دورية أكاديمية

Large-scale data decipher children's scale errors: A meta-analytic approach using the zero-inflated Poisson models.

التفاصيل البيبلوغرافية
العنوان: Large-scale data decipher children's scale errors: A meta-analytic approach using the zero-inflated Poisson models.
المؤلفون: Hagihara H; Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan.; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Bunkyo, Tokyo, Japan., Ishibashi M; Department of Psychology and Humanities, Edogawa University, Nagareyama, Chiba, Japan., Moriguchi Y; Graduate School of Letters, Kyoto University, Kyoto, Japan., Shinya Y; Graduate School of Education, The University of Tokyo, Bunkyo, Tokyo, Japan.
المصدر: Developmental science [Dev Sci] 2024 Jul; Vol. 27 (4), pp. e13499. Date of Electronic Publication: 2024 Mar 27.
نوع المنشور: Journal Article; Meta-Analysis
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 9814574 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1467-7687 (Electronic) Linking ISSN: 1363755X NLM ISO Abbreviation: Dev Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK ; Malden, MA, USA : Wiley-Blackwell, c1998-
مواضيع طبية MeSH: Vocabulary*, Humans ; Poisson Distribution ; Child ; Female ; Male ; Child Development/physiology ; Child, Preschool ; Models, Statistical
مستخلص: Scale errors are intriguing phenomena in which a child tries to perform an object-specific action on a tiny object. Several viewpoints explaining the developmental mechanisms underlying scale errors exist; however, there is no unified account of how different factors interact and affect scale errors, and the statistical approaches used in the previous research do not adequately capture the structure of the data. By conducting a secondary analysis of aggregated datasets across nine different studies (n = 528) and using more appropriate statistical methods, this study provides a more accurate description of the development of scale errors. We implemented the zero-inflated Poisson (ZIP) regression that could directly handle the count data with a stack of zero observations and regarded developmental indices as continuous variables. The results suggested that the developmental trend of scale errors was well documented by an inverted U-shaped curve rather than a simple linear function, although nonlinearity captured different aspects of the scale errors between the laboratory and classroom data. We also found that repeated experiences with scale error tasks reduced the number of scale errors, whereas girls made more scale errors than boys. Furthermore, a model comparison approach revealed that predicate vocabulary size (e.g., adjectives or verbs), predicted developmental changes in scale errors better than noun vocabulary size, particularly in terms of the presence or absence of scale errors. The application of the ZIP model enables researchers to discern how different factors affect scale error production, thereby providing new insights into demystifying the mechanisms underlying these phenomena. A video abstract of this article can be viewed at https://youtu.be/1v1U6CjDZ1Q RESEARCH HIGHLIGHTS: We fit a large dataset by aggregating the existing scale error data to the zero-inflated Poisson (ZIP) model. Scale errors peaked along the different developmental indices, but the underlying statistical structure differed between the in-lab and classroom datasets. Repeated experiences with scale error tasks and the children's gender affected the number of scale errors produced per session. Predicate vocabulary size (e.g., adjectives or verbs) better predicts developmental changes in scale errors than noun vocabulary size.
(© 2024 The Authors. Developmental Science published by John Wiley & Sons Ltd.)
References: Arterberry, M. E., Hespos, S. J., Walsh, C. A., & Daniels, C. I. (2020). Integration of thought and action continued: Scale errors and categorization in toddlers. Infancy, 25(6), 851–870. https://doi.org/10.1111/infa.12364.
Atkins, D. C., & Gallop, R. J. (2007). Rethinking how family researchers model infrequent outcomes: A tutorial on count regression and zero‐inflated models. Journal of Family Psychology, 21(4), 726–735. https://doi.org/10.1037/0893‐3200.21.4.726.
Austin, P. C., & Steyerberg, E. W. (2015). The number of subjects per variable required in linear regression analyses. Journal of Clinical Epidemiology, 68(6), 627–636. https://doi.org/10.1016/j.jclinepi.2014.12.014.
Bigham, S., & Bourchier‐Sutton, A. (2007). The decontextualization of form and function in the development of pretence. British Journal of Developmental Psychology, 25(3), 335–351. https://doi.org/10.1348/026151006X153154.
Bergmann, C., Tsuji, S., Piccinini, P. E., Lewis, M. L., Braginsky, M., Frank, M. C., & Cristia, A. (2018). Promoting replicability in developmental research through meta‐analyses: Insights from language acquisition research. Child Development, 89(6), 1996–2009. https://doi.org/10.1111/cdev.13079.
Böhning, D., Dietz, E., Schlattmann, P., Mendonca, L., & Kirchner, U. (1999). The zero‐inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology. Journal of the Royal Statistical Society: Series A (Statistics in Society), 162(2), 195–209. https://doi.org/10.1111/1467‐985X.00130.
Brownell, C. A., Zerwas, S., & Ramani, G. B. (2007). ‘So big’: The development of body self‐awareness in toddlers. Child Development, 78(5), 1426–1440. https://doi.org/10.1111/j.1467‐8624.2007.01075.x.
Bujang, M. A., Sa'at, N., Bakar, T. M. I. T. A., & Joo, L. C. (2018). Sample size guidelines for logistic regression from observational studies with large population: Emphasis on the accuracy between statistics and parameters based on real life clinical data. The Malaysian Journal of Medical Sciences, 25(4), 122–130. https://doi.org/10.21315/mjms2018.25.4.12.
Caselli, C., Casadio, P., & Bates, E. (1999). A comparison of the transition from first words to grammar in English and Italian. Journal of Child Language, 26(1), 69–111. https://doi.org/10.1017/S0305000998003687.
Casler, K., Eshleman, A., Greene, K., & Terziyan, T. (2011). Children's scale errors with tools. Developmental Psychology, 47(3), 857–866. https://doi.org/10.1037/a0021174.
DeLoache, J. S., LoBue, V., Vanderborght, M., & Chiong, C. (2013). On the validity and robustness of the scale error phenomenon in early childhood. Infant Behavior and Development, 36(1), 63–70. https://doi.org/10.1016/j.infbeh.2012.10.007.
DeLoache, J. S., Uttal, D. H., & Rosengren, K. S. (2004). Scale errors offer evidence for a perception‐action dissociation early in life. Science, 304(5673), 1027–1029. https://doi.org/10.1126/science.1093567.
Elder, J. L., & Pederson, D. R. (1978). Preschool children's use of objects in symbolic play. Child Development, 49(2), 500–504. https://doi.org/10.2307/1128716.
Eriksson, M., Marschik, P. B., Tulviste, T., Almgren, M., Pérez Pereira, M., Wehberg, S., Marjanovič‐Umek, L., Gayraud, F., Kovacevic, M., & Gallego, C. (2012). Differences between girls and boys in emerging language skills: Evidence from 10 language communities. British Journal of Developmental Psychology, 30(2), 326–343. https://doi.org/10.1111/j.2044‐835X.2011.02042.x.
Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2021). Variability and consistency in early language learning: The Wordbank Project. MIT Press.
Gabry, J., & Češnovar, R. (2020). CmdStanR: R interface to ‘CmdStan’. R package version 0.3.0. Retrieved from https://mc‐stan.org/cmdstanr, https://discourse.mc‐stan.org.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Chapman & Hall/CRC.
Gershkoff‐Stowe, L., & Smith, L. B. (2004). Shape and the first hundred nouns. Child Develop ment, 75(4), 1098–1114. https://doi.org/10.1111/j.1467‐8624.2004.00728.x.
Goh, J. X., Hall, J. A., & Rosenthal, R. (2016). Mini meta‐analysis of your own studies: Some arguments on why and a primer on how. Social and Personality Psychology Compass, 10(10), 535–549. https://doi.org/10.1111/spc3.12267.
Grzyb, B. J., Cangelosi, A., Cattani, A., & Floccia, C. (2017). Decreased attention to object size information in scale errors performers. Infant Behavior and Development, 47, 72–82. https://doi.org/10.1016/j.infbeh.2017.03.001.
Grzyb, B. J., Cangelosi, A., Cattani, A., & Floccia, C. (2019). Children's scale errors: A by‐product of lexical development? Developmental Science, 22(2), e12741. https://doi.org/10.1111/desc.12741.
Grzyb, B. J., Cattani, A., Cangelosi, A., & Floccia, C. (2014). Children in a wonderland: How language and scale errors may be linked. In 4th International Conference on Development and Learning and on Epigenetic Robotics (pp. 269–274). https://doi.org/10.1109/DEVLRN.2014.6982992.
Grzyb, B. J., Nagai, Y., Asada, M., Cattani, A., Floccia, C., & Cangelosi, A. (2019). Children's scale errors are a natural consequence of learning to associate objects with actions: A computational model. Developmental Science, 22(4), e12777. https://doi.org/10.1111/desc.12777.
Hagihara, H., Ishibashi, M., Moriguchi, Y., & Shinya, Y. (2022a). Data from “Object labeling activates young children's scale errors at an early stage of verb vocabulary growth”. Journal of Open Psychology Data, 10, 15. https://doi.org/10.5334/jopd.70.
Hagihara, H., Ishibashi, M., Moriguchi, Y., & Shinya, Y. (2022b). Object labeling activates young children's scale errors at an early stage of verb vocabulary growth. Journal of Experimental Child Psychology, 222, 105471. https://doi.org/10.1016/j.jecp.2022.105471.
Hagihara, H., & Sakagami, M. (2020). Initial noun meanings do not differentiate into object categories: An experimental approach to Werner and Kaplan's hypothesis. Journal of Experimental Child Psychology, 190, 104710. https://doi.org/10.1016/j.jecp.2019.104710.
Hagihara, H., Yamamoto, H., Moriguchi, Y., & Sakagami, M. (2022). When “shoe” becomes free from “putting on”: The link between early meanings of object words and object‐specific actions. Cognition, 226, 105177. https://doi.org/10.1016/j.cognition.2022.105177.
Hamilton, A., Plunkett, K., & Schafer, G. (2000). Infant vocabulary development assessed with a British communicative development inventory. Journal of Child Language, 27(3), 689–705. https://doi.org/10.1017/S0305000900004414.
Hu, M. C., Pavlicova, M., & Nunes, E. V. (2011). Zero‐inflated and hurdle models of count data with extra zeros: Examples from an HIV‐risk reduction intervention trial. The American Journal of Drug and Alcohol Abuse, 37(5), 367–375. https://doi.org/10.3109/00952990.2011.597280.
Hunley, S. B., & Hahn, E. R. (2016). Labels affect preschoolers’ tool‐based scale errors. Journal of Experimental Child Psychology, 151, 40–50. https://doi.org/10.1016/j.jecp.2016.01.007.
Ishibashi, M., & Moriguchi, Y. (2017). Understanding why children commit scale errors: Scale error and its relation to action planning and inhibitory control, and the concept of size. Frontiers in Psychology, 8, 826. https://doi.org/10.3389/fpsyg.2017.00826.
Ishibashi, M., & Moriguchi, Y. (2021). Neural basis of scale errors in young children. Developmental Neuropsychology, 46(2), 109–120. https://doi.org/10.1080/87565641.2021.1887871.
Ishibashi, M., Twomey, K. E., Westermann, G., & Uehara, I. (2021). Children's scale errors and object processing: Early evidence for cross‐cultural differences. Infant Behavior and Development, 65, 101631. https://doi.org/10.1016/j.infbeh.2021.101631.
Ishibashi, M., & Uehara, I. (2017). Children's scale errors: Its relationship to semantic knowledge and pretending behaviors. Poster presented at the Lancaster International Conference on Infant and Early Child Development, Lancaster, UK.
Ishibashi, M., & Uehara, I. (2019) Children's scale errors: Developmental changes in pretending and language comprehension. Poster presented at the 19th annual meeting of the Japanese Society of Baby Science, Tokyo, Japan (in Japanese).
Ishibashi, M., & Uehara, I. (2020). The relationship between children's scale error production and play patterns including pretend play. Frontiers in Psychology, 11, 1776. https://doi.org/10.3389/fpsyg.2020.01776.
Jiang, M. J., & Rosengren, K. S. (2018). Action errors: A window into the early development of perception–action system. Advances in Child Development and Behavior, 55, 145–171. https://doi.org/10.1016/bs.acdb.2018.04.002.
Jones, S. S. (2003). Late talkers show no shape bias in a novel name extension task. Developmental Science, 6(5), 477–483. https://doi.org/10.1111/1467‐7687.00304.
Karazsia, B. T., & van Dulmen, M. H. (2008). Regression models for count data: Illustrations using longitudinal predictors of childhood injury. Journal of Pediatric Psychology, 33(10), 1076–1084. https://doi.org/10.1093/jpepsy/jsn055.
Kemler Nelson, D. G., Russell, R., Duke, N., & Jones, K. (2000). Two‐year‐olds will name artifacts by their functions. Child Development, 71(5), 1271–1288. https://doi.org/10.1111/1467‐8624.00228.
Kobayashi, H. (1997). The role of actions in making inferences about the shape and material of solid objects among Japanese 2 year‐old children. Cognition, 63(3), 251–269. https://doi.org/10.1016/S0010‐0277(97)00007‐3.
Lambert, D. (1992). Zero‐inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 1–14. https://doi.org/10.1080/00401706.1992.10485228.
Landau, B., Smith, L. B., & Jones, S. S. (1988). The importance of shape in early lexical learning. Cognitive Development, 3(3), 299–321. https://doi.org/10.1016/0885‐2014(88)90014‐7.
Lewis, M., Cristiano, V., Lake, B. M., Kwan, T., & Frank, M. C. (2020). The role of developmental change and linguistic experience in the mutual exclusivity effect. Cognition, 198, 104191. https://doi.org/10.1016/j.cognition.2020.104191.
Loeys, T., Moerkerke, B., De Smet, O., & Buysse, A. (2012). The analysis of zero‐inflated count data: Beyond zero‐inflated Poisson regression. British Journal of Mathematical and Statistical Psychology, 65(1), 163–180. https://doi.org/10.1111/j.2044‐8317.2011.02031.x.
Martin, T. G., Wintle, B. A., Rhodes, J. R., Kuhnert, P. M., Field, S. A., Low‐Choy, S. J., Tyre, A. J., & Possingham, H. P. (2005). Zero tolerance ecology: Improving ecological inference by modelling the source of zero observations. Ecology Letters, 8(11), 1235–1246. https://doi.org/10.1111/j.1461‐0248.2005.00826.x.
McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan (2nd ed.). Chapman and Hall/CRC.
Min, Y., & Agresti, A. (2005). Random effect models for repeated measures of zero‐inflated count data. Statistical Modelling, 5(1), 1–19. https://doi.org/10.1191/1471082X05st084oa.
Naggara, O., Raymond, J., Guilbert, F., Roy, D., Weill, A., & Altman, D. G. (2011). Analysis by categorizing or dichotomizing continuous variables is inadvisable: An example from the natural history of unruptured aneurysms. American Journal of Neuroradiology, 32(3), 437–440. https://doi.org/10.3174/ajnr.A2425.
Ogura, T., & Watamaki, T. (2004). Nihongo MacArthur Nyuyoji Gengo Hattatsu Shitumonshi [Japanese MacArthur communicative development inventories]. Kyoto International Social Welfare Exchange Centre.
Ogura, T., Watamaki, T., & Inaba, T. (2016). Nihongo MacArthur nyuyoji gengo hattatsu shitumonshi no kaihatsu to kenkyu [The development and research of Japanese MacArthur communicative development inventories]. Nakanishiya Shuppan.
Oláh, K., Elekes, F., Pető, R., Peres, K., & Király, I. (2016). 3‐year‐old children selectively generalize object functions following a demonstration from a linguistic in‐group member: Evidence from the phenomenon of scale error. Frontiers in Psychology, 7, 963. https://doi.org/10.3389/fpsyg.2016.00963.
Rivière, J., Brisson, J., & Aubertin, E. (2020). The interaction between impulsivity, inhibitory control and scale errors in toddlers. European Journal of Developmental Psychology, 17(2), 231–245. https://doi.org/10.1080/17405629.2019.1567324.
Rosengren, K. S. (n.d.). Variability in young children's interactions with scale replicas: Exploratory play, general play, pretense, and scale errors. Unpublished data.
Rosengren, K. S., Carmichael, C., Schein, S. S., Anderson, K. N., & Gutiérrez, I. T. (2009). A method for eliciting scale errors in preschool classrooms. Infant Behavior and Development, 32(3), 286–290. https://doi.org/10.1016/j.infbeh.2009.03.001.
Rosengren, K. S., Gutiérrez, I. T., Anderson, K. N., & Schein, S. S. (2009). Parental reports of children's scale errors in everyday life. Child Development, 80(6), 1586–1591. https://doi.org/10.1111/j.1467‐8624.2009.01355.x.
Rosengren, K. S., Schein, S. S., & Gutiérrez, I. T. (2010). Individual differences in children's production of scale errors. Infant Behavior and Development, 33(3), 309–313. https://doi.org/10.1016/j.infbeh.2010.03.011.
Royston, P., Altman, D. G., & Sauerbrei, W. (2006). Dichotomizing continuous predictors in multiple regression: A bad idea. Statistics in Medicine, 25(1), 127–141. https://doi.org/10.1002/sim.2331.
Rucker, D. D., McShane, B. B., & Preacher, K. J. (2015). A researcher's guide to regression, discretization, and median splits of continuous variables. Journal of Consumer Psychology, 25(4), 666–678. https://doi.org/10.1016/j.jcps.2015.04.004.
Saji, N., Imai, M., Saalbach, H., Zhang, Y., Shu, H., & Okada, H. (2011). Word learning does not end at fast‐mapping: Evolution of verb meanings through reorganization of an entire semantic domain. Cognition, 118(1), 45–61. https://doi.org/10.1016/j.cognition.2010.09.007.
Smith, L. B., Jones, S. S., Landau, B., Gershkoff‐Stowe, L., & Samuelson, L. (2002). Object name learning provides on‐the‐job training for attention. Psychological Science, 13(1), 13–19. https://doi.org/10.1111/1467‐9280.00403.
Stan Development Team. (2021). Stan modeling language users guide and reference manual. version 2.28.2. Retrieved from https://mc‐stan.org.
UCLA: Statistical Consulting Group. (n.d.). How do I run a random effect zero‐inflated Poisson model using nlmixed? https://stats.oarc.ucla.edu/sas/faq/how‐do‐i‐run‐a‐random‐effect‐zero‐inflated‐poisson‐model‐using‐nlmixed.
Ware, E. A., Uttal, D. H., & DeLoache, J. S. (2010). Everyday scale errors. Developmental Science, 13(1), 28–36. https://doi.org/10.1111/j.1467‐7687.2009.00853.x.
Ware, E. A., Uttal, D. H., Wetter, E. K., & DeLoache, J. S. (2006). Young children make scale errors when playing with dolls. Developmental Science, 9(1), 40–45. https://doi.org/10.1111/j.1467‐7687.2005.00461.x.
Watanabe, S. (2010a). Equations of states in singular statistical estimation. Neural Networks, 23(1), 20–34. https://doi.org/10.1016/j.neunet.2009.08.002.
Watanabe, S. (2010b). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(116), 3571–3594. http://jmlr.org/papers/v11/watanabe10a.html.
Werner, H., & Kaplan, B. (1963). Symbol formation: An organismic‐developmental approach to language and the expression of thought. John Wiley.
Wiesner, M., & Kim, H. K. (2006). Co‐occurring delinquency and depressive symptoms of adolescent boys and girls: A dual trajectory modeling approach. Developmental Psychology, 42(6), 1220–1235. https://doi.org/10.1037/0012‐1649.42.6.1220.
Yamamoto, H., Sato, A., & Itakura, S. (2019). Eye tracking in an everyday environment reveals the interpersonal distance that affords infant‐parent gaze communication. Scientific Reports, 9, 10352. https://doi.org/10.1038/s41598‐019‐46650‐6.
Zuniga‐Montanez, C., Kita, S., Aussems, S., & Krott, A. (2021). Beyond the shape of things: Infants can be taught to generalize nouns by objects’ functions. Psychological Science, 32(7), 1073–1085. https://doi.org/10.1177/0956797621993107.
معلومات مُعتمدة: JP18J21948 JSPS KAKENHI; JP22KJ0525 JSPS KAKENHI; JP22K13664 JSPS KAKENHI; the Center for Early Childhood Development, Education, and Policy Research (Cedep); Graduate School of Education, The University of Tokyo
فهرسة مساهمة: Keywords: Bayesian meta‐analysis; count data; language development; scale error; toddlerhood; zero‐inflated Poisson model (ZIP)
تواريخ الأحداث: Date Created: 20240328 Date Completed: 20240607 Latest Revision: 20240611
رمز التحديث: 20240612
DOI: 10.1111/desc.13499
PMID: 38544371
قاعدة البيانات: MEDLINE
الوصف
تدمد:1467-7687
DOI:10.1111/desc.13499