دورية أكاديمية

Assessing the Chemical Profile and Biological Potentials of Tamarix aphylla (L.) H.Karst. and Tamarix senegalensis DC. by In Vitro, In Silico, and Network Methodologies.

التفاصيل البيبلوغرافية
العنوان: Assessing the Chemical Profile and Biological Potentials of Tamarix aphylla (L.) H.Karst. and Tamarix senegalensis DC. by In Vitro, In Silico, and Network Methodologies.
المؤلفون: Mahadi TM; Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan.; Department of Biochemistry, Medicinal and Aromatic Plants and Traditional Medicine and Research Institute, National Center for Research, Khartoum, Sudan., Yagi S; Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan. sakinayagi@gmail.com.; Université de Lorraine, INRAE, LAE, Nancy, F-54000, France. sakinayagi@gmail.com., Nilofar; Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey.; Department of Pharmacy, Botanic Garden 'Giardino dei Semplici', Università degli Studi 'Gabriele d'Annunzio', via dei Vestini 31, Chieti, 66100, Italy., Caprioli G; Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, Camerino, 62032, Italy., Piatti D; Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, Camerino, 62032, Italy., Ricciutelli M; Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, Camerino, 62032, Italy., Uba AI; Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey., Ponniya SKM; Department of Bioinformatics, Pondicherry University, Pudhucherry, India., Eltigani SM; Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan., Zengin G; Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey. gokhanzengin@selcuk.edu.tr.
المصدر: Applied biochemistry and biotechnology [Appl Biochem Biotechnol] 2024 Apr 01. Date of Electronic Publication: 2024 Apr 01.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 8208561 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0291 (Electronic) Linking ISSN: 02732289 NLM ISO Abbreviation: Appl Biochem Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Clifton, N.J. : Humana Press, c1981-
مستخلص: The present study aimed to investigate the chemical profile, antioxidant, and enzyme inhibition properties of extracts from fruits and aerial parts (leaves and twigs) of Tamarix aphylla and T. senegalensis. Hexane, dichloromethane, ethyl acetate (EtOAc), and methanol extracts were prepared sequentially by maceration. Results revealed that EtOAc extracts of T. senegalensis and T. aphylla fruits contained the highest total phenolic content (113.74 and 111.21 mg GAE/g) while that of T. senegalensis (38.47 mg RE/g) recorded the highest total flavonoids content. Among the quantified compounds; ellagic, gallic, 3-hydroxybenzoic, caffeic, syringic, p-coumaric acids, isorhamnetin, procyanidin B2, and kaempferol were the most abundant compounds in the two species. EtOAc extracts of the two organs of T. senegalensis in addition to MeOH extract of T. aphylla aerial parts displayed the highest chelating power (21.00-21.30 mg EDTAE/g, p > 0.05). The highest anti-AChE (3.11 mg GALAE/g) and anti-BChE (3.62 mg GALAE/g) activities were recorded from the hexane and EtOAc extracts of T. senegalensis aerial parts and fruits, respectively. EtOAc extracts of the fruits of the two species exerted the highest anti-tyrosinase (anti-Tyr) activity (99.44 and 98.65 mg KAE/g, p > 0.05). Also, the EtOAc extracts of the both organs of the two species exhibited highest anti-glucosidase activity (0.88-0.90 mmol ACAE/g, p > 0.05) while the best anti-α-amylase activity was recorded from the dichloromethane extract of T. senegalensis fruits (0.74 mmol ACAE/g). In this study, network pharmacology was employed to examine the connection between compounds from Tamarix and their potential effectiveness against Alzheimer's disease. The compounds demonstrated potential interactions with pivotal genes including APP, GSK3B, and CDK5, indicating a therapeutic potential. Molecular docking was carried out to understand the binding mode and interaction of the compounds with the target enzymes. Key interactions observed, such as H-bonds, promoted the binding, and weaker ones, such as van der Waals attractions, reinforced it. These findings suggest that these two Tamarix species possess bioactive properties with health-promoting effects.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Rahaman, M. M., Hossain, R., Herrera-Bravo, J., Islam, M. T., Atolani, O., Adeyemi, O. S., Owolodun, O. A., Kambizi, L., Daştan, S. D., & Calina, D. (2023). Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Science & Nutrition, 11(4), 1657–1670. (PMID: 10.1002/fsn3.3217)
Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22), 4132. (PMID: 31731614689169110.3390/molecules24224132)
Popović-Djordjević, J., Quispe, C., Giordo, R., Kostić, A., Stanković, J. S. K., Fokou, P. V. T., Carbone, K., Martorell, M., Kumar, M., & Pintus, G. (2022). Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. European Journal of Medicinal Chemistry, 233, 114217. (PMID: 3527642510.1016/j.ejmech.2022.114217)
Holdgate, G. A., Meek, T. D., & Grimley, R. L. (2018). Mechanistic enzymology in drug discovery: A fresh perspective. Nature Reviews Drug Discovery, 17(2), 115–132. (PMID: 2919228610.1038/nrd.2017.219)
Rauf, A., & Jehan, N. (2017). Natural products as a potential enzyme inhibitors from medicinal plants. Enzyme Inhibitors and Activators, 165, 177.
Grigalunas, M., Brakmann, S., & Waldmann, H. (2022). Chemical evolution of natural product structure. Journal of the American Chemical Society, 144(8), 3314–3329. (PMID: 35188375889540510.1021/jacs.1c11270)
Terrones, A., & Juan, A. (2023). First dated phylogenetic reconstruction of the genus Tamarix (Tamaricaceae): Biogeographical implications and hybridization processes in the Mediterranean Basin. Botanical Journal of the Linnean Society:boad025.
Hosni, H. (2000). Tamaricaceae in the flora of Egypt. Taeckholmia, 20(1), 17–31. (PMID: 10.21608/taec.2000.12474)
Bahramsoltani, R., Kalkhorani, M., Zaidi, S. M. A., Farzaei, M. H., & Rahimi, R. (2020). The genus Tamarix: Traditional uses, phytochemistry, and pharmacology. Journal of Ethnopharmacology, 246, 112245. (PMID: 3154247110.1016/j.jep.2019.112245)
Andrews, F. (1950). Flowering plants of the anglo-egyptian SudanVol I: 161. Tamarix Arabica Bunge. Tent Gen Tamar, 55, 1852.
Yagi, S., Rahman, A., Elhassan, G., & Mohammed, A. (2013). Elemental analysis of ten Sudanese medicinal plants using X-ray fluorescence. Journal of Applied and Industrial Sciences, 1(1), 49–53.
Alshehri, S. A., Wahab, S., Abullais, S. S., Das, G., Hani, U., Ahmad, W., Amir, M., Ahmad, A., Kandasamy, G., & Vasudevan, R. (2021). Pharmacological efficacy of Tamarix aphylla: A comprehensive review. Plants, 11(1), 118. (PMID: 35009121874723410.3390/plants11010118)
Aljubouri, S. A., & Alobaidi, K. H. (2023). Assessment of the antivirulence potential of tamarix aphylla ethanolic extract against multidrug-resistant streptococcus mutans isolated from Iraqi patients. The Scientific World Journal, 2023.
El Ghazali, G., El Tohami, M. S., & Egami, E. (1994). A,A. Medicinal plants of the Sudan. Part III. Medicinal Plants of the White Nile Province. National Center for Research, Khartoum, Sudan.
Abdelgawad, A. (2017). Tamarix Nilotica (Ehrenb) bunge: A review of phytochemistry and pharmacology. J Microb Biochem Technol, 9(1), 544–553.
Daou, M., Elnaker, N. A., Ochsenkühn, M. A., Amin, S. A., Yousef, A. F., & Yousef, L. F. (2022). In vitro α-glucosidase inhibitory activity of Tamarix Nilotica shoot extracts and fractions. Plos One, 17(3), e0264969. (PMID: 35286313892027810.1371/journal.pone.0264969)
Fayed, M. A., Bakr, R. O., Yosri, N., Khalifa, S. A., El-Seedi, H. R., Hamdan, D. I., & Refaey, M. S. (2023). Chemical profiling and cytotoxic potential of the n-butanol fraction of Tamarix Nilotica flowers. BMC Complementary Medicine and Therapies, 23(1), 1–14. (PMID: 10.1186/s12906-023-03989-8)
Sekkien, A., Swilam, N., Ebada, S. S., Esmat, A., El-Khatib, A. H., Linscheid, M. W., & Singab, A. N. (2018). Polyphenols from Tamarix Nilotica: LC–ESI-MSn profiling and in vivo antifibrotic activity. Molecules, 23(6), 1411. (PMID: 29891794610005010.3390/molecules23061411)
Orabi, M. A., Taniguchi, S., Yoshimura, M., Yoshida, T., & Hatanoa, T. (2010). New Monomeric and dimeric hydrolyzable tannins from Tamarix Nilotica. Heterocycles, 80(1), 463–475. (PMID: 10.3987/COM-09-S(S)46)
Zengin, G., & Aktumsek, A. (2014). Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline Anatolica E. Tuzlaci: An endemic plant to Turkey. African Journal of Traditional Complementary and Alternative Medicines, 11(2), 481–488. (PMID: 10.4314/ajtcam.v11i2.37)
Uysal, S., Zengin, G., Locatelli, M., Bahadori, M. B., Mocan, A., Bellagamba, G., De Luca, E., Mollica, A., & Aktumsek, A. (2017). Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. Speciosa L. and P. reptans Willd.) And their chemical composition. Frontiers in Pharmacology, 8, 290. (PMID: 28588492544138110.3389/fphar.2017.00290)
Zengin, G. (2016). A study on in vitro enzyme inhibitory properties of asphodeline anatolica: New sources of natural inhibitors for public health problems. Industrial Crops and Products, 83, 39–43. (PMID: 10.1016/j.indcrop.2015.12.033)
Zengin, G., Senkardes, I., Mollica, A., Picot-Allain, C. M. N., Bulut, G., Dogan, A., & Mahomoodally, M. F. (2018). New insights into the in vitro biological effects, in silico docking and chemical profile of clary sage–Salvia sclarea L. Computational Biology and Chemistry, 75, 111–119. (PMID: 2977245610.1016/j.compbiolchem.2018.05.005)
Kurumbail, R. G., Stevens, A. M., Gierse, J. K., McDonald, J. J., Stegeman, R. A., Pak, J. Y., Gildehaus, D., Iyashiro, J. M., Penning, T. D., Seibert, K., Isakson, P. C., & Stallings, W. C. (1996). Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 384(6610), 644–648. https://doi.org/10.1038/384644a0 . (PMID: 10.1038/384644a08967954)
Gerlits, O., Ho, K-Y., Cheng, X., Blumenthal, D., Taylor, P., Kovalevsky, A., & Radić, Z. (2019). A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chemico-Biological Interactions, 309. https://doi.org/10.1016/j.cbi.2019.06.011 .
Maurus, R., Begum, A., Williams, L. K., Fredriksen, J. R., Zhang, R., Withers, S. G., & Brayer, G. D. (2008). Alternative Catalytic anions differentially modulate human α-Amylase activity and specificity. Biochemistry, 47(11), 3332–3344. https://doi.org/10.1021/bi701652t . (PMID: 10.1021/bi701652t18284212)
Rosenberry, T., Brazzolotto, X., Macdonald, I., Wandhammer, M., Trovaslet-Leroy, M., Darvesh, S., & Nachon, F. (2017). Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: A crystallographic, kinetic and calorimetric study. Molecules, 22(12). https://doi.org/10.3390/molecules22122098 .
Ielo, L., Deri, B., Germanò, M. P., Vittorio, S., Mirabile, S., Gitto, R., Rapisarda, A., Ronsisvalle, S., Floris, S., Pazy, Y., Fais, A., & Fishman, A. (2019). Exploiting the 1-(4-fluorobenzyl)piperazine fragment for the development of novel tyrosinase inhibitors as anti-melanogenic agents: Design, synthesis, structural insights and biological profile. European Journal of Medicinal Chemistry, 178, 380–389. https://doi.org/10.1016/j.ejmech.2019.06.019 . De. (PMID: 10.1016/j.ejmech.2019.06.01931202126)
Karade, S. S., Hill, M. L., Kiappes, J. L., Manne, R., Aakula, B., Zitzmann, N., Warfield, K. L., Treston, A. M., & Mariuzza, R. A. (2021). N-Substituted valiolamine derivatives as potent inhibitors of endoplasmic reticulum α-Glucosidases I and II with antiviral activity. Journal of Medicinal Chemistry, 64(24), 18010–18024. https://doi.org/10.1021/acs.jmedchem.1c01377 . (PMID: 10.1021/acs.jmedchem.1c0137734870992)
Zengin, G., Dall’Acqua, S., Sinan, K. I., Uba, A. I., Sut, S., Peron, G., Etienne, O. K., Kumar, M., Cespedes-Acuña, C. L., Alarcon-Enos, J., Mollica, A., & Mahomoodally, M. F. (2022). Gathering scientific evidence for a new bioactive natural ingredient: The combination between chemical profiles and biological activities of Flueggea virosa extracts. Food Bioscience, 49. https://doi.org/10.1016/j.fbio.2022.101967 .
Martínez-Rosell, G., Giorgino, T., & De, F. G. (2017). PlayMolecule ProteinPrepare: A web application for Protein Preparation for Molecular Dynamics simulations. Journal of Chemical Information and Modeling, 57(7), 1511–1516. https://doi.org/10.1021/acs.jcim.7b00190 . (PMID: 10.1021/acs.jcim.7b0019028594549)
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera?A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084 . (PMID: 10.1002/jcc.2008415264254)
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256 . (PMID: 10.1002/jcc.21256193997802760638)
Sinan, K. I., Zengin, G., Uba, A. I., Caprioli, G., Angeloni, S., Vittori, S., Jugreet, S., Etienne, O. K., Shariati, M. A., & Mahomoodally, M. F. (2023). Chemical characterization and biological abilities of Anthocleista djalonensis collected from two locations of Ivory Coast. eFood, 4(4). https://doi.org/10.1002/efd2.100 .
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–d80. https://doi.org/10.1093/nar/gkac956 . (PMID: 10.1093/nar/gkac95636305812)
Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W64. (PMID: 31106366660248610.1093/nar/gkz382)
Liu, T., Lin, Y., Wen, X., Jorissen, R. N., & Gilson, M. K. (2007). BindingDB: A web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Research, 35(suppl_1), D198–D201. (PMID: 1714570510.1093/nar/gkl999)
Ochoa, D., Hercules, A., Carmona, M., Suveges, D., Baker, J., Malangone, C., Lopez, I., Miranda, A., Cruz-Castillo, C., & Fumis, L. (2023). The next-generation open targets platform: Reimagined, redesigned, rebuilt. Nucleic Acids Research, 51(D1), D1353–D9. (PMID: 3639949910.1093/nar/gkac1046)
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. (PMID: 1459765840376910.1101/gr.1239303)
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., & Bork, P. (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D13. (PMID: 3047624310.1093/nar/gky1131)
Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628–2629. (PMID: 3188299310.1093/bioinformatics/btz931)
Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., & Tanabe, M. (2021). KEGG: Integrating viruses and cellular organisms. Nucleic Acids Research, 49(D1), D545–D51. (PMID: 3312508110.1093/nar/gkaa970)
Luo, W., & Brouwer, C. (2013). Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics, 29(14), 1830–1831. (PMID: 23740750370225610.1093/bioinformatics/btt285)
Mahfoudhi, A., Salem, A. B., Garrab, M., Hammami, S., Gorcii, M., Mastouri, M., & Mighri, Z. (2016). Antioxidant and antimicrobial activities of Tamarix aphylla (L.) Karst. growing in Tunisia. Moroccan Journal of Chemistry, 4(4):4- (2016) 987–995.
Mahfoudhi, A., Prencipe., F. P., Mighri, Z., & Pellati, F. (2014). Metabolite profiling of polyphenols in the Tunisian plant Tamarix aphylla (L.) Karst. Journal of Pharmaceutical and Biomedical Analysis, 99, 97–105. (PMID: 2510837410.1016/j.jpba.2014.07.013)
Suleiman, M. H. A. (2019). Ethnobotanical, phytochemical, and biological study of Tamarix aphylla and Aerva javanica medicinal plants growing in the Asir region, Saudi Arabia. Tropical Conservation Science, 12, 1940082919869480. (PMID: 10.1177/1940082919869480)
El-Amier, Y. A., Soufan, W., Almutairi, K. F., Zaghloul, N. S., & Abd-ElGawad, A. M. (2021). Proximate composition, bioactive compounds, and antioxidant potential of wild halophytes grown in coastal salt marsh habitats. Molecules, 27(1), 28. (PMID: 35011260874624710.3390/molecules27010028)
Muddathir, A., Yamauchi, K., Batubara, I., Mohieldin, E., & Mitsunaga, T. (2017). Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. South African Journal of Botany, 109, 9–15. (PMID: 10.1016/j.sajb.2016.12.013)
Yagi, S., Mohammed, A. B., Tzanova, T., Schohn, H., Abdelgadir, H., Stefanucci, A., Mollica, A., & Zengin, G. (2020). Chemical profile, antiproliferative, antioxidant, and enzyme inhibition activities and docking studies of Cymbopogon schoenanthus (L.) Spreng. And Cymbopogon Nervatus (Hochst.) Chiov. From Sudan. Journal of food Biochemistry, 44(2), e13107. (PMID: 3180895610.1111/jfbc.13107)
Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules, 15(12), 8813–8826. (PMID: 21131901625935310.3390/molecules15128813)
Achakzai, A. K. K., Achakzai, P., Masood, A., Kayani, S. A., & Tareen, R. B. (2009). Response of plant parts and age on the distribution of secondary metabolites on plants found in Quetta. Pakistan Journal of Botany, 41(5), 2129–2135.
Akhlaq, M., & Mohammed, A. (2011). New phenolic acids from the galls of Tamarix aphylla (L.) Karst. Int Res J Pharm, 4, 222–225.
Mahfoudhi, A., Grosso, C., Gonçalves, R. F., Khelifi, E., Hammami, S., Achour, S., Trabelsi-Ayadi, M., Valentão, P., Andrade, P. B., & Mighri, Z. (2016). Evaluation of antioxidant, anticholinesterase, and antidiabetic potential of dry leaves and stems in Tamarix aphylla growing wild in Tunisia. Chemistry & Biodiversity, 13(12), 1747–1755. (PMID: 10.1002/cbdv.201600157)
Nawwar, M., Hussein, S., Buddrus, J., & Linscheid, M. (1994). Tamarixellagic acid, an ellagitannin from the galls of Tamarix aphylla. Phytochemistry, 35(5), 1349–1354. (PMID: 10.1016/S0031-9422(06)80123-8)
Souliman, A. M., Barakat, H. H., El-Mousallamy, A. M., Marzouk, M. S., & Nawwar, M. A. (1991). Phenolics from the bark of Tamarix aphylla. Phytochemistry, 30(11), 3763–3766. (PMID: 10.1016/0031-9422(91)80105-A)
Orabi, M. A., Taniguchi, S., & Hatano, T. (2009). Monomeric and dimeric hydrolysable tannins of Tamarix Nilotica. Phytochemistry, 70(10), 1286–1293. (PMID: 1969565110.1016/j.phytochem.2009.07.019)
Orabi, M. A., Taniguchi, S., Sakagami, H., Yoshimura, M., Yoshida, T., & Hatano, T. (2013). Hydrolyzable tannins of tamaricaceous plants. v. structures of monomeric–trimeric tannins and cytotoxicity of macrocyclic-type tannins isolated from Tamarix Nilotica. Journal of Natural Products, 76(5), 947–956. (PMID: 2367565110.1021/np4001625)
Orabi, M. A., Taniguchi, S., Yoshimura, M., Yoshida, T., Kishino, K., Sakagami, H., & Hatano, T. (2010). Hydrolyzable tannins of tamaricaceous plants. III. Hellinoyl-and macrocyclic-type ellagitannins from Tamarix Nilotica. Journal of Natural Products, 73(5), 870–879. (PMID: 2040584710.1021/np900829g)
AbouZid, S. (2013). Chemical and biological studies on Tamarix Nilotica growing in Egypt. Planta Medica, 79(13), PI3. (PMID: 10.1055/s-0033-1352093)
Abouzid, S. F., Ali, S. A., & Choudhary, M. I. (2009). A new ferulic acid ester and other constituents from Tamarix Nilotica leaves. Chemical and Pharmaceutical Bulletin, 57(7), 740–742. (PMID: 1957142310.1248/cpb.57.740)
El Sissi, H., Nawwar, M., & Saleh, N. (1973). Plant constituents of Tamarix Nilotica leaves (Tamaricaceae). Experientia, 29, 1064–1065. (PMID: 10.1007/BF01946720)
Nawwar, M., & Souleman, A. (1984). 3, 4, 8, 9, 10-Pentahydroxy-dibenzo [b, d] pyran-6-one from Tamarix Nilotica. Phytochemistry, 23(12), 2966–2967. (PMID: 10.1016/0031-9422(84)83057-5)
Nawwar, M., Souleman, A., Buddrus, J., Bauer, H., & Linscheid, M. (1984). Polyphenolic constituents of the flowers of Tamarix Nilotica: The structure of nilocitin, a new digalloylglucose. Tetrahedron Letters, 25(1), 49–52. (PMID: 10.1016/S0040-4039(01)91145-1)
Nawwar, M., Souleman, A., Buddrus, J., & Linscheid, M. (1984). Flavonoids of the flowers of Tamarix Nilotica. Phytochemistry, 23(10), 2347–2349. (PMID: 10.1016/S0031-9422(00)80549-X)
Chaves, N., Santiago, A., & Alías, J. C. (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants, 9(1), 76. (PMID: 31952329702327310.3390/antiox9010076)
Alqasoumi, S. I. (2011). Anti-inflammatory and wound healing activities of herbal gel containing an antioxidant Tamarix aphylla leaf extract. International Journal of Pharmacology, 7(8), 829–835. (PMID: 10.3923/ijp.2011.829.835)
AbouZid, S., & Sleem, A. (2011). Hepatoprotective and antioxidant activities of Tamarix Nilotica flowers. Pharmaceutical Biology, 49(4), 392–395. (PMID: 2128453610.3109/13880209.2010.518971)
Brewer, M. (2011). Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in food Science and food Safety, 10(4), 221–247. (PMID: 10.1111/j.1541-4337.2011.00156.x)
Delfanian, M., Sahari, M. A., Barzegar, M., & Ahmadi Gavlighi, H. (2021). Structure–antioxidant activity relationships of gallic acid and phloroglucinol. Journal of Food Measurement and Characterization, 15, 5036–5046. (PMID: 10.1007/s11694-021-01045-y)
Rababah, T., Ereifej, K., Esoh, R. MH Al-u’datt, & Alrababah, M. A. (2011). and W. Yang,Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants,. Natural Product Research, 25(6):596–605.
Spiegel, M., Kapusta, K., Kołodziejczyk, W., Saloni, J., Żbikowska, B., Hill, G. A., & Sroka, Z. (2020). Antioxidant activity of selected phenolic acids–ferric reducing antioxidant power assay and QSAR analysis of the structural features. Molecules, 25(13), 3088. (PMID: 32645868741203910.3390/molecules25133088)
Nag, G., & De, B. (2011). Acetylcholinesterase inhibitory activity of Terminalia chebula, Terminalia Bellerica and Emblica officinalis and some phenolic compounds. Int J Pharm Pharm Sci, 3(3), 121–124.
Szwajgier, D., & Borowiec, K. (2012). Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. Journal of the Institute of Brewing, 118(1), 40–48. (PMID: 10.1002/jib.5)
Elobeid, M., Virk, P., Siddiqui, M., Omer, S., ElAmin, M., Hassan, Z., Almarhoon, Z. M., Merghani, N., AlMahasna, A., & Daghestani, M. (2013). Antihyperglycemic activity and body weight effects of extracts of Emblica Officianalis, Tamarix Nilotica and Cinnamon plant in diabetic male rats. Wulfenia, 20(11), 18–31.
Chen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9), 1205–1235. (PMID: 28713158558996710.1038/aps.2017.28)
Lauretti, E., Dincer, O., & Praticò, D. (2020). Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1867(5), 118664. (PMID: 3200653410.1016/j.bbamcr.2020.118664)
Hooper, C., Killick, R., & Lovestone, S. (2008). The GSK3 hypothesis of Alzheimer’s disease. Journal of Neurochemistry, 104(6), 1433–1439. (PMID: 18088381307311910.1111/j.1471-4159.2007.05194.x)
Lau, L-F., & Ahlijanian, M. K. (2003). Role of cdk5 in the pathogenesis of Alzheimer’s disease. Neurosignals, 12(4–5), 209–214. (PMID: 1467320710.1159/000074622)
فهرسة مساهمة: Keywords: Tamarix species; Antioxidant; Bioinformatics; Chemical profile; Enzyme inhibition
تواريخ الأحداث: Date Created: 20240401 Latest Revision: 20240401
رمز التحديث: 20240402
DOI: 10.1007/s12010-024-04924-4
PMID: 38558274
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0291
DOI:10.1007/s12010-024-04924-4