دورية أكاديمية

Differences between cultured astrocytes from neonatal and adult Wistar rats: focus on in vitro aging experimental models.

التفاصيل البيبلوغرافية
العنوان: Differences between cultured astrocytes from neonatal and adult Wistar rats: focus on in vitro aging experimental models.
المؤلفون: Weber FB; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil., Santos CL; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil., da Silva A; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil., Schmitz I; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil., Rezena E; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil., Gonçalves CA; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.; Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil., Quincozes-Santos A; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.; Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil., Bobermin LD; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. larissabobermin@gmail.com.; Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil. larissabobermin@gmail.com.
المصدر: In vitro cellular & developmental biology. Animal [In Vitro Cell Dev Biol Anim] 2024 Apr; Vol. 60 (4), pp. 420-431. Date of Electronic Publication: 2024 Mar 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9418515 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1543-706X (Electronic) Linking ISSN: 10712690 NLM ISO Abbreviation: In Vitro Cell Dev Biol Anim Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Springer
Original Publication: Columbia, MD : Tissue Culture Association, c1993-
مواضيع طبية MeSH: Astrocytes*/metabolism , Animals, Newborn* , Rats, Wistar*, Animals ; Cells, Cultured ; Aging ; Reactive Oxygen Species/metabolism ; Rats ; Oxidative Stress ; Antioxidants/metabolism ; Glutamic Acid/metabolism ; Cellular Senescence ; Glucose/metabolism ; Glutamate-Ammonia Ligase/metabolism ; NF-kappa B/metabolism
مستخلص: Astrocytes play key roles regulating brain homeostasis and accumulating evidence has suggested that glia are the first cells that undergo functional changes with aging, which can lead to a decline in brain function. In this context, in vitro models are relevant tools for studying aged astrocytes and, here, we investigated functional and molecular changes in cultured astrocytes obtained from neonatal or adult animals submitted to an in vitro model of aging by an additional period of cultivation of cells after confluence. In vitro aging induced different metabolic effects regarding glucose and glutamate uptake, as well as glutamine synthetase activity, in astrocytes obtained from adult animals compared to those obtained from neonatal animals. In vitro aging also modulated glutathione-related antioxidant defenses and increased reactive oxygen species and cytokine release especially in astrocytes from adult animals. Interestingly, in vitro aged astrocytes from adult animals exposed to pro-oxidant, inflammatory, and antioxidant stimuli showed enhanced oxidative and inflammatory responses. Moreover, these functional changes were correlated with the expression of the senescence marker p21, cytoskeleton markers, glutamate transporters, inflammatory mediators, and signaling pathways such as nuclear factor κB (NFκB)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1). Alterations in these genes are remarkably associated with a potential neurotoxic astrocyte phenotype. Therefore, considering the experimental limitations due to the need for long-term maintenance of the animals for studying aging, astrocyte cultures obtained from adult animals further aged in vitro can provide an improved experimental model for understanding the mechanisms associated with aging-related astrocyte dysfunction.
(© 2024. The Society for In Vitro Biology.)
References: Bellaver B, Souza DG, Bobermin LD et al (2015) Resveratrol protects hippocampal astrocytes against LPS-induced neurotoxicity through HO-1, p38 and ERK pathways. Neurochem Res 40:1600–1608. https://doi.org/10.1007/s11064-015-1636-8. (PMID: 10.1007/s11064-015-1636-826088684)
Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2017) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol 54:2969–2985. https://doi.org/10.1007/s12035-016-9880-8. (PMID: 10.1007/s12035-016-9880-827026184)
Bobermin LD, de Souza Almeida RR, Weber FB et al (2022) Lipopolysaccharide induces gliotoxicity in hippocampal astrocytes from aged rats: insights about the glioprotective roles of resveratrol. Mol Neurobiol. https://doi.org/10.1007/s12035-021-02664-8. (PMID: 10.1007/s12035-021-02664-834993844)
Bobermin LD, Roppa RHA, Gonçalves C-A, Quincozes-Santos A (2020) Ammonia-induced glial-inflammaging. Mol Neurobiol 57:3552–3567. https://doi.org/10.1007/s12035-020-01985-4. (PMID: 10.1007/s12035-020-01985-432542591)
Bobermin LD, Roppa RHA, Quincozes-Santos A (2019) Adenosine receptors as a new target for resveratrol-mediated glioprotection. Biochim Biophys Acta Mol Basis Dis 1865:634–647. https://doi.org/10.1016/j.bbadis.2019.01.004. (PMID: 10.1016/j.bbadis.2019.01.00430611861)
Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. In: Free radical and antioxidant protocols. Humana Press, New Jersey, pp 347–352.  https://doi.org/10.1385/0-89603-472-0:347.
Cao P, Zhang J, Huang Y et al (2019) The age-related changes and differences in energy metabolism and glutamate-glutamine recycling in the d-gal-induced and naturally occurring senescent astrocytes in vitro. Exp Gerontol 118:9–18. https://doi.org/10.1016/j.exger.2018.12.018. (PMID: 10.1016/j.exger.2018.12.01830610899)
Chen Z, Yuan Z, Yang S et al (2023) Brain Energy metabolism: astrocytes in neurodegenerative diseases. CNS Neurosci Ther 29:24–36. https://doi.org/10.1111/cns.13982. (PMID: 10.1111/cns.1398236193573)
Cheung G, Bataveljic D, Visser J et al (2022) Physiological synaptic activity and recognition memory require astroglial glutamine. Nat Commun 13:753. https://doi.org/10.1038/s41467-022-28331-7. (PMID: 10.1038/s41467-022-28331-7351360618826940)
Clarke LE, Liddelow SA, Chakraborty C et al (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA 115:E1896–E1905. https://doi.org/10.1073/pnas.1800165115. (PMID: 10.1073/pnas.1800165115294379575828643)
Cunnane SC, Trushina E, Morland C et al (2020) Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 19:609–633. https://doi.org/10.1038/s41573-020-0072-x. (PMID: 10.1038/s41573-020-0072-x327099617948516)
Currais A, Maher P (2013) Functional consequences of age-dependent changes in glutathione status in the brain. Antioxid Redox Signal 19:813–822. https://doi.org/10.1089/ars.2012.4996. (PMID: 10.1089/ars.2012.499623249101)
Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105. https://doi.org/10.1016/S0301-0082(00)00067-8. (PMID: 10.1016/S0301-0082(00)00067-811369436)
dos Santos AQ, Nardin P, Funchal C et al (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167. https://doi.org/10.1016/j.abb.2006.06.025. (PMID: 10.1016/j.abb.2006.06.02516904623)
Escartin C, Galea E, Lakatos A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24:312–325. https://doi.org/10.1038/s41593-020-00783-4. (PMID: 10.1038/s41593-020-00783-4335898358007081)
Franceschi C, Garagnani P, Parini P et al (2018) Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590. https://doi.org/10.1038/s41574-018-0059-4. (PMID: 10.1038/s41574-018-0059-430046148)
Frieg B, Görg B, Gohlke H, Häussinger D (2021) Glutamine synthetase as a central element in hepatic glutamine and ammonia metabolism: novel aspects. Biol Chem 402:1063–1072. https://doi.org/10.1515/hsz-2021-0166. (PMID: 10.1515/hsz-2021-016633962502)
Gonçalves C-A, Rodrigues L, Bobermin LD et al (2018) Glycolysis-derived compounds from astrocytes that modulate synaptic communication. Front Neurosci 12:1035. https://doi.org/10.3389/fnins.2018.01035. (PMID: 10.3389/fnins.2018.0103530728759)
Gottfried C, Tramontina F, Gonçalves D et al (2002) Glutamate uptake in cultured astrocytes depends on age: a study about the effect of guanosine and the sensitivity to oxidative stress induced by H2O2. Mech Ageing Dev 123:1333–1340. https://doi.org/10.1016/S0047-6374(02)00069-6. (PMID: 10.1016/S0047-6374(02)00069-612297336)
Guerrero A, De Strooper B, Arancibia-Cárcamo IL (2021) Cellular senescence at the crossroads of inflammation and Alzheimer’s disease. Trends Neurosci 44:714–727. https://doi.org/10.1016/j.tins.2021.06.007. (PMID: 10.1016/j.tins.2021.06.00734366147)
Guillet B, Velly L, Canolle B et al (2005) Differential regulation by protein kinases of activity and cell surface expression of glutamate transporters in neuron-enriched cultures. Neurochem Int 46:337–346. https://doi.org/10.1016/j.neuint.2004.10.006. (PMID: 10.1016/j.neuint.2004.10.00615707698)
Jayakumar AR, Norenberg MD (2016) Glutamine synthetase: role in neurological disorders. Adv Neurobiol 13:327–350. https://doi.org/10.1007/978-3-319-45096-4_13. (PMID: 10.1007/978-3-319-45096-4_1327885636)
Kleinkauf-Rocha J, Bobermin LD, de Mattos Machado P et al (2013) Lipoic acid increases glutamate uptake, glutamine synthetase activity and glutathione content in C6 astrocyte cell line. Int J Dev Neurosci 31:165–170. https://doi.org/10.1016/j.ijdevneu.2012.12.006. (PMID: 10.1016/j.ijdevneu.2012.12.00623286972)
Lau V, Ramer L, Tremblay M-È (2023) An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer’s disease. Nat Commun 14:1670. https://doi.org/10.1038/s41467-023-37304-3. (PMID: 10.1038/s41467-023-37304-33696615710039917)
Lawrence JM, Schardien K, Wigdahl B, Nonnemacher MR (2023) Roles of neuropathology-associated reactive astrocytes: a systematic review. Acta Neuropathol Commun 11:42. https://doi.org/10.1186/s40478-023-01526-9. (PMID: 10.1186/s40478-023-01526-93691521410009953)
Lee M, Cho T, Jantaratnotai N et al (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24:2533–2545. https://doi.org/10.1096/fj.09-149997. (PMID: 10.1096/fj.09-14999720228251)
Leite Santos C, Vizuete AFK, Weber FB et al (2023) Age-dependent effects of resveratrol in hypothalamic astrocyte cultures. NeuroReport 34:419–425. https://doi.org/10.1097/WNR.0000000000001906. (PMID: 10.1097/WNR.000000000000190637096764)
Letiembre M, Hao W, Liu Y et al (2007) Innate immune receptor expression in normal brain aging. Neuroscience 146:248–254. https://doi.org/10.1016/j.neuroscience.2007.01.004. (PMID: 10.1016/j.neuroscience.2007.01.00417293054)
Limbad C, Oron TR, Alimirah F et al (2020) Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS ONE 15:e0227887. https://doi.org/10.1371/journal.pone.0227887. (PMID: 10.1371/journal.pone.0227887319451256964973)
Liu X-L, Zhao Y-C, Zhu H-Y et al (2021) Taxifolin retards the D -galactose-induced aging process through inhibiting Nrf2-mediated oxidative stress and regulating the gut microbiota in mice. Food Funct 12:12142–12158. https://doi.org/10.1039/D1FO01349A. (PMID: 10.1039/D1FO01349A34788354)
Liu Y, Shen X, Zhang Y et al (2023) Interactions of glial cells with neuronal synapses, from astrocytes to microglia and oligodendrocyte lineage cells. Glia 71:1383–1401. https://doi.org/10.1002/glia.24343. (PMID: 10.1002/glia.2434336799296)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.126211846609)
López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039. (PMID: 10.1016/j.cell.2013.05.039237468383836174)
López-Teros M, Alarcón-Aguilar A, López-Diazguerrero NE et al (2022) Contribution of senescent and reactive astrocytes on central nervous system inflammaging. Biogerontology 23:21–33. https://doi.org/10.1007/s10522-022-09952-3. (PMID: 10.1007/s10522-022-09952-335084630)
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. (PMID: 10.1016/S0021-9258(19)52451-614907713)
Matias I, Diniz LP, Araujo APB et al (2023) Age-associated upregulation of glutamate transporters and glutamine synthetase in senescent astrocytes in vitro and in the mouse and human hippocampus. ASN Neuro 15:175909142311579. https://doi.org/10.1177/17590914231157974. (PMID: 10.1177/17590914231157974)
Matias I, Diniz LP, Damico IV, et al (2022) Loss of lamin‐B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell 21. https://doi.org/10.1111/acel.13521.
Matias I, Morgado J, Gomes FCA (2019) Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Front Aging Neurosci 11:59. https://doi.org/10.3389/fnagi.2019.00059. (PMID: 10.3389/fnagi.2019.00059309410316433753)
Mattson MP, Arumugam TV (2018) Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab 27:1176–1199. https://doi.org/10.1016/j.cmet.2018.05.011. (PMID: 10.1016/j.cmet.2018.05.011298745666039826)
Orre M, Kamphuis W, Osborn LM et al (2014) Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol Aging 35:1–14. https://doi.org/10.1016/j.neurobiolaging.2013.07.008. (PMID: 10.1016/j.neurobiolaging.2013.07.00823954174)
Palmer AL, Ousman SS (2018) Astrocytes and aging. Front Aging Neurosci 10:337. https://doi.org/10.3389/fnagi.2018.00337. (PMID: 10.3389/fnagi.2018.00337304164416212515)
Peng M, Ling X, Song R et al (2019) Upregulation of GLT-1 via PI3K/Akt Pathway Contributes to Neuroprotection Induced by Dexmedetomidine. Front Neurol 10:1041. https://doi.org/10.3389/fneur.2019.01041. (PMID: 10.3389/fneur.2019.01041316118426776610)
Pertusa M, García-Matas S, Rodríguez-Farré E et al (2007) Astrocytes aged in vitro show a decreased neuroprotective capacity: reduced neuroprotection by aged astrocytes. J Neurochem 101:794–805. https://doi.org/10.1111/j.1471-4159.2006.04369.x. (PMID: 10.1111/j.1471-4159.2006.04369.x17250685)
Piao C, Ranaivo HR, Rusie A et al (2015) Thrombin decreases expression of the glutamate transporter GLAST and inhibits glutamate uptake in primary cortical astrocytes via the Rho kinase pathway. Exp Neurol 273:288–300. https://doi.org/10.1016/j.expneurol.2015.09.009. (PMID: 10.1016/j.expneurol.2015.09.00926391563)
Potier B, Billard J-M, Rivière S et al (2010) Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats: synaptic effects of reduced glutamate uptake in the aged rat hippocampus. Aging Cell 9:722–735. https://doi.org/10.1111/j.1474-9726.2010.00593.x. (PMID: 10.1111/j.1474-9726.2010.00593.x20569241)
Quincozes‐Santos A, Bobermin LD, Costa NLF, et al (2023) The role of glial cells in Zika virus‐induced neurodegeneration. Glia. https://doi.org/10.1002/glia.24353 . glia.24353.
Quincozes-Santos A, Bobermin LD, de Souza DG et al (2013) Gliopreventive effects of guanosine against glucose deprivation in vitro. Purinergic Signalling 9:643–654. https://doi.org/10.1007/s11302-013-9377-0. (PMID: 10.1007/s11302-013-9377-0238468423889382)
Quincozes-Santos A, Bobermin LD, Souza DG et al (2014) Guanosine protects C6 astroglial cells against azide-induced oxidative damage: a putative role of heme oxygenase 1. J Neurochem 130:61–74. https://doi.org/10.1111/jnc.12694. (PMID: 10.1111/jnc.1269424673378)
Quincozes-Santos A, Santos CL, de Souza Almeida RR et al (2021) Gliotoxicity and Glioprotection: the Dual Role of Glial Cells. Mol Neurobiol 58:6577–6592. https://doi.org/10.1007/s12035-021-02574-9. (PMID: 10.1007/s12035-021-02574-9345819888477366)
Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783. https://doi.org/10.1126/science.aag2590. (PMID: 10.1126/science.aag259027540165)
Rizor A, Pajarillo E, Johnson J et al (2019) Astrocytic Oxidative/Nitrosative Stress Contributes to Parkinson’s Disease Pathogenesis: The Dual Role of Reactive Astrocytes. Antioxidants 8:265. https://doi.org/10.3390/antiox8080265. (PMID: 10.3390/antiox8080265313749366719180)
Robinson MB (2006) Acute regulation of sodium-dependent glutamate transporters: a focus on constitutive and regulated trafficking. In: Sitte HH, Freissmuth M (eds) Neurotransmitter transporters. Springer-Verlag, Berlin/Heidelberg, pp 251–275. (PMID: 10.1007/3-540-29784-7_13)
Rodríguez JJ, Yeh C-Y, Terzieva S et al (2014) Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol Aging 35:15–23. https://doi.org/10.1016/j.neurobiolaging.2013.07.002. (PMID: 10.1016/j.neurobiolaging.2013.07.00223969179)
Rodríguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A (2016) Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 323:170–182. https://doi.org/10.1016/j.neuroscience.2015.01.007. (PMID: 10.1016/j.neuroscience.2015.01.00725595973)
Rosa PM, Martins LAM, Souza DO, Quincozes-Santos A (2018) Glioprotective Effect of Resveratrol: an Emerging Therapeutic Role for Oligodendroglial Cells. Mol Neurobiol 55:2967–2978. https://doi.org/10.1007/s12035-017-0510-x. (PMID: 10.1007/s12035-017-0510-x28456938)
Salas IH, Burgado J, Allen NJ (2020) Glia: victims or villains of the aging brain? Neurobiol Dis 143:105008. https://doi.org/10.1016/j.nbd.2020.105008. (PMID: 10.1016/j.nbd.2020.10500832622920)
Santos CL, Roppa PHA, Truccolo P et al (2018) Age-dependent neurochemical remodeling of hypothalamic astrocytes. Mol Neurobiol 55:5565–5579. https://doi.org/10.1007/s12035-017-0786-x. (PMID: 10.1007/s12035-017-0786-x28980158)
Seelig GF, Meister A (1985) Glutathione biosynthesis; gamma-glutamylcysteine synthetase from rat kidney. Methods Enzymol 113:379–390. https://doi.org/10.1016/s0076-6879(85)13050-8. (PMID: 10.1016/s0076-6879(85)13050-82868388)
Shen Y, Gao H, Shi X et al (2014) Glutamine synthetase plays a role in d-galactose-induced astrocyte aging in vitro and in vivo. Exp Gerontol 58:166–173. https://doi.org/10.1016/j.exger.2014.08.006. (PMID: 10.1016/j.exger.2014.08.00625128847)
Soreq L, Rose J, Soreq E et al (2017) Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep 18:557–570. https://doi.org/10.1016/j.celrep.2016.12.011. (PMID: 10.1016/j.celrep.2016.12.011280767975263238)
Souza DG, Bellaver B, Raupp GS et al (2015) Astrocytes from adult Wistar rats aged in vitro show changes in glial functions. Neurochem Int 90:93–97. https://doi.org/10.1016/j.neuint.2015.07.016. (PMID: 10.1016/j.neuint.2015.07.01626210720)
Souza DG, Bellaver B, Souza DO, Quincozes-Santos A (2013) Characterization of adult rat astrocyte cultures. PLoS ONE 8:e60282. https://doi.org/10.1371/journal.pone.0060282. (PMID: 10.1371/journal.pone.0060282235559433610681)
Sovrani V, Bobermin LD, Santos CL et al (2023) Effects of long-term resveratrol treatment in hypothalamic astrocyte cultures from aged rats. Mol Cell Biochem 478:1205–1216. https://doi.org/10.1007/s11010-022-04585-z. (PMID: 10.1007/s11010-022-04585-z36272012)
Sparkman NL, Johnson RW (2008) neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. NeuroImmunoModulation 15:323–330. https://doi.org/10.1159/000156474. (PMID: 10.1159/00015647419047808)
Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19:328–334. https://doi.org/10.1016/S0165-6147(98)01230-9. (PMID: 10.1016/S0165-6147(98)01230-99745361)
Valenza M, Facchinetti R, Steardo L, Scuderi C (2020) Altered waste disposal system in aging and alzheimer’s disease: focus on astrocytic Aquaporin-4. Front Pharmacol 10:1656. https://doi.org/10.3389/fphar.2019.01656. (PMID: 10.3389/fphar.2019.01656320638587000422)
Vaziri ND, Rodríguez-Iturbe B (2006) Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat Rev Nephrol 2:582–593. https://doi.org/10.1038/ncpneph0283. (PMID: 10.1038/ncpneph0283)
Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016. (PMID: 10.1152/physrev.00042.201629351512)
Yanai S, Endo S (2021) Functional aging in male C57BL/6J mice across the life-span: a systematic behavioral analysis of motor, emotional, and memory function to define an aging phenotype. Front Aging Neurosci 13:697621. https://doi.org/10.3389/fnagi.2021.697621. (PMID: 10.3389/fnagi.2021.697621344086448365336)
Zhang L-Y, Hu Y-Y, Zhao C-C et al (2019) The mechanism of GLT-1 mediating cerebral ischemic injury depends on the activation of p38 MAPK. Brain Res Bull 147:1–13. https://doi.org/10.1016/j.brainresbull.2019.01.028. (PMID: 10.1016/j.brainresbull.2019.01.02830731111)
Zhang S, Lachance BB, Mattson MP, Jia X (2021) Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 204:102089. https://doi.org/10.1016/j.pneurobio.2021.102089. (PMID: 10.1016/j.pneurobio.2021.102089341183548380002)
Zhao Y, Liu X, Zheng Y et al (2021) Aronia melanocarpa polysaccharide ameliorates inflammation and aging in mice by modulating the AMPK/SIRT1/NF-κB signaling pathway and gut microbiota. Sci Rep 11:20558. https://doi.org/10.1038/s41598-021-00071-6. (PMID: 10.1038/s41598-021-00071-6346638448523697)
فهرسة مساهمة: Keywords: Aging; Glutamate homeostasis; In vitro astrocytes; Inflammatory response; Oxidative stress
المشرفين على المادة: 0 (Reactive Oxygen Species)
0 (Antioxidants)
3KX376GY7L (Glutamic Acid)
IY9XDZ35W2 (Glucose)
EC 6.3.1.2 (Glutamate-Ammonia Ligase)
0 (NF-kappa B)
تواريخ الأحداث: Date Created: 20240328 Date Completed: 20240506 Latest Revision: 20240506
رمز التحديث: 20240506
DOI: 10.1007/s11626-024-00896-1
PMID: 38546817
قاعدة البيانات: MEDLINE
الوصف
تدمد:1543-706X
DOI:10.1007/s11626-024-00896-1