دورية أكاديمية

DUSP3 modulates IRES-dependent translation of mRNAs through dephosphorylation of the HNRNPC protein in cells under genotoxic stimulus.

التفاصيل البيبلوغرافية
العنوان: DUSP3 modulates IRES-dependent translation of mRNAs through dephosphorylation of the HNRNPC protein in cells under genotoxic stimulus.
المؤلفون: Ferruzo PYM; Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil., Boell VK; Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil., Russo LC; Laboratory of Genome Instability, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil., Oliveira CC; Laboratory of Post-transcriptional Control of Gene Expression, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil., Forti FL; Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
المصدر: Biology of the cell [Biol Cell] 2024 May; Vol. 116 (5), pp. e2300128. Date of Electronic Publication: 2024 Mar 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 8108529 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1768-322X (Electronic) Linking ISSN: 02484900 NLM ISO Abbreviation: Biol Cell Subsets: MEDLINE
أسماء مطبوعة: Publication: 2012- : Chichester : Wiley-Blackwell
Original Publication: Ivry sur Seine France : Publié par la Société française de microscopie électronique avec le concours du Centre national de la recherche scientifique et de l'Institute national de la santé et de la recherche médicale, [1981-
مواضيع طبية MeSH: DNA Damage* , Dual Specificity Phosphatase 3*/metabolism , Dual Specificity Phosphatase 3*/genetics , RNA, Messenger*/genetics , RNA, Messenger*/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group C*/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group C*/metabolism, Humans ; Heterogeneous-Nuclear Ribonucleoproteins/metabolism ; Heterogeneous-Nuclear Ribonucleoproteins/genetics ; Phosphorylation ; Protein Biosynthesis
مستخلص: Background Information: The dual-specificity phosphatase 3 (DUSP3) regulates cell cycle progression, proliferation, senescence, and DNA repair pathways under genotoxic stress. This phosphatase interacts with HNRNPC protein suggesting an involvement in the regulation of HNRNPC-ribonucleoprotein complex stability. In this work, we investigate the impact of DUSP3 depletion on functions of HNRNPC aiming to suggest new roles for this enzyme.
Results: The DUSP3 knockdown results in the tyrosine hyperphosphorylation state of HNRNPC increasing its RNA binding ability. HNRNPC is present in the cytoplasm where it interacts with IRES trans-acting factors (ITAF) complex, which recruits the 40S ribosome on mRNA during protein synthesis, thus facilitating the translation of mRNAs containing IRES sequence in response to specific stimuli. In accordance with that, we found that DUSP3 is present in the 40S, monosomes and polysomes interacting with HNRNPC, just like other previously identified DUSP3 substrates/interacting partners such as PABP and NCL proteins. By downregulating DUSP3, Tyr-phosphorylated HNRNPC preferentially binds to IRES-containing mRNAs within ITAF complexes preferentially in synchronized or stressed cells, as evidenced by the higher levels of proteins such as c-MYC and XIAP, but not their mRNAs such as measured by qPCR. Under DUSP3 absence, this increased phosphorylated-HNRNPC/RNA interaction reduces HNRNPC-p53 binding in presence of RNAs releasing p53 for specialized cellular responses. Similarly, to HNRNPC, PABP physically interacts with DUSP3 in an RNA-dependent manner.
Conclusions and Significance: Overall, DUSP3 can modulate cellular responses to genotoxic stimuli at the translational level by maintaining the stability of HNRNPC-ITAF complexes and regulating the intensity and specificity of RNA interactions with RRM-domain proteins.
(© 2024 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.)
References: Alonso, A., Rahmouni, S., Williams, S., van Stipdonk, M., Jaroszewski, L., Godzik, A., et al. (2003) Tyrosine phosphorylation of VHR phosphatase by ZAP‐70. Nature Immunology, 4, 44–48. https://doi.org/10.1038/ni856.
Amand, M., Erpicum, C., Bajou, K., Cerignoli, F., Blacher, S., Martin, M., et al. (2014) DUSP3/VHR is a pro‐angiogenic atypical dual‐specificity phosphatase. Molecular Cancer, 13, 108. https://doi.org/10.1186/1476‐4598‐13‐108.
Bruno, T., Iezzi, S., De Nicola, F., Di Padova, M., Desantis, A., Scarsella, M., et al. (2008) Che‐1 activates XIAP expression in response to DNA damage. Cell death and Differentiation, 15, 515–520. https://doi.org/10.1038/sj.cdd.4402284.
Cerignoli, F., Rahmouni, S., Ronai, Z. & Mustelin, T. (2006) Regulation of MAP kinases by the VHR dual‐specific phosphatase: Implications for cell growth and differentiation. Cell Cycle, 5, 2210–2215. https://doi.org/10.4161/cc.5.19.3267.
Chehab, N.H., Malikzay, A., Stavridi, E.S. & Halazonetis, T.D. (1999) Phosphorylation of Ser‐20 mediates stabilization of human p53 in response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 96, 13777–13782.
Chen, Y.R., Chou, H.C., Yang, C.H., Chen, H.Y., Liu, Y.W., Lin, T.Y., et al. (2017) Deficiency in VHR/DUSP3, a suppressor of focal adhesion kinase, reveals its role in regulating cell adhesion and migration. Oncogene, 36, 6509–6517. https://doi.org/10.1038/onc.2017.255.
Chou, H.C., Cheng, C.M., Yang, C.H., Lin, T.Y., Liu, Y.W., Tan, T.H., et al. (2022) DUSP3 regulates phosphorylation‐mediated degradation of occludin and is required for maintaining epithelial tight junction. Journal of Biomedical Science, 29, 40. https://doi.org/10.1186/s12929‐022‐00826‐x.
Deng, J., Harding, H.P., Raught, B., Gingras, A.‐C., Berlanga, J.J., Scheuner, D., et al. (2002) Activation of GCN2 in UV‐irradiated cells inhibits translation vated protein (MAP) kinase signaling modules to elicit additional transcriptional responses to UV irradiation [6‐8]. Current Biology : CB, 12, 1279–1286.
Denu, J.M., Zhou, G., Wu, L., Zhao, R., Yuvaniyama, J., Saper, M.A., et al. (1995) The purification and characterization of a human dual‐specific protein tyrosine phosphatase*. The Journal of Biological Chemistry, 270, 3796–3803.
Dreyfuss, G., Kim, V.N. & Kataoka, N. (2002) Messenger‐RNA‐binding proteins and the messages they carry. Nature Reviews Molecular Cell Biology, 3, 195–205. https://doi.org/10.1038/nrm760.
Erales, J., Marchand, V., Panthu, B., Gillot, S., Belin, S., Ghayad, S.E., et al. (2017) Evidence for rRNA 2′‐O‐methylation plasticity: Control of intrinsic translational capabilities of human ribosomes. The Proceedings of the National Academy of Sciences, 114, 12934–12939. https://doi.org/10.1073/pnas.1707674114.
Ford, L.P., Suh, J.M., Wright, W.E. & Shay, J.W. (2000) Heterogeneous nuclear ribonucleoproteins C1 and C2 associate with the RNA component of human telomerase. Molecular and Cellular Biology, 20, 9084–9091.
Forti, F.L. (2015) Combined experimental and bioinformatics analysis for the prediction and identification of VHR/DUSP3 nuclear targets related to DNA damage and repair. Integrative Biology (United Kingdom), 7, 73–89. https://doi.org/10.1039/c4ib00186a.
Fu, D. & Collins, K. (2007) Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Molecular and Cellular, 28, 773–785. https://doi.org/10.1016/j.molcel.2007.09.023.
Fung, P.A., Labrecque, R. & Pederson, T. (1997) RNA‐dependent phosphorylation of a nuclear RNA binding protein. Proceedings of the National Academy of Sciences of the United States of America, 94, 1064–1068.
Gao, M.Z., Wang, H.B., Chen, X.L., Cao, W.T., Fu, L., Li, Y., et al. (2019) Aberrant modulation of ribosomal protein S6 phosphorylation confers acquired resistance to MAPK pathway inhibitors in BRAF‐mutant melanoma. Acta Pharmacologica Sinica, 40, 268–278. https://doi.org/10.1038/s41401‐018‐0020‐z.
Geng, Q., Xhabija, B., Knuckle, C., Bonham, C.A. & Vacratsis, P.O. (2017) The atypical dual specificity phosphatase hYVH1 associates with multiple ribonucleoprotein particles. Journal of Biological Chemistry, 292, 539–550. https://doi.org/10.1074/jbc.M116.715607.
Godet, A.C., David, F., Hantelys, F., Tatin, F., Lacazette, E., Garmy‐Susini, B., et al. (2019) IRES trans‐acting factors, key actors of the stress response. International Journal of Molecular Sciences, 20, 924. https://doi.org/10.3390/ijms20040924.
Haley, B., Paunesku, T., Protic, M. & Woloschak, G.E. (2009) Response of heterogeneous ribonuclear proteins (hnRNP) to ionising radiation and their involvement in DNA damage repair. International journal of radiation biology, 85, 643–655. https://doi.org/10.1080/09553000903009548.
Han, S.P., Tang, Y.H. & Smith, R. (2010) Functional diversity of the hnRNPs: Past, present and perspectives. Biochemical Journal, 430, 379–392. https://doi.org/10.1042/BJ20100396.
Holčík, M., Gordon, B.W. & Korneluk, R.G. (2003) The internal ribosome entry site‐mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Molecular and Cellular Biology, 23, 280–288. https://doi.org/10.1128/mcb.23.1.280‐288.2003.
Holcombs, E.R., Friedman, D.L. (1984) Phosphorylation of the C‐proteins of HeLa Cell hnRNP Particles. Involvment of a casein kinase II‐type enzyme. The Journal of Biological Chemistry, 259, 31–40.
Hornbeck, PV., Zhang, B., Murray, B., Kornhauser, J.M., Latham, V. & Skrzypek, E. (2015) PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Research, 43, D512–D520. https://doi.org/10.1093/nar/gku1267.
Hoyt, R., Zhu, W., Cerignoli, F., Alonso, A., Mustelin, T. & David, M. (2007) Cutting edge: Selective tyrosine dephosphorylation of interferon‐activated nuclear STAT5 by the VHR phosphatase. The Journal of Immunology, 179, 3402–3406. https://doi.org/10.4049/jimmunol.179.6.3402.
Huschtscha, L.I. & Holliday, R. (1983) Limited and unlimited growth of SV‐40 transformed cells from human diploid MRC‐5 fibroblasts. Journal of Cell Science, 63, 77–99.
Imamura, K., Imamachi, N., Akizuki, G., Kumakura, M., Kawaguchi, A., Nagata, K., et al. (2014) Long noncoding RNA NEAT1‐dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Molecular Cell, 53, 393–406. https://doi.org/10.1016/j.molcel.2014.01.009.
Ishibashi, T., Bottaro, D.P., Chan, A., Miki, T. & Aaronson, S.A. (1992) Expression cloning of a human dual‐specificity phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 89, 12170.
Jang, S.K. & Wimmer, E. (2002) The role of RNA‐binding proteins in IRES‐dependent translation. In: Sandberg, K. & Mulroney, S.E. (Eds.) RNA binding proteins: new concepts in gene regulation, vol. 16. Boston, MA: Springer, p. 1–33. https://doi.org/10.1007/978‐1‐4757‐6446‐8_1.
Jeffrey, K.L., Camps, M., Rommel, C. & Mackay, C.R. (2007) Targeting dual‐specificity phosphatases: Manipulating MAP kinase signalling and immune responses. Nature Reviews Drug Discovery, 6, 391–403. https://doi.org/10.1038/nrd2289.
Jeon, Y.J., Kim, I.K., Hong, S.H., Nan, H., Kim, H.J., Lee, H.J., et al. (2008) Ribosomal protein S6 is a selective mediator of TRAIL‐apoptotic signaling. Oncogene, 27, 4344–4352. https://doi.org/10.1038/onc.2008.73.
Ji, Q., Zhang, L., Liu, X., Zhou, L., Wang, W., Han, Z., et al. (2014) Long non‐coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. British Journal of Cancer, 111, 736–748. https://doi.org/10.1038/bjc.2014.383.
Jurica, M.S., Licklider, L.J., Gygi, S.P., Grigorieff, N., Moore, M.J. (2002) Purification and characterization of native spliceosomes suitable for three‐dimensional structural analysis. Ribonucleic Acid, 8, 426–439.
Kattapuram, T., Yang, S., Maki, J.L. & Stone, J.R. (2005) Protein kinase CK1α regulates mRNA binding by heterogeneous nuclear ribonucleoprotein C in response to physiologic levels of hydrogen peroxide. Journal of Biological Chemistry, 280, 15340–15347. https://doi.org/10.1074/jbc.M500214200.
Kim, B.R., Ha, J., Kang, E. & Cho, S. (2020) Regulation of signal transducer and activator of transcription 3 activation by dual‐specificity phosphatase 3. Journal of Biochemistry and Molecular Biology, 53, 335–340. https://doi.org/10.5483/BMBRep.2020.53.6.054.
Kim, J.H., Paek, K.Y., Choi, K., Kim, T.‐D., Hahm, B., Kim, K.‐T., et al. (2003) Heterogeneous nuclear ribonucleoprotein C modulates translation of c‐myc mRNA in a cell cycle phase‐dependent manner. Molecular and Cellular Biology, 23, 708–720. https://doi.org/10.1128/mcb.23.2.708‐720.2003.
Le, H., Tanguay, R.L., Balasta, M.L., Wei, C.C., Browning, K.S., Metz, A.M., et al. (1997) Translation initiation factors eIF‐iso4G and eIF‐4B interact with the poly(A)‐binding protein and increase its RNA binding activity. Journal of Biological Chemistry, 272, 16247–16255. https://doi.org/10.1074/jbc.272.26.16247.
Lindström, M.S. & Zhang, Y. (2008) Ribosomal protein S9 is a novel B23/NPM‐binding protein required for normal cell proliferation. Journal of Biological Chemistry, 283, 15568–15576. https://doi.org/10.1074/jbc.M801151200.
Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M. & Pan, T. (2015) N6‐methyladenosine‐dependent RNA structural switches regulate RNA‐protein interactions. Nature, 518, 560–564. https://doi.org/10.1038/nature14234.
Mahajan, M.C., Narlikar, G.J., Boyapaty, G., Kingston, R.E. & Weissman, S.M. (2005) Heterogeneous nuclear ribonucleoprotein C1C2, MeCP1, and SWISNF form a chromatin remodeling complex at the‐globin locus control region. The Proceedings of the National Academy of Sciences, 102, 15012–15017.
Mayrand, S.H., Dwen, P. & Pederson, T. (1993) Serine/threonine phosphorylation regulates binding of C hnRNP proteins to pre‐mRNA (casein kinase II/okadaic acid/protein phosphatase/heterogeneous nudear ribonucleoprotein/mRNA splicing). Proceedings of the National Academy of Sciences of the United States of America, 90, 7764–7768.
Mayrand, S.H., Fung, P.A. & Pederson, T. (1996) A discrete 3 region of U6 small nuclear RNA modulates the phosphorylation cycle of the C1 heterogeneous nuclear ribonucleoprotein particle protein †. Molecular and cellular biology, 16, 1241–1246.
McCloskey, A., Taniguchi, I., Shinmyozu, K. & Ohno, M. (2012) hnRNP C tetramer measures RNA length to classify RNA polymerase II transcripts for export. Science, 335, 1643–1646. https://doi.org/10.1126/science.1218469.
Panico, K., Forti, F.L. (2013) Proteomic, cellular, and network analyses reveal new DUSP3 interactions with nucleolar proteins in HeLa cells. Journal of Proteome Research, 12, 5851–5866. https://doi.org/10.1021/pr400867j.
Pelengaris, S., Khan, M. & Evan, G. (2002) c‐MYC: More than just a matter of life and death. Nature Reviews Cancer, 2, 764–776. https://doi.org/10.1038/nrc904.
Petretti, C., Savoian, M., Montembault, E., Glover, D.M., Prigent, C. & Giet, R. (2006) The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. European Molecular Biology Organization, 7, 418–424. https://doi.org/10.1038/sj.embor.7400639.
Piñol‐Roma, S. & Dreyfuss, G. (1993) Cell cycle‐regulated phosphorylation of the pre‐mRNA‐binding (heterogeneous nuclear ribonucleoprotein) C protein. Molecular and Cellular Biology, 13, 5762–5770. https://doi.org/10.1128/mcb.13.9.5762‐5770.1993.
Pyronnet, S., Dostie, J. & Sonenberg, N. (2001) Suppression of cap‐dependent translation in mitosis. Genes & Development, 15, 2083–2093. https://doi.org/10.1101/gad.889201.
Rahmouni, S., Cerignoli, F., Alonso, A., Tsutji, T., Henkens, R., Zhu, C., et al. (2006) Loss of the VHR dual‐specific phosphatase causes cell‐cycle arrest and senescence. Nature cell biology, 8, 524–531. https://doi.org/10.1038/ncb1398.
Russo, L.C., Farias, J.O. & Forti, F.L. (2020) DUSP3 maintains genomic stability and cell proliferation by modulating NER pathway and cell cycle regulatory proteins. Cell Cycle, 19, 1545–1561. https://doi.org/10.1080/15384101.2020.1762043.
Russo, L.C., Ferruzo, P.Y.M. & Forti, F.L. (2021) Nucleophosmin protein dephosphorylation by DUSP3 is a fine‐tuning regulator of p53 signaling to maintain genomic stability. Frontiers in Cell and Developmental Biology, 9, 624933. https://doi.org/10.3389/fcell.2021.624933.
Saitoh, N., Sakamoto, C., Hagiwara, M., Agredano‐Moreno, L.T., Jimeńez‐Garciá, L.F. & Nakao, M. (2012) The distribution of phosphorylated SR proteins and alternative splicing are regulated by RANBP2. Molecular Biology of the Cell, 23, 1115–1128. https://doi.org/10.1091/mbc.E11‐09‐0783.
Satokata, I., Tanaka, K., Miura, N., Narita, M., Mimaki, T., Satoh, Y., et al. (1992) Three nonsense mutations responsible for group A xeroderma pigmentosum. Mutation Research, 273, 193–202.
Schepens, B., Tinton, S.A., Bruynooghe, Y., Parthoens, E., Haegman, M., Beyaert, R., et al. (2007) A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis. European Molecular Biology Organization, 26, 158–169. https://doi.org/10.1038/sj.emboj.7601468.
Schumacher, M.A., Todd, J.L., Rice, A.E., Tanner, K.G. & Denu, J.M. (2002) Structural basis for the recognition of a bisphosphorylated MAP kinase peptide by human VHR protein phosphatase. Biochemistry, 41, 3009–3017. https://doi.org/10.1021/bi015799l.
Shen, Y., Liu, S., Fan, J., Jin, Y., Tian, B., Zheng, X., et al. (2017) Nuclear retention of the lnc RNA SNHG 1 by doxorubicin attenuates hnRNPC–p53 protein interactions. European Molecular Biology Organization, 18, 536–548. https://doi.org/10.15252/embr.201643139.
Shetty, S. (2005) Protein synthesis and urokinase mRNA metabolism. Molecular and Cellular Biochemistry, 271, 13–22.
Simsek, D., Tiu, G.C., Flynn, R.A., Byeon, G.W., Leppek, K., Xu, A.F., et al. (2017) The mammalian ribo‐interactome reveals ribosome functional diversity and heterogeneity. Cell, 169, 1051‐1065.e18. https://doi.org/10.1016/j.cell.2017.05.022.
Slavov, N., Semrau, S., Airoldi, E., Budnik, B. & van Oudenaarden, A. (2015) Differential stoichiometry among core ribosomal proteins. Cell Reports, 13, 865–873. https://doi.org/10.1016/j.celrep.2015.09.056.
Stone, J.R. & Collins, T. (2002) Rapid phosphorylation of heterogeneous nuclear ribonucleoprotein C1/C2 in response to physiologic levels of hydrogen peroxide in human endothelial cells. Journal of Biological Chemistry, 277, 15621–15628. https://doi.org/10.1074/jbc.M112153200.
Stone, J.R., Maki, J.L. & Collins, T. (2003) Basal and hydrogen peroxide stimulated sites of phosphorylation in heterogeneous nuclear ribonucleoprotein C1/C2. Biochemistry, 42, 1301–1308. https://doi.org/10.1021/bi0268091.
Swanson, M.S., Nakagawa, T.Y., LeVan, K. & Dreyfuss, G. (1987) Primary structure of human nuclear ribonucleoprotein particle C proteins: Conservation of sequence and domain structures in heterogeneous nuclear RNA, mRNA, and Pre‐rRNA‐binding proteins. Molecular and Cellular Biology, 7, 1731–1739. https://doi.org/10.1128/mcb.7.5.1731‐1739.1987.
Tafforeau, L., Zorbas, C., Langhendries, J.L., Mullineux, S.T., Stamatopoulou, V., Mullier, R., et al. (2013) The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of pre‐rRNA processing factors. Molecular Cell, 51, 539–551. https://doi.org/10.1016/j.molcel.2013.08.011.
Tambe, M.B., Narvi, E. & Kallio, M. (2016) Reduced levels of Dusp3/Vhr phosphatase impair normal spindle bipolarity in an Erk1/2 activity‐dependent manner. Federation of European Biochemical Societies, 590, 2757–2767. https://doi.org/10.1002/1873‐3468.12310.
Todd, J.L., Rigas, J.D., Rafty, L.A. & Denu, J.M. (2002) Dual‐specificity protein tyrosine phosphatase VHR down‐regulates c‐Jun N‐terminal kinase (JNK). Oncogene, 21, 2573–2583. https://doi.org/10.1038/sj/onc/1205344.
Tong, Q.S., Zheng, L.D., Wang, L., Zeng, F.Q., Chen, F.M., Dong, J.H., et al. (2005) Downregulation of XIAP expression induces apoptosis and enhances chemotherapeutic sensitivity in human gastric cancer cells. Cancer Gene Therapy, 12, 509–514. https://doi.org/10.1038/sj.cgt.7700813.
Torres, T.E.P., Russo, L.C., Santos, A., Marques, G.R., Magalhaes, Y.T., Tabassum, S., et al. (2017) Loss of DUSP3 activity radiosensitizes human tumor cell lines via attenuation of DNA repair pathways. Biochimica et Biophysica Acta, 1861, 1879–1894. https://doi.org/10.1016/j.bbagen.2017.04.004.
Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., et al. (2015) Tissue‐based map of the human proteome. Science, 347, 1260419. https://doi.org/10.1126/science.1260419.
Velusamy, T., Shetty, P., Bhandary, Y.P., Liu, M.C. & Shetty, S. (2008) Posttranscriptional regulation of urokinase receptor expression by heterogeneous nuclear ribonuclear protein C. Biochemistry, 47, 6508–65017. https://doi.org/10.1021/bi702338y.
Wang, J.Y., Yeh, C.L., Chou, H.C., Yang, C.H., Fu, Y.N., Chen, Y.T., et al. (2011) Vaccinia H1‐related phosphatase is a phosphatase of ErbB receptors and is down‐regulated in non‐small cell lung cancer. Journal of Biological Chemistry, 286, 10177–10184. https://doi.org/10.1074/jbc.M110.163295.
Weber, H.J. (1972) Stoichiometric measurements of 30S and 50S ribosomal proteins from Escherichia coli. Molecular and General Genetics, 119, 233–248.
Weighardt, F., Biamonti, G. & Riva, S. (1996) The roles of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism. BioEssays, 18:747–756.
Wu, S., Hu, Y., Wang, J.L., Chatterjee, M., Shi, Y. & Kaufman, R.J. (2002) Ultraviolet light inhibits translation through activation of the unfolded protein response kinase PERK in the lumen of the endoplasmic reticulum. Journal of Biological Chemistry, 277, 18077–18083. https://doi.org/10.1074/jbc.M110164200.
Yang, F., Yi, F., Han, X., Du, Q. & Liang, Z. (2013) MALAT‐1 interacts with hnRNP C in cell cycle regulation. Federation of European Biochemical Societies, 587, 3175–3181. https://doi.org/10.1016/j.febslet.2013.07.048.
Yang, Y., Wang, C., Zhao, K., Zhang, G., Wang, D. & Mei, Y. (2018) TRMP, a p53‐inducible long noncoding RNA, regulates G1/S cell cycle progression by modulating IRES‐dependent p27 translation. Cell Death and Disease, 9, 886. https://doi.org/10.1038/s41419‐018‐0884‐3.
Yoshikawa, H., Larance, M., Harney, D.J., Sundaramoorthy, R., Ly, T., Owen‐Hughes, T., et al. (2018) Efficient analysis of mammalian polysomes in cells and tissues using Ribo Mega‐SEC. Elife, 7, e36530. https://doi.org/10.7554/eLife.36530.001.
معلومات مُعتمدة: Fundação de Amparo à Pesquisa do Estado de São Paulo; Conselho Nacional de Desenvolvimento Científico e Tecnológico; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: DUSP3; HNRNPC; genome integrity; mRNA translation; phosphorylation/dephosphorylation; protein synthesis
المشرفين على المادة: EC 3.1.3.48 (Dual Specificity Phosphatase 3)
EC 3.1.3.48 (DUSP3 protein, human)
0 (Heterogeneous-Nuclear Ribonucleoproteins)
0 (RNA, Messenger)
0 (HNRNPC protein, human)
0 (Heterogeneous-Nuclear Ribonucleoprotein Group C)
تواريخ الأحداث: Date Created: 20240327 Date Completed: 20240508 Latest Revision: 20240605
رمز التحديث: 20240606
DOI: 10.1111/boc.202300128
PMID: 38538536
قاعدة البيانات: MEDLINE
الوصف
تدمد:1768-322X
DOI:10.1111/boc.202300128