دورية أكاديمية

The effect of repeated hurricanes on the age of organic carbon in humid tropical forest soil.

التفاصيل البيبلوغرافية
العنوان: The effect of repeated hurricanes on the age of organic carbon in humid tropical forest soil.
المؤلفون: Mayer AC; Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA.; Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California, USA.; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA., McFarlane KJ; Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California, USA., Silver WL; Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA.
المصدر: Global change biology [Glob Chang Biol] 2024 Apr; Vol. 30 (4), pp. e17265.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
مواضيع طبية MeSH: Soil* , Cyclonic Storms*, Carbon ; Forests ; Minerals
مستخلص: Increasing hurricane frequency and intensity with climate change is likely to affect soil organic carbon (C) stocks in tropical forests. We examined the cycling of C between soil pools and with depth at the Luquillo Experimental Forest in Puerto Rico in soils over a 30-year period that spanned repeated hurricanes. We used a nonlinear matrix model of soil C pools and fluxes ("soilR") and constrained the parameters with soil and litter survey data. Soil chemistry and stable and radiocarbon isotopes were measured from three soil depths across a topographic gradient in 1988 and 2018. Our results suggest that pulses and subsequent reduction of inputs caused by severe hurricanes in 1989, 1998, and two in 2017 led to faster mean transit times of soil C in 0-10 cm and 35-60 cm depths relative to a modeled control soil with constant inputs over the 30-year period. Between 1988 and 2018, the occluded C stock increased and δ 13 C in all pools decreased, while changes in particulate and mineral-associated C were undetectable. The differences between 1988 and 2018 suggest that hurricane disturbance results in a dilution of the occluded light C pool with an influx of young, debris-deposited C, and possible microbial scavenging of old and young C in the particulate and mineral-associated pools. These effects led to a younger total soil C pool with faster mean transit times. Our results suggest that the increasing frequency of intense hurricanes will speed up rates of C cycling in tropical forests, making soil C more sensitive to future tropical forest stressors.
(© 2024 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
References: Barcellos, D., O'Connell, C. S., Silver, W., Meile, C., & Thompson, A. (2018). Hot spots and hot moments of soil moisture explain fluctuations in iron and carbon cycling in a humid tropical forest soil. Soil Systems, 2(4), 59. https://doi.org/10.3390/soilsystems2040059.
Beard, K. H., Vogt, K. A., Vogt, D. J., Scatena, F. N., Covich, A. P., Sigurdardottir, R., Siccama, T. G., & Crowl, T. A. (2005). Structural and functional responses of a subtropical forest to 10 years of hurricanes and droughts. Ecological Monographs, 75(3), 345–361. https://doi.org/10.1890/04‐1114.
Broek, T. A. B., Ognibene, T. J., McFarlane, K. J., Moreland, K. C., Brown, T. A., & Bench, G. (2021). Conversion of the LLNL/CAMS 1 MV biomedical AMS system to a semi‐automated natural abundance 14C spectrometer: System optimization and performance evaluation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 499, 124–132. https://doi.org/10.1016/j.nimb.2021.01.022.
Cabugao, K. G., Yaffar, D., Stenson, N., Childs, J., Phillips, J., Mayes, M. A., Yang, X., Weston, D. J., & Norby, R. J. (2021). Bringing function to structure: Root–soil interactions shaping phosphatase activity throughout a soil profile in Puerto Rico. Ecology and Evolution, 11(3), 1150–1164. https://doi.org/10.1002/ece3.7036.
Fernandez, I., Mahieu, N., & Cadisch, G. (2003). Carbon isotopic fractionation during decomposition of plant materials of different quality. Global Biogeochemical Cycles, 17(3), 1075. https://doi.org/10.1029/2001GB001834.
Finstad, K., van Straaten, O., Veldkamp, E., & McFarlane, K. (2020). Soil carbon dynamics following land use changes and conversion to oil palm plantations in tropical lowlands inferred from radiocarbon. Global Biogeochemical Cycles, 34(9), e2019GB006461. https://doi.org/10.1029/2019GB006461.
González, G. (2015). Bisley tower (TOWER I) Meteorological Station ver 63295 [dataset]. Environmental Data Initiative https://doi.org/10.6073/pasta/ac2730ec2c56ffe08302a8c3cc50cd90.
González, G. (2017). Luquillo Mountains meteorological and ceilometer data. Forest Service Research Data Archive. https://doi.org/10.2737/RDS‐2017‐0023.
Gonzalez, G. (2023). Isley Tower I Meteorological data (Bisley Tower) ver 632957 [dataset]. Environmental Data Initiative. https://doi.org/10.6073/pasta/b082f2cab94810a14456482db686f128.
Guenet, B., Juarez, S., Bardoux, G., Abbadie, L., & Chenu, C. (2012). Evidence that stable C is as vulnerable to priming effect as is more labile C in soil. Soil Biology & Biochemistry, 52, 43–48. https://doi.org/10.1016/j.soilbio.2012.04.001.
Gutiérrez del Arroyo, O., & Silver, W. L. (2018). Disentangling the long‐term effects of disturbance on soil biogeochemistry in a wet tropical forest ecosystem. Global Change Biology, 24(4), 1673–1684. https://doi.org/10.1111/gcb.14027.
Hall, S. J., Berhe, A. A., & Thompson, A. (2018). Order from disorder: Do soil organic matter composition and turnover co‐vary with iron phase crystallinity? Biogeochemistry, 140(1), 93–110. https://doi.org/10.1007/s10533‐018‐0476‐4.
Hall, S. J., McNicol, G., Natake, T., & Silver, W. L. (2015). Large fluxes and rapid turnover of mineral‐associated carbon across topographic gradients in a humid tropical forest: Insights from paired 14C analysis. Biogeosciences, 12(8), 2471–2487. https://doi.org/10.5194/bg‐12‐2471‐2015.
Hall, S. J., & Silver, W. L. (2013). Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Global Change Biology, 19(9), 2804–2813. https://doi.org/10.1111/gcb.12229.
Heartsill‐Scalley, T., Scatena, F., Estrada, C., McDowell, W., & Lugo, A. (2007). Disturbance and long‐term patterns of rainfall and throughfall nutrient fluxes in a subtropical wet forest in Puerto Rico. Journal of Hydrology, 333, 472–485. https://doi.org/10.1016/j.jhydrol.2006.09.019.
Heartsill Scalley, T., Scatena, F. N., Lugo, A. E., Moya, S., & Estrada Ruiz, C. R. (2010). Changes in structure, composition, and nutrients during 15 Yr of hurricane‐induced succession in a subtropical wet forest in puerto rico. Biotropica, 42(4), 455–463. Portico. https://doi.org/10.1111/j.1744‐7429.2009.00609.x.
Hua, Q., Barbetti, M., & Rakowski, A. (2013). Atmospheric radiocarbon for the period 1950–2010. Radiocarbon, 55, 2059–2072. https://doi.org/10.2458/azu_js_rc.v55i2.16177.
Keeling, C. D. (1979). The Suess effect: 13Carbon‐14Carbon interrelations. Environment International, 2(4), 229–300. https://doi.org/10.1016/0160‐4120(79)90005‐9.
Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S. C., Sun, Y., Bollenbacher, A., & Meijer, H. A. J. (2017). Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 114(39), 10361–10366. https://doi.org/10.1073/pnas.1619240114.
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.‐H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2020). Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101(3), E303–E322. https://doi.org/10.1175/BAMS‐D‐18‐0194.1.
Kossin, J. P., Knapp, K. R., Olander, T. L., & Velden, C. S. (2020). Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of the National Academy of Sciences of the United States of America, 117(22), 11975–11980. https://doi.org/10.1073/pnas.1920849117.
Kuzyakov, Y., Friedel, J. K., & Stahr, K. (2000). Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry, 32(11–12), 1485–1498. https://doi.org/10.1016/S0038‐0717(00)00084‐5.
Liu, X., Zeng, X., Zou, X., Gonzalez, G., Wang, C., & Yang, S. (2018). Litterfall production prior to and during Hurricanes Irma and Maria in four Puerto Rican forests. Forests, 9(6), 367. https://doi.org/10.3390/f9060367.
Liu, X., Zeng, X., Zou, X., Lodge, D. J., Stankavich, S., González, G., & Cantrell, S. A. (2018). Responses of soil labile organic carbon to a simulated hurricane disturbance in a tropical wet forest. Forests, 9(7), 420. https://doi.org/10.3390/f9070420.
López‐Marrero, T., Heartsill‐Scalley, T., Rivera‐López, C. F., Escalera‐García, I. A., & Echevarría‐Ramos, M. (2019). Broadening our understanding of hurricanes and forests on the Caribbean Island of Puerto Rico: Where and what should we study now? Forests, 10(9), 710. https://doi.org/10.3390/f10090710.
Manzoni, S., Katul, G. G., & Porporato, A. (2009). Analysis of soil carbon transit times and age distributions using network theories. Journal of Geophysical Research: Biogeosciences, 114(G4). Portico. https://doi.org/10.1029/2009jg001070.
Marin‐Spiotta, E., Silver, W. L., Swanston, C. W., & Ostertag, R. (2009). Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Global Change Biology, 15(6), 1584–1597. https://doi.org/10.1111/j.1365‐2486.2008.01805.x.
McCormack, M. L., Dickie, I. A., Eissenstat, D. M., Fahey, T. J., Fernandez, C. W., Guo, D., Helmisaari, H.‐S., Hobbie, E. A., Iversen, C. M., Jackson, R. B., Leppälammi‐Kujansuu, J., Norby, R. J., Phillips, R. P., Pregitzer, K. S., Pritchard, S. G., Rewald, B., & Zadworny, M. (2015). Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes. New Phytologist, 207(3), 505–518. https://doi.org/10.1111/nph.13363.
McDowell, W. H., Scatena, F. N., Waide, R. B., Brokaw, N., Camilo, G. R., Covich, A. P., Crowl, T. A., Gonzalez, G., Greathouse, E. A., Klawinski, P., Lodge, D. J., Lugo, A. E., Pringle, C. M., Richardson, B. A., Richardson, M. J., Schaefer, D. A., Silver, W. L., Thompson, J., Vogt, D. J., … Zimmerman, J. K. (2012). Geographic and ecological setting of the Luquillo Mountains. In N. Brokaw, T. A. Crowl, A. E. Lugo, W. H. McDowell, F. N. Scatena, R. B. Waide, & M. R. Willig (Eds.), A Caribbean forest tapestry: The multidimensional nature of disturbance and response. Oxford University Press.
McFarlane, K. J., Torn, M. S., Hanson, P. J., Porras, R. C., Swanston, C. W., Callaham, M. A., & Guilderson, T. P. (2013). Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements. Biogeochemistry, 112(1), 457–476. https://doi.org/10.1007/s10533‐012‐9740‐1.
Miller, P. W., Kumar, A., Mote, T. L., Moraes, F. D. S., & Mishra, D. R. (2019). Persistent hydrological consequences of Hurricane Maria in Puerto Rico. Geophysical Research Letters, 46(3), 1413–1422. https://doi.org/10.1029/2018GL081591.
Murphy, S. F., Stallard, R. F., Scholl, M. A., González, G., & Torres‐Sánchez, A. J. (2017). Reassessing rainfall in the Luquillo Mountains, Puerto Rico: Local and global ecohydrological implications. PLoS ONE, 12(7), 1–26. https://doi.org/10.1371/journal.pone.0180987.
Nagy, R. C., Porder, S., Brando, P., Davidson, E. A., Figueira, A. M. E. S., Neill, C., Riskin, S., & Trumbore, S. (2018). Soil carbon dynamics in soybean cropland and forests in Mato Grosso, Brazil. Journal of Geophysical Research: Biogeosciences, 123(1), 18–31. https://doi.org/10.1002/2017JG004269.
Neurath, R. A., Pett‐Ridge, J., Chu‐Jacoby, I., Herman, D., Whitman, T., Nico, P. S., Lipton, A. S., Kyle, J., Tfaily, M. M., Thompson, A., & Firestone, M. K. (2021). Root carbon interaction with soil minerals is dynamic, leaving a legacy of microbially derived residues. Environmental Science & Technology, 55(19), 13345–13355. https://doi.org/10.1021/acs.est.1c00300.
Norby, R., Cabugao, K., Yaffar, D., Childs, J., Stenson, N., & Phillips, J. (2019). Root‐soil depth profile in Luquillo Experimental Forest, Puerto Rico, February, 2019 [dataset]. Next‐Generation Ecosystem Experiments Tropics; Oak Ridge National Laboratory https://doi.org/10.15486/NGT/1574087.
Ostertag, R., Scatena, F. N., & Silver, W. L. (2003). Forest floor decomposition following hurricane litter inputs in several Puerto Rican forests. Ecosystems, 6(3), 261–273. https://doi.org/10.1007/PL00021512.
Parton, W., Silver, W. L., Burke, I. C., Grassens, L., Harmon, M. E., Currie, W. S., King, J. Y., Adair, E. C., Brandt, L. A., Hart, S. C., & Fasth, B. (2007). Global‐scale similarities in nitrogen release patterns during long‐term decomposition. Science, 315(5810), 361–364.
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/.
Rabbi, S. M. F., Minasny, B., McBratney, A. B., & Young, I. M. (2020). Microbial processing of organic matter drives stability and pore geometry of soil aggregates. Geoderma, 360, 114033. https://doi.org/10.1016/j.geoderma.2019.114033.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A continuous satellite‐derived measure of global terrestrial primary production. Bioscience, 54(6), 547–560. https://doi.org/10.1641/0006‐3568(2004)054[0547:ACSMOG]2.0.CO;2.
Sayer, E. J., Baxendale, C., Birkett, A. J., Bréchet, L. M., Castro, B., Kerdraon‐Byrne, D., Lopez‐Sangil, L., & Rodtassana, C. (2021). Altered litter inputs modify carbon and nitrogen storage in soil organic matter in a lowland tropical forest. Biogeochemistry, 156(1), 115–130. https://doi.org/10.1007/s10533‐020‐00747‐7.
Sayer, E. J., Powers, J. S., & Tanner, E. V. J. (2007). Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoS ONE, 2(12), e1299. https://doi.org/10.1371/journal.pone.0001299.
Scatena, F., & Lugo, A. (1995). Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steepland watersheds of Puerto Rico. Geomorphology, 13, 199–213.
Scatena, F. N. (1989). An introduction to the physiography and history of the Bisley experimental watersheds in the Luquillo Mountains of Puerto Rico.
Scatena, F. N., & Larsen, M. C. (1991). Physical aspects of hurricane Hugo in Puerto Rico. Biotropica, 23(4), 317–323. https://doi.org/10.2307/2388247.
Scatena, F. N., Moya, S., Estrada, C., & Chinea, J. D. (1996). The first five years in the reorganization of aboveground biomass and nutrient use following hurricane Hugo in the Bisley experimental watersheds, Luquillo experimental Forest, Puerto Rico. Biotropica, 28(4), 424–440. https://doi.org/10.2307/2389086.
Scatena, F. N., Silver, W. L., Siccama, T., Johnson, A., & Sanchez, M. J. (1993). Biomass and nutrient content of the Bisley Experimental Watersheds, Luquillo Experimental Forest, Puerto Rico, before and after hurricane Hugo, 1989. Biotropica, 25(1), 15–27.
Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel‐Knabner, I., & Schulze, E. D. (2013). Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences, 10, 1675–1691. https://doi.org/10.5194/bg‐10‐1675‐2013.
Sierra, C., Hoyt, A., He, Y., & Trumbore, S. (2018). Soil organic matter persistence as a stochastic process: Age and transit time distributions of carbon in soils. Global Biogeochemical Cycles, 32, 1574–1588. https://doi.org/10.1029/2018GB005950.
Sierra, C. A., Müller, M., & Trumbore, S. E. (2012). Models of soil organic matter decomposition: The SOILR package, version 1.0. Geoscientific Model Development, 5(4), 1045–1060. https://doi.org/10.5194/gmd‐5‐1045‐2012.
Sierra, C. A., Müller, M., Metzler, H., Manzoni, S., & Trumbore, S. E. (2017). The muddle of ages, turnover, transit, and residence times in the carbon cycle. Global Change Biology, 23(5), 1763–1773. https://doi.org/10.1111/gcb.13556.
Sierra, C. A., Müller, M., & Trumbore, S. E. (2014). Modeling radiocarbon dynamics in soils: SoilR version 1.1. Geoscientific Model Development, 7(5), 1919–1931. https://doi.org/10.5194/gmd‐7‐1919‐2014.
Silver, W. L., Scatena, F. N., Johnson, A. H., Siccama, T. G., & Sanchez, M. J. (1994). Nutrient availability in a montane wet tropical forest: Spatial patterns and methodological considerations. Plant and Soil, 164(1), 129–145. https://doi.org/10.1007/BF00010118.
Silver, W. L., Scatena, F. N., Johnson, A. H., Siccama, T. G., & Watt, F. (1996). At what temporal scales does disturbance affect belowground nutrient pools? Biotropica, 28(4), 441–457. https://doi.org/10.2307/2389087.
Silver, W. L., & Vogt, K. A. (1993). Fine root dynamics following single and multiple disturbances in a subtropical wet forest ecosystem. Journal of Ecology, 81(4), 729–738.
Soetaert, K., & Petzoldt, T. (2010). Inverse modelling, sensitivity and Monte Carlo analysis in R using package FME. Journal of Statistical Software, 33(3), 1–28. https://doi.org/10.18637/jss.v033.i03.
Sollins, P., Kramer, M. G., Swanston, C., Lajtha, K., Filley, T., Aufdenkampe, A. K., Wagai, R., & Bowden, R. D. (2009). Sequential density fractionation across soils of contrasting mineralogy: Evidence for both microbial‐ and mineral‐controlled soil organic matter stabilization. Biogeochemistry, 96(1), 209–231. https://doi.org/10.1007/s10533‐009‐9359‐z.
Stanley, P., Spertus, J., Chiartas, J., Stark, P. B., & Bowles, T. (2023). Valid inferences about soil carbon in heterogeneous landscapes. Geoderma, 430, 116323. https://doi.org/10.1016/j.geoderma.2022.116323.
Stuiver, M., & Polach, H. A. (1977). Discussion: Reporting of 14C data. Radiocarbon, 19(3), 355–363.
Swanston, C. W., Torn, M. S., Hanson, P. J., Southon, J. R., Garten, C. T., Hanlon, E. M., & Ganio, L. (2005). Initial characterization of processes of soil carbon stabilization using forest stand‐level radiocarbon enrichment. Geoderma, 128(1–2), 52–62. https://doi.org/10.1016/j.geoderma.2004.12.015.
Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), SSSA Book Series (pp. 475–490). Soil Science Society of America, American Society of Agronomy. https://doi.org/10.2136/sssabookser5.3.c16.
Throop, H. L., Archer, S., Monger, H. C., & Waltman, S. (2012). When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils. Journal of Arid Environments, 77, 66–71. https://doi.org/10.1016/j.jaridenv.2011.08.020.
Trumbore, S. (2000). Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecological Applications, 10(2), 399–411. https://doi.org/10.1890/1051‐0761(2000)010[0399:AOSOMA]2.0.CO;2.
Trumbore, S. E. (1993). Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles, 7(2), 275–290. https://doi.org/10.1029/93GB00468.
Trumbore, S. E., Davidson, E. A., de Camargo, P., Nepstad, D. C., & Martinelli, L. A. (1995). Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochemical Cycles, 9(4), 515–528. https://doi.org/10.1029/95GB02148.
Vogel, J. S., Southon, J. R., Nelson, D. E., & Brown, T. A. (1984). Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B, 5(2), 289–293. https://doi.org/10.1016/0168‐583X(84)90529‐9.
Vogt, K. A., Vogt, D. J., Boon, P., Covich, A., Scatena, F. N., Asbjornsen, H., O'Harra, J. L., Perez, J., Siccama, T. G., Bloomfield, J., & Ranciato, J. F. (1996). Litter dynamics along stream, riparian and upslope areas following Hurricane Hugo, Luquillo Experimental Forest, Puerto Rico. Biotropica, 28(4), 458–470. https://doi.org/10.2307/2389088.
Weaver, P. L., & Murphy, P. G. (1990). Forest structure and productivity in Puerto Rico's Luquillo Mountains. Biotropica, 22(1), 69–82. https://doi.org/10.2307/2388721.
Wu, Z., Dijkstra, P., Koch, G. W., Penuelas, J., & Hungate, B. A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta‐analysis of experimental manipulation. Global Change Biology, 17(2), 927–942. https://doi.org/10.1111/j.1365‐2486.2010.02302.x.
Yaffar, D., & Norby, R. J. (2020). A historical and comparative review of 50 years of root data collection in Puerto Rico. Biotropica, 52(3), 563–576. https://doi.org/10.1111/btp.12771.
Yaffar, D., Wood, T. E., Reed, S. C., Branoff, B. L., Cavaleri, M. A., & Norby, R. J. (2021). Experimental warming and its legacy effects on root dynamics following two hurricane disturbances in a wet tropical forest. Global Change Biology, 27(24), 6423–6435. https://doi.org/10.1111/gcb.15870.
Zeikus, J. G. (1981). Lignin metabolism and the carbon cycle. In M. Alexander (Ed.), Advances in microbial ecology (pp. 211–243). Springer US. https://doi.org/10.1007/978‐1‐4615‐8306‐6_5.
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects modelling for nested data. Mixed effects models and extensions in ecology with R (pp. 101–142). Springer. https://doi.org/10.1007/978‐0‐387‐87458‐6_5.
معلومات مُعتمدة: SCW1572 Office of Science; CA-B-ECO-7673-MS National Institute of Food and Agriculture; EAR-1331841 National Science Foundation Division of Earth Sciences; EAR-2012878 National Science Foundation Division of Earth Sciences; Lawrence Graduate Research Scholarship, Lawrence Livermore National Laboratory; DEB-1546686 National Science Foundation Division of Environmental Biology; DEB-1831952 National Science Foundation Division of Environmental Biology
فهرسة مساهمة: Keywords: 14C; Hurricane Hugo; Hurricane Maria; Luquillo Experimental Forest; radiocarbon; soil carbon age; transit times
المشرفين على المادة: 0 (Soil)
7440-44-0 (Carbon)
0 (Minerals)
تواريخ الأحداث: Date Created: 20240330 Date Completed: 20240401 Latest Revision: 20240401
رمز التحديث: 20240401
DOI: 10.1111/gcb.17265
PMID: 38553935
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2486
DOI:10.1111/gcb.17265