دورية أكاديمية

Mercury-Group 13 Metal Covalent Bonds: A Systematic Comparison of Aluminyl, Gallyl and Indyl Metallo-ligands.

التفاصيل البيبلوغرافية
العنوان: Mercury-Group 13 Metal Covalent Bonds: A Systematic Comparison of Aluminyl, Gallyl and Indyl Metallo-ligands.
المؤلفون: Griffin LP; Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK., Ellwanger MA; Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK., Crumpton AE; Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK., Roy MMD; Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK., Heilmann A; Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK., Aldridge S; Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
المصدر: Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2024 Jun 03; Vol. 63 (23), pp. e202404527. Date of Electronic Publication: 2024 Apr 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 0370543 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3773 (Electronic) Linking ISSN: 14337851 NLM ISO Abbreviation: Angew Chem Int Ed Engl Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: <2004-> : Weinheim : Wiley-VCH
Original Publication: Weinheim/Bergstr. : New York, : Verlag Chemie ; Academic Press, c1962-
مستخلص: Bimetallic compounds containing direct metal-group 13 element bonds have been shown to display unprecedented patterns of cooperative reactivity towards small molecules, which can be influenced by the identity of the group 13 element. In this context, we present here a systematic appraisal of group 13 metallo-ligands of the type [(NON)E] - (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) for E=Al, Ga and In, through a comparison of structural and spectroscopic parameters associated with the trans L or X ligands in linear d 10 complexes of the types LM{E(NON)} and XM'{E(NON)}. These studies are facilitated by convenient syntheses (from the In(I) precursor, InCp) of the potassium indyl species [{K(NON)In}⋅KCp] n (1) and [(18-crown-6) 2 K 2 Cp] [(NON)In] (1'), and lead to the first structural characterisation of Ag-In and Hg-E (E=Al, In) covalent bonds. The resulting structural, spectroscopic and quantum chemical probes of Ag/Hg complexes are consistent with markedly stronger σ-donor capabilities of the aluminyl ligand, [(NON)Al] - , over its gallium and indium counterparts.
(© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)
References: For reviews of bimetallics in small molecule activation see, for example:.
B. G. Cooper, J. W. Napoline, C. M. Thomas, Catal. Rev. Sci. Eng. 2012, 54, 1–40;.
N. P. Mankad, Chem. Eur. J. 2016, 22, 5822–5829;.
J. Takaya, Chem. Sci. 2021, 12, 1964–1981;.
M. T. Whited, Dalton Trans. 2021, 50, 16443–16450.
Examples of transition metal-aluminium bimetallics featuring an X-type group 13 ligand:.
R. A. Fischer, T. Priermeier, Organometallics 1994, 13, 4306–4314;.
B. N. Anand, I. Krossing, H. Nöth, Inorg. Chem. 1997, 36, 1979–1981;.
I. M. Riddlestone, J. Urbano, N. D. Phillips, M. J. Kelly, D. Vidovic, J. I. Bates, R. Taylor, S. Aldridge, Dalton Trans. 2013, 42, 249–258;.
J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2017, 139, 6074–6077;.
N. Hara, T. Saito, K. Semba, N. Kuriakose, H. Zheng, S. Sakaki, Y. Nakao, J. Am. Chem. Soc. 2018, 140, 7070–7073;.
J. Hicks, A. Mansikkamäki, P. Vasko, J. M. Goicoechea, S. Aldridge, Nat. Chem. 2019, 11, 237–241;.
S. Morisako, S. Watanabe, S. Ikemoto, S. Muratsugu, M. Tada, M. Yamashita, Angew. Chem. Int. Ed. 2019, 58, 15031–15035;.
K. Sugita, M. Yamashita, Chem. Eur. J. 2020, 26, 4520–4523;.
I. Fujii, K. Semba, Q.-Z. Li, S. Sakaki, Y. Nakao, J. Am. Chem. Soc. 2020, 142, 11647;.
R. Seki, N. Hara, T. Saito, Y. Nakao, J. Am. Chem. Soc. 2021, 143, 6388–6394;.
H. Y. Liu, R. J. Schwamm, M. S. Hill, M. F. Mahon, C. F. McMullin, N. A. Rajabi, Angew. Chem. Int. Ed. 2021, 60, 14390–14393;.
C. McManus, J. Hicks, X. Cui, L. Zhao, G. Frenking, J. M. Goicoechea, S. Aldridge, Chem. Sci. 2021, 12, 13458–13468;.
B. J. Graziano, M. V. Vollmer, C. C. Lu, Angew. Chem. Int. Ed. 2021, 60, 15087–15094;.
M. M. D. Roy, J. Hicks, P. Vasko, A. Heilmann, A.-M. Baston, J. M. Goicoechea, S. Aldridge, Angew. Chem. Int. Ed. 2021, 60, 22301–22306;.
M. J. Evans, G. H. Iliffe, S. E. Neale, C. L. McMullin, J. R. Fulton, M. D. Anker, M. P. Coles, Chem. Commun. 2022, 58, 10091–10094;.
C. McManus, A. E. Crumpton, S. Aldridge, Chem. Commun. 2022, 58, 8274–8277.
Transition metal-aluminium bimetallics featuring a L-type group 13 ligand have a longer historical precedent. For a review of early work in this area see: R. A. Fischer, J. Weiß, Angew. Chem. Int. Ed. 1999, 38, 2830–2850.
For a review of transition metal-aluminium bimetallics featuring a Z-type group 13 ligand see: R. C. Cammarota, L. J. Clouston, C. C. Lu, Coord. Chem. Rev. 2017, 334, 100–111.
See for example, M. Assay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354–396.
Ga:.
E. S. Schmidt, A. Jockisch, H. Schmidbaur, J. Am. Chem. Soc. 1999, 121, 9758–9759. See also.
R. J. Baker, R. D. Farley, C. Jones, M. Kloth, D. M. Murphy, J. Chem. Soc. Dalton Trans. 2002, 3844–3850;.
I. L. Fedushkin, A. N. Lukoyanov, G. K. Fukin, S. Y. Ketkov, M. Hummert, H. Schumann, Chem. Eur. J. 2008, 14, 8465–8468.
B:.
Y. Segawa, M. Yamashita, K. Nozaki, Science 2006, 314, 113–115. See also.
Y. Segawa, Y. Suzuki, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2008, 130, 16069–16079;.
W. Lu, H. Hu, Y. Li, R. Ganguly, R. Kinjo, J. Am. Chem. Soc. 2016, 138, 6650–6661;.
A.-F. Pécharman, A. L. Colebatch, M. S. Hill, C. L. McMullin, M. F. Mahon, C. Weetman, Nat. Commun. 2017, 8, 15022;.
L. Weber, Eur. J. Inorg. Chem. 2017, 3461–3488.
 .
I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890–931;.
I. F. Yu, J. W. Wilson, J. F. Hartwig, Chem. Rev. 2023, 123, 11619–11663.
Tl: A. V. Protchenko, D. Dange, J. R. Harmer, C. Y. Tang, A. D. Schwarz, M. J. Kelly, N. Phillips, R. Tirfoin, K. H. Birjkumar, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, Nat. Chem. 2014, 6, 315–319.
In: R. J. Schwamm, M. D. Anker, M. Lein, M. P. Coles, C. M. Fitchett, Angew. Chem. Int. Ed. 2018, 57, 5885–5887.
Al:.
J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, Nature 2018, 557, 92–95. See also:.
R. J. Schwamm, M. D. Anker, M. Lein, M. P. Coles, Angew. Chem. Int. Ed. 2019, 58, 1489–1493;.
J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, J. Am. Chem. Soc. 2019, 141, 11000–11003;.
S. Kurumada, S. Takamori, M. Yamashita, Nat. Chem. 2020, 12, 36–39;.
R. J. Schwamm, M. P. Coles, M. S. Hill, M. F. Mahon, C. L. McMullin, N. A. Rajabi, A. S. S. Wilson, Angew. Chem. Int. Ed. 2020, 59, 3928–3932;.
K. Koshino, R. Kinjo, J. Am. Chem. Soc. 2020, 142, 9057–9062;.
S. Grams, J. Eyselein, J. Langer, C. Färber, S. Harder, Angew. Chem. Int. Ed. 2020, 59, 15982–15986;.
S. Grams, J. Mai, J. Langer, S. Harder, Organometallics 2022, 41, 2862–2867;.
G. Feng, K. L. Chan, Z. Lin, M. Yamashita, J. Am. Chem. Soc. 2022, 144, 22662–22668;.
C. Yan, R. Kinjo, Angew. Chem. Int. Ed. 2022, 61, e202211800;.
R. A. Jackson, A. J. R. Matthews, P. Vasko, M. F. Mahon, J. Hicks, D. Liptrot, Chem. Commun. 2023, 59, 5277–5280;.
D. Sarkar, P. Vasko, A. F. Roper, M. M. D. Roy, A. E. Crumpton, L. P. Griffin, C. Bogle, S. Aldridge, J. Am. Chem. Soc. 2024, ASAP (DOI: 10.1021/jacs.4c00376).
For recent reviews of aluminyl and related chemistry, see for example:.
K. Hobson, C. J. Carmalt, C. Bakewell, Chem. Sci. 2020, 11, 6942–6956;.
J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, Angew. Chem. Int. Ed. 2021, 60, 1702–1711;.
M. P. Coles, M. J. Evans, Chem. Commun. 2023, 59, 503–519.
 .
G. J. Irvine, M. J. G. Lesley, T. B. Norman, N. C. Norman, C. R. Rice, E. G. Robins, W. R. Roper, G. R. Whittell, L. J. Wright, Chem. Rev. 1998, 98, 2685–2722;.
H. Braunschweig, R. D. Dewhurst, A. Schneider, Chem. Rev. 2010, 110, 3924–3957.
For a review of the coordination chemistry of gallyl systems, see for example: R. J. Baker, C. Jones, Coord. Chem. Rev. 2005, 249, 1857–1869.
E. O. Fischer, H. P. Hofmann, Angew. Chem. 1957, 69, 639–640.
For an example of an In/Ag donor/acceptor interaction see: M. Lichtenthaler, F. Stahl, D. Kratzert, L. Heidinger, E. Schleicher, J. Hamann, D. Himmel, S. Weber, I. Krossing, Nat. Commun. 2015, 6, 8288.
A. V. Protchenko, D. Dange, A. D. Schwarz, C. Y. Tang, N. Phillips, P. Mountford, C. Jones, S. Aldridge, Chem. Commun. 2014, 50, 3841–3844.
L. P. Griffin, M. Ellwanger, J. Clarke, A. F. Roper, A. Heilmann, S. Aldridge, Angew. Chem. Int. Ed. 2024, 63, 3202405053.
B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 2832–2838.
R. Bianchi, G. Gervasio, D. Marabello, Inorg. Chem. 2000, 39, 2360–2366.
Deposition numbers 2334028–2334034 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
C. A. Cruz, D. J. H. Emslie, L. E. Harrington, J. F. Britten, C. M. Robertson, Organometallics 2007, 26, 692–701.
R. G. Goel, A. L. Beauchamp, Inorg. Chem. 1983, 22, 395–400.
J. Cosier, A. M. Glazer, J. Appl. Crystallogr. 1986, 19, 105–107.
CrysAlisPro v.1.171.42.70a, Agilent Technologies, 2011.
G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3–8.
G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3–8.
O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT 2016.
E. van Lenthe, J. G. Snijders, E. J. Baerends, J. Chem. Phys. 1996, 105, 6505–6516.
J. D. Rolfes, F. Neese, D. A. Pantazis, J. Comput. Chem. 2020, 41, 1842–1849.
D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 2009, 5, 2229–2238.
D. A. Pantazis, X. Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 2008, 4, 908–911.
D. A. Pantazis, F. Neese, Theor. Chem. Acc. 2012, 131, 1292.
D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 2011, 7, 677–684.
F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
NBO 7.0., E. D. Glendening, J, K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison 2018.
AIMAll (Version 19.10.12), T. A. Keith, TK Gristmill Software, Overland Park KS, USA 2019 (aim.tkgristmill.com).
T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
B. Silvi, A. Savin, Nature 1994, 371, 683–686.
E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605–1612.
R. Bianchi, G. Gervasio, D. Marabello, Inorg. Chem. 2000, 39, 2360–2366.
معلومات مُعتمدة: EP/S023828/1 Engineering and Physical Sciences Research Council; Leverhulme Trust; Alexander von Humboldt-Stiftung
فهرسة مساهمة: Keywords: aluminyl; gallyl; group 13 elements; indyl; low valent compounds; mercury
تواريخ الأحداث: Date Created: 20240328 Latest Revision: 20240524
رمز التحديث: 20240524
DOI: 10.1002/anie.202404527
PMID: 38545953
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3773
DOI:10.1002/anie.202404527