دورية أكاديمية

A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: phase 1 trial interim results.

التفاصيل البيبلوغرافية
العنوان: A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: phase 1 trial interim results.
المؤلفون: Rappaport AR; Gritstone bio, Emeryville, CA, USA., Kyi C; Memorial Sloan Kettering Cancer Center, New York, NY, USA., Lane M; Gritstone bio, Emeryville, CA, USA., Hart MG; Gritstone bio, Emeryville, CA, USA., Johnson ML; Sarah Cannon Research Institute, Nashville, TN, USA., Henick BS; Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA., Liao CY; University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA., Mahipal A; Mayo Clinic, Rochester, MN, USA., Shergill A; University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA., Spira AI; Virginia Cancer Specialists, Fairfax, VA, USA., Goldman JW; University of California, Los Angeles, Los Angeles, CA, USA., Scallan CD; Gritstone bio, Emeryville, CA, USA., Schenk D; Gritstone bio, Emeryville, CA, USA., Palmer CD; Gritstone bio, Emeryville, CA, USA., Davis MJ; Gritstone bio, Emeryville, CA, USA., Kounlavouth S; Gritstone bio, Emeryville, CA, USA., Kemp L; Gritstone bio, Emeryville, CA, USA., Yang A; Gritstone bio, Emeryville, CA, USA., Li YJ; Gritstone bio, Emeryville, CA, USA., Likes M; Gritstone bio, Emeryville, CA, USA., Shen A; Gritstone bio, Emeryville, CA, USA., Boucher GR; Gritstone bio, Emeryville, CA, USA., Egorova M; Gritstone bio, Emeryville, CA, USA., Veres RL; Gritstone bio, Emeryville, CA, USA., Espinosa JA; Gritstone bio, Emeryville, CA, USA., Jaroslavsky JR; Gritstone bio, Emeryville, CA, USA., Kraemer Tardif LD; Gritstone bio, Emeryville, CA, USA., Acrebuche L; Gritstone bio, Emeryville, CA, USA., Puccia C; Gritstone bio, Emeryville, CA, USA., Sousa L; Gritstone bio, Emeryville, CA, USA., Zhou R; Gritstone bio, Emeryville, CA, USA., Bae K; Gritstone bio, Emeryville, CA, USA., Hecht JR; University of California, Los Angeles, Los Angeles, CA, USA., Carbone DP; The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA., Johnson B; MD Anderson Cancer Center, Houston, TX, USA., Allen A; Gritstone bio, Emeryville, CA, USA., Ferguson AR; Gritstone bio, Emeryville, CA, USA., Jooss K; Gritstone bio, Emeryville, CA, USA. kjooss@gritstone.com.
المصدر: Nature medicine [Nat Med] 2024 Apr; Vol. 30 (4), pp. 1013-1022. Date of Electronic Publication: 2024 Mar 27.
نوع المنشور: Clinical Trial, Phase I; Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Company Country of Publication: United States NLM ID: 9502015 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-170X (Electronic) Linking ISSN: 10788956 NLM ISO Abbreviation: Nat Med Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature Publishing Company
Original Publication: New York, NY : Nature Pub. Co., [1995-
مواضيع طبية MeSH: Cancer Vaccines*/adverse effects , Neoplasms*/drug therapy , Neoplasms*/pathology , Vaccines*/therapeutic use, Humans ; Antigens, Neoplasm ; HLA Antigens ; Immune Checkpoint Inhibitors/therapeutic use ; Proto-Oncogene Proteins p21(ras)/genetics
مستخلص: Therapeutic vaccines that elicit cytotoxic T cell responses targeting tumor-specific neoantigens hold promise for providing long-term clinical benefit to patients with cancer. Here we evaluated safety and tolerability of a therapeutic vaccine encoding 20 shared neoantigens derived from selected common oncogenic driver mutations as primary endpoints in an ongoing phase 1/2 study in patients with advanced/metastatic solid tumors. Secondary endpoints included immunogenicity, overall response rate, progression-free survival and overall survival. Eligible patients were selected if their tumors expressed one of the human leukocyte antigen-matched tumor mutations included in the vaccine, with the majority of patients (18/19) harboring a mutation in KRAS. The vaccine regimen, consisting of a chimp adenovirus (ChAd68) and self-amplifying mRNA (samRNA) in combination with the immune checkpoint inhibitors ipilimumab and nivolumab, was shown to be well tolerated, with observed treatment-related adverse events consistent with acute inflammation expected with viral vector-based vaccines and immune checkpoint blockade, the majority grade 1/2. Two patients experienced grade 3/4 serious treatment-related adverse events that were also dose-limiting toxicities. The overall response rate was 0%, and median progression-free survival and overall survival were 1.9 months and 7.9 months, respectively. T cell responses were biased toward human leukocyte antigen-matched TP53 neoantigens encoded in the vaccine relative to KRAS neoantigens expressed by the patients' tumors, indicating a previously unknown hierarchy of neoantigen immunodominance that may impact the therapeutic efficacy of multiepitope shared neoantigen vaccines. These data led to the development of an optimized vaccine exclusively targeting KRAS-derived neoantigens that is being evaluated in a subset of patients in phase 2 of the clinical study. ClinicalTrials.gov registration: NCT03953235 .
(© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
References: Keenan, T. E., Burke, K. P. & Van Allen, E. M. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 25, 389–402 (2019). (PMID: 10.1038/s41591-019-0382-x308426776599710)
Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015). (PMID: 10.1126/science.aaa1348257650704993154)
Palmer, C. D. et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat. Med. 28, 1619–1629 (2022). (PMID: 10.1038/s41591-022-01937-635970920)
Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of Ras mutations in cancer. Cancer Res. 80, 2969–2974 (2020). (PMID: 10.1158/0008-5472.CAN-19-3682322095607367715)
Hong, D. S. et al. KRAS G12C inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 383, 1207–1217 (2020). (PMID: 10.1056/NEJMoa1917239329551767571518)
Jänne, P. A. et al. Adagrasib in non-small cell lung cancer harboring a KRAS G12C mutation. N. Engl. J. Med. 387, 120–131 (2022). (PMID: 10.1056/NEJMoa220461935658005)
Kim, D., Xue, J. Y. & Lito, P. Targeting KRAS G12C : from inhibitory mechanism to modulation of antitumor effects in patients. Cell 183, 850–859 (2020). (PMID: 10.1016/j.cell.2020.09.044330650297669705)
Skoulidis, F. et al. Sotorasib for lung cancers with KRAS G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021). (PMID: 10.1056/NEJMoa2103695340966909116274)
Awad, M. M. et al. Acquired resistance to KRAS G12C inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021). (PMID: 10.1056/NEJMoa2105281341617048864540)
Canon, J. et al. The clinical KRAS G12C inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019). (PMID: 10.1038/s41586-019-1694-131666701)
Bulik-Sullivan, B. et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat. Biotechnol. 37, 55–63 (2019). (PMID: 10.1038/nbt.4313)
Fourcade, J. et al. PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8 + T cells induced by melanoma vaccines. Cancer Res. 74, 1045–1055 (2014). (PMID: 10.1158/0008-5472.CAN-13-290824343228)
Tran, E. et al. T cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016). (PMID: 10.1056/NEJMoa1609279279596845178827)
Maiers, M., Gragert, L. & Klitz, W. High-resolution HLA alleles and haplotypes in the United States population. Hum. Immunol. 68, 779–788 (2007). (PMID: 10.1016/j.humimm.2007.04.00517869653)
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012). (PMID: 10.1158/2159-8290.CD-12-009522588877)
de Bruijn, I. et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 83, 3861–3867 (2023). (PMID: 10.1158/0008-5472.CAN-23-08163766852810690089)
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013). (PMID: 10.1126/scisignal.2004088235502104160307)
Guo, W., Wang, S. J., Yang, S., Lynn, H. & Ji, Y. A Bayesian interval dose-finding design addressing Ockham’s razor: mTPI-2. Contemp. Clin. Trials 58, 23–33 (2017). (PMID: 10.1016/j.cct.2017.04.00628458054)
Ji, Y. & Wang, S. J. Modified toxicity probability interval design: a safer and more reliable method than the 3 + 3 design for practical phase I trials. J. Clin. Oncol. 31, 1785–1791 (2013). (PMID: 10.1200/JCO.2012.45.7903235693073641699)
Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 6, 38 (2020). (PMID: 10.1038/s41572-020-0160-632382051)
Vega, D. M. et al. Changes in circulating tumor DNA reflect clinical benefit across multiple studies of patients with non-small-cell lung cancer treated with immune checkpoint inhibitors. JCO Precis. Oncol. 6, e2100372 (2022). (PMID: 10.1200/PO.21.00372359523199384957)
Bratman, S. V. et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat. Cancer 1, 873–881 (2020). (PMID: 10.1038/s43018-020-0096-535121950)
Sivapalan L. et al. Liquid biopsy approaches to capture tumor evolution and clinical outcomes during cancer immunotherapy. J. Immunother. Cancer https://doi.org/10.1136/jitc-2022-005924 (2023).
Assaf, Z. J. F. et al. A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer. Nat. Med. 29, 859–868 (2023). (PMID: 10.1038/s41591-023-02226-63692881610115641)
Gettinger, S. et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017). (PMID: 10.1158/2159-8290.CD-17-0593290257725718941)
Schoenfeld, A. J. & Hellmann, M. D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37, 443–455 (2020). (PMID: 10.1016/j.ccell.2020.03.017322892697182070)
Rodriguez, F., Harkins, S., Slifka, M. K. & Whitton, J. L. Immunodominance in virus-induced CD8 + T cell responses is dramatically modified by DNA immunization and is regulated by gamma interferon. J. Virol. 76, 4251–4259 (2002). (PMID: 10.1128/JVI.76.9.4251-4259.200211932390155093)
Carbone, D. P. et al. Immunization with mutant p53- and K-Ras-derived peptides in cancer patients: immune response and clinical outcome. J. Clin. Oncol. 23, 5099–5107 (2005). (PMID: 10.1200/JCO.2005.03.15815983396)
Folegatti, P. M. et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 396, 467–478 (2020). (PMID: 10.1016/S0140-6736(20)31604-4327022987445431)
Shaw, A. R. & Suzuki, M. Immunology of adenoviral vectors in cancer therapy. Mol. Ther. Methods Clin. Dev. 15, 418–429 (2019). (PMID: 10.1016/j.omtm.2019.11.001318907346909129)
Ogwang, C. et al. Prime-boost vaccination with chimpanzee adenovirus and modified vaccinia Ankara encoding TRAP provides partial protection against Plasmodium falciparum infection in Kenyan adults. Sci. Transl. Med. 7, 286re5 (2015). (PMID: 10.1126/scitranslmed.aaa2373259471654687051)
Schreiber, H., Wu, T. H., Nachman, J. & Kast, W. M. Immunodominance and tumor escape. Semin. Cancer Biol. 12, 25–31 (2002). (PMID: 10.1006/scbi.2001.040111926408)
Burger, M. L. et al. Antigen dominance hierarchies shape TCF1 + progenitor CD8 T cell phenotypes in tumors. Cell 184, 4996–5014.e26 (2021). (PMID: 10.1016/j.cell.2021.08.020345344648522630)
Friedman, J. et al. Neoadjuvant PD-1 immune checkpoint blockade reverses functional immunodominance among tumor antigen-specific T cells. Clin. Cancer Res. 26, 679–689 (2020). (PMID: 10.1158/1078-0432.CCR-19-220931645352)
Moodie, Z. et al. Response definition criteria for ELISPOT assays revisited. Cancer Immunol. Immunother. 59, 1489–1501 (2010). (PMID: 10.1007/s00262-010-0875-4205492072909425)
Janetzki, S. et al. Guidelines for the automated evaluation of Elispot assays. Nat. Protoc. 10, 1098–1115 (2015). (PMID: 10.1038/nprot.2015.06826110715)
USE (Universal Spectrum Explorer). ProteomicsDB https://www.proteomicsdb.org/use/ (2021).
Lai, Z. et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 44, e108 (2016). (PMID: 10.1093/nar/gkw227270601494914105)
سلسلة جزيئية: ClinicalTrials.gov NCT03953235
المشرفين على المادة: 0 (Antigens, Neoplasm)
0 (Cancer Vaccines)
0 (HLA Antigens)
0 (Immune Checkpoint Inhibitors)
EC 3.6.5.2 (Proto-Oncogene Proteins p21(ras))
0 (Vaccines)
تواريخ الأحداث: Date Created: 20240328 Date Completed: 20240422 Latest Revision: 20240430
رمز التحديث: 20240501
DOI: 10.1038/s41591-024-02851-9
PMID: 38538867
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-170X
DOI:10.1038/s41591-024-02851-9