMID: 10.1056/NEJMoa221502436876740)
DeFronzo, R. A. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 131, 281–303 (1999). (PMID: 10.7326/0003-4819-131-4-199908170-0000810454950)
Staels, B. PPARgamma and atherosclerosis. Curr. Med. Res. Opin. 21, S13–S20 (2005). (PMID: 10.1185/030079905X3644015811195)
Loke, Y. K., Kwok, C. S. & Singh, S. Comparative cardiovascular effects of thiazolidinediones: systematic review and meta-analysis of observational studies. Brit. Med. J. 342, d1309 (2011). (PMID: 10.1136/bmj.d1309214151013230110)
Kahn, S. E. et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 355, 2427–2443 (2006). (PMID: 10.1056/NEJMoa06622417145742)
Thorp, E., Kuriakose, G., Shah, Y. M., Gonzalez, F. J. & Tabas, I. Pioglitazone increases macrophage apoptosis and plaque necrosis in advanced atherosclerotic lesions of nondiabetic low-density lipoprotein receptor-null mice. Circulation 116, 2182–2190 (2007). (PMID: 10.1161/CIRCULATIONAHA.107.69885217967777)
Saisho, Y. Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr. Metab. Immune Disord. Drug Targets 15, 196–205 (2015). (PMID: 10.2174/187153031566615031612401925772174)
Cameron, A. R. et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res. 119, 652–665 (2016). (PMID: 10.1161/CIRCRESAHA.116.308445274186294990459)
Davis, B. J., Xie, Z., Viollet, B. & Zou, M. H. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 55, 496–505 (2006). (PMID: 10.2337/diabetes.55.02.06.db05-106416443786)
Katakam, P. V., Ujhelyi, M. R., Hoenig, M. & Miller, A. W. Metformin improves vascular function in insulin-resistant rats. Hypertension 35, 108–112 (2000). (PMID: 10.1161/01.HYP.35.1.10810642283)
Vitale, C. et al. Metformin improves endothelial function in patients with metabolic syndrome. J. Intern. Med. 258, 250–256 (2005). (PMID: 10.1111/j.1365-2796.2005.01531.x16115299)
Tai, S. et al. Metformin suppresses vascular smooth muscle cell senescence by promoting autophagic flux. J. Adv. Res. 41, 205–218 (2022). (PMID: 10.1016/j.jare.2021.12.00936328749)
Cao, X. et al. Metformin inhibits vascular calcification in female rat aortic smooth muscle cells via the AMPK–eNOS–NO pathway. Endocrinology 154, 3680–3689 (2013). (PMID: 10.1210/en.2013-100224025223)
Qing, L. et al. Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome signaling pathway. Am. J. Transl. Res 11, 655–668 (2019). (PMID: 308993696413292)
Habib, A. et al. Metformin impairs vascular endothelial recovery after stent placement in the setting of locally eluted mammalian target of rapamycin inhibitors via S6 kinase-dependent inhibition of cell proliferation. J. Am. Coll. Cardiol. 61, 971–980 (2013). (PMID: 10.1016/j.jacc.2012.12.018234494303942872)
Diabetes, C. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993). (PMID: 10.1056/NEJM199309303291401)
Adler, A. I. et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 321, 412–419 (2000). (PMID: 10.1136/bmj.321.7258.4121093804927455)
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998).
Wang, C. C., Gurevich, I. & Draznin, B. Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes 52, 2562–2569 (2003). (PMID: 10.2337/diabetes.52.10.256214514641)
Zoungas, S. et al. Severe hypoglycemia and risks of vascular events and death. N. Engl. J. Med. 363, 1410–1418 (2010). (PMID: 10.1056/NEJMoa100379520925543)
Cersosimo, E., Xu, X. & Musi, N. Potential role of insulin signaling on vascular smooth muscle cell migration, proliferation, and inflammation pathways. Am. J. Physiol. Cell Physiol. 302, C652–C657 (2012). (PMID: 10.1152/ajpcell.00022.201122094332)
Calles-Escandon, J. & Cipolla, M. Diabetes and endothelial dysfunction: a clinical perspective. Endocr. Rev. 22, 36–52 (2001). (PMID: 10.1210/edrv.22.1.041711159815)
Moses, J. W. et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349, 1315–1323 (2003). (PMID: 10.1056/NEJMoa03507114523139)
Hegner, B. et al. mTOR regulates vascular smooth muscle cell differentiation from human bone marrow-derived mesenchymal progenitors. Arterioscler. Thromb. Vasc. Biol. 29, 232–238 (2009). (PMID: 10.1161/ATVBAHA.108.17945719074484)
Martin, K. A. et al. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. Am. J. Physiol. Cell Physiol. 286, C507–C517 (2004). (PMID: 10.1152/ajpcell.00201.200314592809)
Martin, K. A. et al. Rapamycin promotes vascular smooth muscle cell differentiation through insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt2 feedback signaling. J. Biol. Chem. 282, 36112–36120 (2007). (PMID: 10.1074/jbc.M70391420017908691)
McFadden, E. P. et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 364, 1519–1521 (2004). (PMID: 10.1016/S0140-6736(04)17275-915500897)
Meier, P. et al. Coronary collateral function long after drug-eluting stent implantation. J. Am. Coll. Cardiol. 49, 15–20 (2007). (PMID: 10.1016/j.jacc.2006.08.04317207716)
Vorpahl, M. et al. Pathobiology of stent thrombosis after drug-eluting stent implantation. Curr. Pharm. Des. 16, 4064–4071 (2010). (PMID: 10.2174/13816121079445487921208180)
Stefanini, G. G. & Holmes, D. R. Jr. Drug-eluting coronary-artery stents. N. Engl. J. Med. 368, 254–265 (2013). (PMID: 10.1056/NEJMra121081623323902)
Byrne, R. A. et al. Report of a European society of cardiology-European association of percutaneous cardiovascular interventions task force on the evaluation of coronary stents in Europe: executive summary. Eur. Heart J. 36, 2608–2620 (2015). (PMID: 10.1093/eurheartj/ehv20326071600)
O’Brien, B., Zafar, H., Ibrahim, A., Zafar, J. & Sharif, F. Coronary stent materials and coatings: a technology and performance update. Ann. Biomed. Eng. 44, 523–535 (2016). (PMID: 10.1007/s10439-015-1380-x26139297)
Arguello, R. J. et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab. 32, 1063–1075 (2020). (PMID: 10.1016/j.cmet.2020.11.007332645988407169)
Rappez, L. et al. SpaceM reveals metabolic states of single cells. Nat. Methods 18, 799–805 (2021). (PMID: 10.1038/s41592-021-01198-0342267217611214)
Eberhardt, N. & Giannarelli, C. How single-cell technologies have provided new insights into atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 42, 243–252 (2022). (PMID: 10.1161/ATVBAHA.121.315849351096738966900)
Ord, T. et al. Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci. Circ. Res. 129, 240–258 (2021). (PMID: 10.1161/CIRCRESAHA.121.318971340241188260472)
Williams, J. W. et al. Single cell RNA sequencing in atherosclerosis research. Circ. Res. 126, 1112–1126 (2020). (PMID: 10.1161/CIRCRESAHA.119.315940323244947185048)
Kott, K. A. et al. Single-cell immune profiling in coronary artery disease: the role of state-of-the-art immunophenotyping with mass cytometry in the diagnosis of atherosclerosis. J. Am. Heart Assoc. 9, e017759 (2020). (PMID: 10.1161/JAHA.120.017759332519277955359)
Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by Single-Cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018). (PMID: 10.1161/CIRCRESAHA.117.312513295453665993603)
Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019). (PMID: 10.1038/s41591-019-0590-4315916037318784)
Mizrak, D. et al. Single-molecule spatial transcriptomics of human thoracic aortic aneurysms uncovers calcification-related CARTPT-expressing smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. https://doi.org/10.1161/ATVBAHA.123.319329 (2023). (PMID: 10.1161/ATVBAHA.123.31932937823268)
Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005). (PMID: 10.1016/S0140-6736(05)67394-116214597)
Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017). (PMID: 10.1056/NEJMoa161566428304224)
Sachdeva, A. et al. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in Get With The Guidelines. Am. Heart J. 157, 111–117 (2009). (PMID: 10.1016/j.ahj.2008.08.01019081406)
Sampson, U. K., Fazio, S. & Linton, M. F. Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr. Atheroscler. Rep. 14, 1–10 (2012). (PMID: 10.1007/s11883-011-0219-7221020623697085)
Foo, S. Y. et al. Vascular effects of a low-carbohydrate high-protein diet. Proc. Natl Acad. Sci. USA 106, 15418–15423 (2009). (PMID: 10.1073/pnas.0907995106197063932741266)
Zhang, X. et al. High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy. Nat. Metab. 2, 110–125 (2020). (PMID: 10.1038/s42255-019-0162-4321285087053091)
Lagiou, P. et al. Low carbohydrate-high protein diet and incidence of cardiovascular diseases in Swedish women: prospective cohort study. BMJ 344, e4026 (2012). (PMID: 10.1136/bmj.e4026227351053383863)
Hu, F. B. et al. Dietary protein and risk of ischemic heart disease in women. Am. J. Clin. Nutr. 70, 221–227 (1999). (PMID: 10.1093/ajcn.70.2.22110426698)
Vogtschmidt, Y. D. et al. Is protein the forgotten ingredient: effects of higher compared to lower protein diets on cardiometabolic risk factors. A systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 328, 124–135 (2021). (PMID: 10.1016/j.atherosclerosis.2021.05.01134120735)
Tharrey, M. et al. Patterns of amino acid intake are strongly associated with cardiovascular mortality, independently of the sources of protein. Int. J. Epidemiol. 49, 312–321 (2020). (PMID: 10.1093/ije/dyz19431562518)
Ruiz-Canela, M. et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin. Chem. 62, 582–592 (2016). (PMID: 10.1373/clinchem.2015.251710268888924896732)
Liu, Y. et al. Dysregulated oxalate metabolism is a driver and therapeutic target in atherosclerosis. Cell Rep. 36, 109420 (2021). (PMID: 10.1016/j.celrep.2021.109420343203458363062)
White, P. J. et al. Muscle-liver trafficking of BCAA-derived nitrogen underlies obesity-related glycine depletion. Cell Rep. 33, 108375 (2020). (PMID: 10.1016/j.celrep.2020.108375331761358493998)
Ghrayeb, A. et al. Serine synthesis via reversed SHMT2 activity drives glycine depletion and acetaminophen hepatotoxicity in MASLD. Cell Metab. 36, 116–129.e7 (2024). (PMID: 10.1016/j.cmet.2023.12.01338171331)
Rom, O. et al. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Sci. Transl. Med. 12, eaa2841 (2020). (PMID: 10.1126/scitranslmed.aaz2841)
Grajeda-Iglesias, C., Rom, O. & Aviram, M. Branched-chain amino acids and atherosclerosis: friends or foes? Curr. Opin. Lipidol. 29, 166–169 (2018). (PMID: 10.1097/MOL.000000000000049429517610)
McGarrah, R. W. & White, P. J. Branched-chain amino acids in cardiovascular disease. Nat. Rev. Cardiol. 20, 77–89 (2023). (PMID: 10.1038/s41569-022-00760-336064969)
Li, Z. et al. Oral administration of branched-chain amino acids attenuates atherosclerosis by inhibiting the inflammatory response and regulating the gut microbiota in ApoE-deficient mice. Nutrients 14, 5065 (2022). (PMID: 10.3390/nu14235065365010959739883)
Zhao, Y. et al. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice. Acta Pharmacol. Sin. 37, 196–203 (2016). (PMID: 10.1038/aps.2015.8826687933)
Rom, O. et al. Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. J. Nutr. Biochem. 45, 24–38 (2017). (PMID: 10.1016/j.jnutbio.2017.02.02328431321)
Grajeda-Iglesias, C. et al. Leucine supplementation attenuates macrophage foam-cell formation: studies in humans, mice, and cultured macrophages. Biofactors 44, 245–262 (2018). (PMID: 10.1002/biof.141529399895)
معلومات مُعتمدة: R00 HL150233 United States HL NHLBI NIH HHS; R01 DK134011 United States DK NIDDK NIH HHS; P01 HL136275 United States HL NHLBI NIH HHS; R01 HL135582 United States HL NHLBI NIH HHS; R35 HL145241 United States HL NHLBI NIH HHS; R00 HL145131 United States HL NHLBI NIH HHS; R01 HL167758 United States HL NHLBI NIH HHS; R01 DK136685 United States DK NIDDK NIH HHS
تواريخ الأحداث: Date Created: 20240327 Date Completed: 20240426 Latest Revision: 20240508
رمز التحديث: 20240509
مُعرف محوري في PubMed: PMC11055680
DOI: 10.1038/s42255-024-01015-w
PMID: 38532071
قاعدة البيانات: MEDLINE
الوصف
تدمد:2522-5812
DOI:10.1038/s42255-024-01015-w