دورية أكاديمية

Influence of bioaugmented fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora Sw. DC in heavy metal-polluted landfill soil.

التفاصيل البيبلوغرافية
العنوان: Influence of bioaugmented fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora Sw. DC in heavy metal-polluted landfill soil.
المؤلفون: Hassan A; Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. auwalhssn@gmail.com.; Center for Research in Waste Management, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. auwalhssn@gmail.com.; Department of Biological Sciences, Faculty of Science, Federal University of Kashere, Kashere, Gombe State, Nigeria. auwalhssn@gmail.com., Hamid FS; Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.; Center for Research in Waste Management, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia., Pariatamby A; Jeffrey Sachs Center On Sustainable Development, Sunway University, Sunway, Malaysia., Ossai IC; Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.; Center for Research in Waste Management, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia., Ahmed A; Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.; Center for Research in Waste Management, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.; Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan., Barasarathi J; Faculty of Health and Life Sciences (FHLS), INTI International University, Pesiaran Perdana BBN, Nilai, Negeri Sambilan, Malaysia., Auta HS; Department of Microbiology, Federal University of Technology, Minna, Niger State, Nigeria.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Apr; Vol. 31 (19), pp. 28671-28694. Date of Electronic Publication: 2024 Apr 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Biodegradation, Environmental* , Soil Pollutants*/metabolism , Prosopis*/metabolism , Metals, Heavy*/metabolism, Fungi/metabolism ; Soil/chemistry
مستخلص: The research aimed to determine the influence of endophytic fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora in heavy metal-polluted landfill soil. A consortium of 13 fungal isolates as well as Prosopis juliflora Sw. DC was used to decontaminate heavy metal-polluted landfill soil. Enhanced plant growth (biomass and root and shoot lengths) and production of carotenoids, chlorophyll and amino acids L-phenylalanine and L-leucine that are known to enhance growth were found in the treated P. juliflora. Better accumulations of heavy metals were observed in fungi-treated P. juliflora over the untreated one. An upregulated activity of peroxidase, catalase and ascorbate peroxidase was recorded in fungi-treated P. juliflora. Additionally, other metabolites, such as glutathione, 3,5,7,2',5'-pentahydroxyflavone, 5,2'-dihydroxyflavone and 5,7,2',3'-tetrahydroxyflavone, and small peptides, which include Lys Gln Ile, Ser Arg Ala, Asp Arg Gly, Arg Ser Ser, His His Arg, Arg Thr Glu, Thr Arg Asp and Ser Pro Arg, were also detected. These provide defence supports to P. juliflora against toxic metals. Inoculating the plant with the fungi improved its growth, metal accumulation as well as tolerance against heavy metal toxicity. Such a combination can be used as an effective strategy for the bioremediation of metal-polluted soil.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abd-Allah E, Egamberdieva D (2016) Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pak J Bot 48:37–45.
Achakzai AK, Liasu MO, Popoola OJ (2012) Effect of mycorrhizal inoculation on the growth and phytoextraction of heavy metals by maize grown in oil contaminated soil. Pak J Bot 44:221–230.
Adams G, Tawari-Fufeyin P, Igelenyah E, Odukoya E (2014) Assessment of heavy metals bioremediation potential of microbial consortia from poultry litter and spent oil contaminated site. Int J Environ Biorem Biodegrad 2:84–92. https://doi.org/10.12691/ijebb-2-2-6. (PMID: 10.12691/ijebb-2-2-6)
Akhtar K, Wang W, Ren G, Khan A, Feng Y, Yang G (2018) Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil till Res 182:94–102. https://doi.org/10.1016/J.STILL.2018.05.007. (PMID: 10.1016/J.STILL.2018.05.007)
Alam A, Tabinda AB, Qadir A, Butt TE, Siddique S, Mahmood A (2017) Ecological risk assessment of an open dumping site at Mehmood Booti Lahore, Pakistan. Environ Sci Pollut Res 24:17889–17899. https://doi.org/10.1007/s11356-017-9215-y. (PMID: 10.1007/s11356-017-9215-y)
Ali T, Bylund D, Essén SA, Lundström US (2011) Liquid extraction of low molecular mass organic acids and hydroxamate siderophores from boreal forest soil. Soil Biol Biochem 43:2417–2422. https://doi.org/10.1016/j.soilbio.2011.08.015. (PMID: 10.1016/j.soilbio.2011.08.015)
Ali A, Bilal S, Khan AL, Mabood F, Al-Harrasi A, Lee IJ (2019) Endophytic Aureobasidium pullulans BSS6 assisted developments in phytoremediation potentials of Cucumis sativus under Cd and Pb stress. J Plant Interact 14:303–313. https://doi.org/10.1080/17429145.2019.1633428. (PMID: 10.1080/17429145.2019.1633428)
Alkorta I, Aizpurua A, Riga P, Albizu I, Amézaga I, Garbisu C (2003) Soil enzyme activities as biological indicatorsof soil health. Rev Environ Health 18:65–73. https://doi.org/10.1515/REVEH.2003.18.1.65. (PMID: 10.1515/REVEH.2003.18.1.65)
Alrumman SA, Standing DB, Paton GIJ (2015) Effects of hydrocarbon contamination on soil microbial community and enzyme activity. J King Saud Univers Sci 27:31–41. https://doi.org/10.1016/j.jksus.2014.10.001. (PMID: 10.1016/j.jksus.2014.10.001)
Alvarez R, Hoyo AD, Garcia-Breijo F, Reig-Arminana J, del Campo EM, Guera A, Barreno E, Casano LM (2012) Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea L. J Plant Physiol 169:1797–1806. https://doi.org/10.1016/j.jplph.2012.07.005. (PMID: 10.1016/j.jplph.2012.07.005)
Andrade SAL, Gratao PL, Schiavinato MA, Silveira APD, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75:1363–1370. https://doi.org/10.1016/j.chemosphere.2009.02.008. (PMID: 10.1016/j.chemosphere.2009.02.008)
Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. https://doi.org/10.1007/s005720100097. (PMID: 10.1007/s005720100097)
Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134. https://doi.org/10.1016/j.jenvman.2013.10.009. (PMID: 10.1016/j.jenvman.2013.10.009)
Babu AG, Kim SW, Yadav DR, Hyum U, Adhikari M, Lee YS (2015a) Penicillium menonorum: a novel fungus to promote growth and nutrient management in Cucumis sativus L. Mycobiology 43:49–56. https://doi.org/10.5941/MYCO.2015.43.1.49. (PMID: 10.5941/MYCO.2015.43.1.49)
Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015b) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manag 151:160–166. https://doi.org/10.1016/j.jenvman.2014.12.045. (PMID: 10.1016/j.jenvman.2014.12.045)
Bader N, Alsharif E, Nassib M, Alshelmani N, Alalem A (2019) Phytoremediation potential of Suaeda vera L. for some heavy metals in roadside soil in Benghazi, Libya. Asian J Green Chem 3:82–90. https://doi.org/10.22034/ajgc.2018.67060. (PMID: 10.22034/ajgc.2018.67060)
Bai Z, Harvey LM, McNeil B (2003) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302. https://doi.org/10.1080/07388550390449294. (PMID: 10.1080/07388550390449294)
Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus sp. and Arundo donax L. BioEner Res 8:1500–1511. https://doi.org/10.1007/s12155-015-9688-9. (PMID: 10.1007/s12155-015-9688-9)
Bastias DA, Martínez-Ghersa MA, Ballaré CL, Gundel PE (2017) Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends Plant Sci 22:939–948. https://doi.org/10.1016/j.tplants.2017.08.005. (PMID: 10.1016/j.tplants.2017.08.005)
Belay Z, Vestberg M, Assefa F (2014) Mycorrhizal status and AMF community structure of fruit crops from low-input cropping system in Showa Robit, Ethiopia. Ethiopian J Biol Sci 13:99–116.
Bilal S, Shahzad R, Khan AL, Kang SM, Imran QM, Al-Harrasi A, Yun BW, Lee IJ (2018) Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL 10 and bacteria Sphingomonas sp LK11 to Glycine max L. Front Plant Sci 9:1273. https://doi.org/10.3389/fpls.2018.01273. (PMID: 10.3389/fpls.2018.01273)
Bilal S, Shahzad R, Imran M, Jan R, Kim KM, Lee IJ (2020) Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: heavy metals, high temperature and drought stress. Indust Crops Produc 143:111931. https://doi.org/10.1016/j.indcrop.2019.111931. (PMID: 10.1016/j.indcrop.2019.111931)
Binder S (2010) Branched-chain amino acid metabolism in Arabidopsis thaliana L. Arabidopsis Book 8:e0137. https://doi.org/10.1199/tab.0137. (PMID: 10.1199/tab.0137)
Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA, Melo IS (2020) Phosphorus-solubilizing Trichoderma sp. from Amazon soils improve soybean plant growth. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-59793-8. (PMID: 10.1038/s41598-020-59793-8)
Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes Soil biology, vol 9. Springer, Heidelberg, pp 281–298. https://doi.org/10.1007/3-540-33526-9&#95;16. (PMID: 10.1007/3-540-33526-9_16)
Brundrett M, Kendrick B (1990) The roots and mycorrhizas of herbaceous woodland plants: I. Quantitative aspects of morphology. New Phytol 114:457–468. https://doi.org/10.1111/j.1469-8137.1990.tb00415.x. (PMID: 10.1111/j.1469-8137.1990.tb00415.x)
Burkart AJ (1976) A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). J Arnold Arboretum 57:450–525. https://doi.org/10.5962/p.185864. (PMID: 10.5962/p.185864)
Campo S, Martín-Cardoso H, Olivé M, Pla E, Catala-Forner M, Martínez-Eixarch M, San Segundo B (2020) Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in rice. Rice 13:1–14. https://doi.org/10.1186/s12284-020-00402-7. (PMID: 10.1186/s12284-020-00402-7)
Cao Y, Yang B, Song Z, Wang H, He F, Han X (2016) Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil. Ecotoxicol Environ Safet 130:248–255. https://doi.org/10.1007/s00128-017-2064-z. (PMID: 10.1007/s00128-017-2064-z)
Chan WK, Wildeboer D, Garelick H, Purchase D (2016) Mycoremediation of heavy metal/metalloid-contaminated soil: current understanding and future prospects. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology. Fungal biology. Springer, Cham, pp 249–272. https://doi.org/10.1007/978-3-319-42852-9&#95;10. (PMID: 10.1007/978-3-319-42852-9_10)
Chaturvedi R, Favas P, Pratas J, Varun M, Paul MS (2018a) Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil. Ecotoxicol Environ Safet 148:318–326. https://doi.org/10.1016/j.ecoenv.2017.10.048. (PMID: 10.1016/j.ecoenv.2017.10.048)
Chaturvedi R, Favas PJC, Pratasc J, Varun M, Paul MS (2018b) Effect of Glomus mossae on accumulation efficiency, hazard index and antioxidant defense mechanisms in tomato under metal(loid) stress. Int J Phytorem 20:885–894. https://doi.org/10.1080/15226514.2018.1438360. (PMID: 10.1080/15226514.2018.1438360)
Cho B, Cho HS, Kim J, Sim J, Seol I, Baeck SK, In S, Shin DH, Kim E (2020) Simultaneous determination of synthetic cannabinoids and their metabolites in human hair using LC-MS/MS and application to human hair. Forens Sci Int 306:110058. https://doi.org/10.1016/j.forsciint.2019.110058. (PMID: 10.1016/j.forsciint.2019.110058)
Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256:243–252. https://doi.org/10.1023/A:1026113905129. (PMID: 10.1023/A:1026113905129)
Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Sci 285:1742–1745. https://doi.org/10.1126/science.285.5434.1742. (PMID: 10.1126/science.285.5434.1742)
Davis DG, Swanson HR (2001) Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Environ Experi Bot 46:95–108. https://doi.org/10.1016/S0098-8472(01)00081-8. (PMID: 10.1016/S0098-8472(01)00081-8)
de Fátima PD, Barbosa MV, Dos Santos JV, Pinto FA, Siqueira JO, Carneiro MAC (2018) Arbuscular mycorrhizal fungi favor the initial growth of Acacia mangium, Sorghum bicolor, and Urochloa brizantha in soil contaminated with Zn, Cu, Pb, and Cd. Bull Environ Contam Toxicol 101:386–391. https://doi.org/10.1007/s00128-018-2405-6. (PMID: 10.1007/s00128-018-2405-6)
Dixit V, Pandey V, Shyam R (2001) Differential oxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109. https://doi.org/10.1093/jexbot/52.358.1101. (PMID: 10.1093/jexbot/52.358.1101)
Domka A, Rozpądek P, Ważny R, Turnau K (2019) Mucor sp.—an endophyte of Brassicaceae capable of surviving in toxic metal-rich sites. J Basic Microbiol 59:24–37. https://doi.org/10.1002/jobm.201800406. (PMID: 10.1002/jobm.201800406)
Eid EM, Alrumman SA, Farahat EA, El-Bebany AF (2018) Prediction models for evaluating the uptake of heavy metals by cucumbers (Cucumis sativus L.) grown in agricultural soils amended with sewage sludge. Environ Monit Assess 190:501. https://doi.org/10.1007/s10661-018-6885-y. (PMID: 10.1007/s10661-018-6885-y)
Ekmekçi Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611. https://doi.org/10.1016/j.jplph.2007.01.017. (PMID: 10.1016/j.jplph.2007.01.017)
Eman K, Esmaeil S, Nagalakshmi H, Mark AO, Andrew SB (2019) Effect of biostimulation on the distribution and composition of the microbial community of a polycyclic aromatic hydrocarbon-contaminated landfill soil during bioremediation. Geoderma 338:216–225. https://doi.org/10.1016/j.geoderma.2018.12.001. (PMID: 10.1016/j.geoderma.2018.12.001)
EPA (2000) A guide to the sampling and analysis of waters, wastewaters, soils and wastes. EPA, Melbourne.
Fauziah S, Agamuthu P (2012) Trends in sustainable landfilling in Malaysia, a developing country. Waste Manag Res 30:656–663. https://doi.org/10.1177/0734242X12437564. (PMID: 10.1177/0734242X12437564)
Felker P, Clark PR, Laag A, Pratt P (1981) Salinity tolerance of the tree legumes: mesquite (Prosopis glandulosa var. torreyana, L. P. velutina W. and P. articulata) algarrobo (P. chilensis E.), kiawe (P. pallida H. & B.) and tamarugo (P. tamarugo Phil.) grown in sand culture on nitrogen-free media. Plant Soil 61:311–317. (PMID: 10.1007/BF02182012)
Felker P, Clark PR, Nash P, Osborn JF, Cannell G (1982) Screening Prosopis mesquite for cold tolerance. Forest Sci 28:556–562. https://doi.org/10.2172/6008971. (PMID: 10.2172/6008971)
Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880. https://doi.org/10.1126/science.210504. (PMID: 10.1126/science.210504)
Füzy A, Biró I, Kovács R, Takács T (2015) Estimation of AM fungal colonization—comparability and reliability of classical methods. Acta Microbiol Immunol Hung 62:435–451. https://doi.org/10.1556/030.62.2015.4.8. (PMID: 10.1556/030.62.2015.4.8)
Gaidashova S, Nsabimana A, Karamura D, Asten P, Declerck S (2012) Mycorrhizal colonization of major banana genotypes in six East African environments. Agr Ecosyst Environ 157:40–46. https://doi.org/10.1016/j.agee.2012.01.005. (PMID: 10.1016/j.agee.2012.01.005)
Gajewska E, Skłodowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul 54:179–188. https://doi.org/10.1007/s10725-007-9240-9. (PMID: 10.1007/s10725-007-9240-9)
Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599. https://doi.org/10.1051/agro/2009054. (PMID: 10.1051/agro/2009054)
Gemma JN, Koske RE, Roberts EM (1997) Mycorrhizal fungi improve drought resistance in creeping bentgrass. J Turfgrass Sci 73:15–29.
Gil-Cardeza ML, Calonne-Salmon M, Gomez E, Declerck S (2017) Short-term chromium (VI) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Chemosphere 187:27–34. https://doi.org/10.1016/j.chemosphere.2017.08.079. (PMID: 10.1016/j.chemosphere.2017.08.079)
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016. (PMID: 10.1016/j.plaphy.2010.08.016)
Gill SS, Khan N, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120. https://doi.org/10.1016/j.plantsci.2011.04.018. (PMID: 10.1016/j.plantsci.2011.04.018)
Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Biores Technol 218:388–396. https://doi.org/10.1016/j.biortech.2016.06.096. (PMID: 10.1016/j.biortech.2016.06.096)
Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622. https://doi.org/10.1128/mr.57.3.605-622.1993. (PMID: 10.1128/mr.57.3.605-622.1993)
Goswami U, Sarma H (2008) Study of the impact of municipal solid waste dumping on soil quality in Guwahati City. Pollut Res 27:327–330.
Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371. https://doi.org/10.1002/jsfa.6577. (PMID: 10.1002/jsfa.6577)
Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102. https://doi.org/10.1023/A:1005703923347. (PMID: 10.1023/A:1005703923347)
Hashem A, Abd-Allah EF, Alqarawi AA, Al-Whibi M, Alenazi MM, Egamberdieva D, Ahmad P (2015) Arbuscular mycorrhizal fungi mitigates NaCl adverse effects on Solanum lycopersicum L. Pak J Bot 47:327–340.
Hassan A, Agamuthu P, Aziz A, Auta HS, Fauziah SH (2019) Enhanced bioremediation of heavy metal contaminated landfill soil using filamentous fungi consortia: a demonstration of bioaugmentation potential. Water Air Soil Pollut 230:215. https://doi.org/10.1007/s11270-019-4227-5. (PMID: 10.1007/s11270-019-4227-5)
Hassan A, Agamuthu P, Aziz A, Ossai IC, Fauziah SH (2020a) Effective bioremediation of heavy metal–contaminated landfill soil through bioaugmentation using consortia of fungi. J Soils Sedi 20:66–80. https://doi.org/10.1007/s11368-019-02394-4. (PMID: 10.1007/s11368-019-02394-4)
Hassan A, Agamuthu P, Ossai IC, Fauziah SH (2020b) Bioaugmentation assisted mycoremediation of heavy metal and/metalloid landfill contaminated soil using consortia of filamentous fungi. Biochem Engine J 157:107550. https://doi.org/10.1016/j.bej.2020.107550. (PMID: 10.1016/j.bej.2020.107550)
Hassan A, Pariatamby A, Ossai IC, Ahmed A, Muda MA, Wen TZ, Fauziah SH (2021) Bioaugmentation-assisted bioremediation and kinetics modelling of heavy metal-polluted landfill soil. Int J Environ Sci Technol 19:6729–6754. https://doi.org/10.1007/s13762-021-03626-2. (PMID: 10.1007/s13762-021-03626-2)
Hassan A, Fauziah SH, Auta HS, Pariatamby A, Ossai IC, Barasarathi J, Ahmed A (2022) Microbial enzymes: role in soil fertility. In: Maddela NR, Abiodun AS, Prasad R (eds) Ecological interplays in microbial enzymology. Springer, Singapore, pp 155–187. https://doi.org/10.1007/978-981-19-0155-3&#95;9. (PMID: 10.1007/978-981-19-0155-3_9)
Hassan A, Pariatamby A, Ossai IC, Ahmed A, Muda MA, Barasarathi J, Fauziah SH (2022b) Synergistic association of endophytic fungi enhances tolerance, growth, and heavy metal uptake of Alocasia calidora in landfill contaminated soil. Appl Soil Ecol 17:104307. https://doi.org/10.1016/j.apsoil.2021.104307. (PMID: 10.1016/j.apsoil.2021.104307)
He J, Qin J, Long L, Ma Y, Li H, Li K, Jiang X, Liu T, Polle A, Liang Z, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plant 143:50–63. https://doi.org/10.1111/j.1399-3054.2011.01487.x. (PMID: 10.1111/j.1399-3054.2011.01487.x)
Helmisaari HS, Salemaa M, Derome J, Kiikkila O, Uhlig C, Nieminen TM (2007) Remediation of heavy metal contaminated forest soil using recycled organic matter and native woody plants. J Environ Qual 36:1145–1153. (PMID: 10.2134/jeq2006.0319)
Hill PW, Broughton R, Bougoure J, Havelange W, Newsham KK, Grant H (2019) Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecol Lett 22:2111–2119. https://doi.org/10.1111/ele.13399. (PMID: 10.1111/ele.13399)
Hou SN, Zheng N, Tang L, Ji XF, Li YY (2019) Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ Monit Asses 191:634. https://doi.org/10.1007/s10661-019-7793-5. (PMID: 10.1007/s10661-019-7793-5)
Hseu ZY, Chen ZS, Tsai CC, Tsui CC, Cheng SF, Liu CL, Lin HT (2002) Digestion methods for total heavy metals in sediments and soils. Water Air Soil Pollut 141:189–205. https://doi.org/10.1023/A:1021302405128. (PMID: 10.1023/A:1021302405128)
Iqbal N, Masood A, Nazar R, Syeed S, Khan NA (2010) Photosynthesis, growth and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in cadmium tolerance. Agric Sci China 9:519–527. https://doi.org/10.1016/S1671-2927(09)60125-5. (PMID: 10.1016/S1671-2927(09)60125-5)
Iqbal N, Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea L.). J Plant Physiol Plant 178:84–91. https://doi.org/10.1016/j.jplph.2015.02.006. (PMID: 10.1016/j.jplph.2015.02.006)
Ismail HM, Hussain A, Iqbal A, Khan SA, Lee IJ (2018) Endophytic fungus Aspergillus japonicus mediates host plant growth under normal and heat stress conditions. Biomed Res Int 2018:7696831. https://doi.org/10.1155/2018/7696831. (PMID: 10.1155/2018/7696831)
Jaizme-Vega MC, Azcón R (1995) Responses of some tropical and subtropical cultures to endomycorrhizal fungi. Mycorrhiza 5:213–217. https://doi.org/10.1007/BF00203340. (PMID: 10.1007/BF00203340)
Jansa J, Wiemken A, Frossard E (2006) The effects of agricultural practices on arbuscular mycorrhizal fungi. In: Frossard E, Blum WEH, Warkentin BP (ed) Function of soils for human societies and the environment. Geological Society, London, Special Publications, London, pp 89–115. https://doi.org/10.1144/gsl.sp.2006.266.01.08.
Jayanthi B, Emenike CU, Agamuthu P, Simarani K, Mohamad S, Fauziah SH (2016) Selected microbial diversity of contaminated landfill soil of Peninsular Malaysia and the behavior towards heavy metal exposure. CATENA 147:25–31. https://doi.org/10.1016/j.catena.2016.06.033. (PMID: 10.1016/j.catena.2016.06.033)
Jiang QY, Tan SY, Zhuo F, Yang DJ, Ye ZH, Jing YX (2016) Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum L. Appl Soil Ecol 98:112–120. https://doi.org/10.1016/j.apsoil.2015.10.003. (PMID: 10.1016/j.apsoil.2015.10.003)
Jiao Y, Chen Y, Ma C, Qin J, Nguyen THN, Liu D, Gan H, Ding S, Luo ZB (2018) Phenylalanine as a nitrogen source induces root growth and nitrogen-use efficiency in Populus × canescens. Tree Physiol 38:66–82. https://doi.org/10.1093/treephys/tpx109. (PMID: 10.1093/treephys/tpx109)
Jing L, Ma H, Fan P, Jia Z (2017) Synthesis and antioxidant properties of 5,6,7,8-tetrahydroxyflavone. Chem Nat Compd 53:248–253. https://doi.org/10.1007/s10600-017-1963-x. (PMID: 10.1007/s10600-017-1963-x)
Joachim HJ, Makoi R, Ndakidemi PA (2009) The agronomic potential of vesiculararbuscular mycorrhiza (VAM) in cereals-legume mixtures in Africa. Afr J Microbiol Res 3:664–675.
John P, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76. https://doi.org/10.22069/IJPP.2012.653. (PMID: 10.22069/IJPP.2012.653)
Karimi LN, Ahmadi MK, Moradi B (2012) Accumulation and phytotoxicity of lead in Cynara scolymus L. Indian J Technol 5:3634–3641. https://doi.org/10.17485/ijst/2012/v5i11.17. (PMID: 10.17485/ijst/2012/v5i11.17)
Khan N, Samiullah A, Singh S, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum L.) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:435–444. https://doi.org/10.1111/j.1439-037X.2007.00272.x. (PMID: 10.1111/j.1439-037X.2007.00272.x)
Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ (2011a) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861. https://doi.org/10.1016/j.plaphy.2011.03.005. (PMID: 10.1016/j.plaphy.2011.03.005)
Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ (2011b) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447. https://doi.org/10.1016/j.procbio.2010.09.013. (PMID: 10.1016/j.procbio.2010.09.013)
Laghlimi M, Baghdad B, El Hadi H, Bouabdli A (2015) Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol 5:375–388. https://doi.org/10.4236/oje.2015.58031. (PMID: 10.4236/oje.2015.58031)
Li XL, Christie P (2000) Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42:201–207. https://doi.org/10.1016/S0045-6535(00)00126-0. (PMID: 10.1016/S0045-6535(00)00126-0)
Li X, Zhou J, Xu RS, Meng M, Yu X, Dai CC (2018) Auxin, cytokinin, and ethylene involved in rice N availability improvement caused by endophyte Phomopsis liquidambari. J Plant Growth Regul 37:128–143. https://doi.org/10.1007/s00344-017-9712-8. (PMID: 10.1007/s00344-017-9712-8)
Liu Z, He X, Chen W, Yuan F, Yan K, Tao D (2009) Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator-Lonicera japonica T. J Hazard Mater 169:170–175. https://doi.org/10.1016/j.jhazmat.2009.03.090. (PMID: 10.1016/j.jhazmat.2009.03.090)
Liu H, Li S, Brennan CS, Wang Q (2020a) Antimicrobial activity of Arg–Ser–Ser against the food-borne pathogen Pseudomonas aeruginosa. Int J Food Sci Technol 55:379–388. https://doi.org/10.1111/ijfs.14287. (PMID: 10.1111/ijfs.14287)
Liu H, Tan X, Guo J, Liang X, Xie Q, Chen S (2020b) Bioremediation of oil-contaminated soil by combination of soil conditioner and microorganism. J Soils Sedi 20:2121–2129. https://doi.org/10.1007/s11368-020-02591-6. (PMID: 10.1007/s11368-020-02591-6)
Llado S, Solanas AM, de Lapuente J, Borras M, Vinas M (2012) A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Sci Total Environ 435:262–269. https://doi.org/10.1016/j.scitotenv.2012.07.032. (PMID: 10.1016/j.scitotenv.2012.07.032)
Maoka T (2020) Carotenoids as natural functional pigments. J Nat Med 74:1–16. https://doi.org/10.1007/s11418-019-01364-x. (PMID: 10.1007/s11418-019-01364-x)
Márquez-García B, Horemans N, Cuypers A, Guisez Y, Córdoba F (2011) Antioxidants in Erica andevalensis C.: a comparative study between wild plants and cadmium-exposed plants under controlled conditions. Plant Physiol Biochem 49:110–115. https://doi.org/10.1016/j.plaphy.2010.10.007. (PMID: 10.1016/j.plaphy.2010.10.007)
Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmiumtoxicity in Pisum sativum L. J Exp Bot 56:167–178. https://doi.org/10.1093/jxb/eri017. (PMID: 10.1093/jxb/eri017)
Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610. https://doi.org/10.1016/j.jplph.2006.03.003. (PMID: 10.1016/j.jplph.2006.03.003)
Nejad ZD, Jung MC, Kim KH (2018) Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health 40:927–953. https://doi.org/10.1007/s10653-017-9964-z. (PMID: 10.1007/s10653-017-9964-z)
Nikolantonaki M, Julien P, Coelho C, Roullier-Gall C, Ballester J, Schmitt-Kopplin P, Gougeon RD (2018) Impact of glutathione on wines oxidative stability: a combined sensory and metabolomic study. Front Chem 6:182. https://doi.org/10.3389/fchem.2018.00182. (PMID: 10.3389/fchem.2018.00182)
Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006. https://doi.org/10.1039/C4RA13315C. (PMID: 10.1039/C4RA13315C)
Owusu-Bennoah E, Wild A (1980) Effects of vesicular arbuscular mycorrhiza on the size of the labile pool of soil phosphate. Plant Soil 54:233–242. https://doi.org/10.1007/BF02181849. (PMID: 10.1007/BF02181849)
Pascual MB, El-Azaz J, de la Torre FN, Cañas RA, Avila C, Cánovas FM (2016) Biosynthesis and metabolic fate of phenylalanine in conifers. Front Plant Sci 7:1030. https://doi.org/10.3389/fpls.2016.01030. (PMID: 10.3389/fpls.2016.01030)
Pasiecznik NM, Felker P, Harris PJ, Harsh L, Cruz G, Tewari J, Cadoret K, Maldonado LJ (2001) The Prosopis juliflora-Prosopis pallida complex: a monograph (Vol. 172): HDRA Coventry.
Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, Jansson S (2014) The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell 26:3646–3660. https://doi.org/10.1105/tpc.114.127373. (PMID: 10.1105/tpc.114.127373)
Piotrowska A, Bajguz A, Godlewska B, Czerpak R, Kaminska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (L.). Environ Exp Bot 66:507–513. https://doi.org/10.1016/j.envexpbot.2009.03.019. (PMID: 10.1016/j.envexpbot.2009.03.019)
Plenchette C, Morel C (1996) External phosphorus requirement of mycorrhizal and non-mycorrhizal barley and soybean plants. Biol Ferti Soils 21:303–308. https://doi.org/10.1007/BF00334907. (PMID: 10.1007/BF00334907)
Polyak YM, Bakina LG, Chugunova MV, Mayachkina NV, Gerasimov AO, Bure VM (2018) Effect of remediation strategies on biological activity of oil-contaminated soil - a field study. Int Biodet Biodegra 126:57–68. https://doi.org/10.1016/j.ibiod.2017.10.004. (PMID: 10.1016/j.ibiod.2017.10.004)
Popenda A (2014) Effect of redox potential on heavy metals and As behavior in dredged sediments. Desali Water Treat 52:3918–3927. https://doi.org/10.1080/19443994.2014.887449. (PMID: 10.1080/19443994.2014.887449)
Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. https://doi.org/10.1007/978-1-4419-9860-6&#95;4. (PMID: 10.1007/978-1-4419-9860-6_4)
Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Da P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177:465–474. https://doi.org/10.1016/j.jhazmat.2009.12.056. (PMID: 10.1016/j.jhazmat.2009.12.056)
Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167:1159–1169. https://doi.org/10.1016/j.plantsci.2004.06.016. (PMID: 10.1016/j.plantsci.2004.06.016)
Ren XM, Guo SJ, Tian W, Chen Y, Han H, Chen E, Li BL, Li YY, Chen ZJ (2019) Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Front Microbiol 10:1455. https://doi.org/10.3389/fmicb.2019.01455. (PMID: 10.3389/fmicb.2019.01455)
Rodriguez RJ, White JFJ, Arnold AE, Redman ARS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x. (PMID: 10.1111/j.1469-8137.2009.02773.x)
Rozpądek P, Wężowicz K, Nosek M, Ważny R, Tokarz K, Lembicz M (2015) The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata L.). Planta 242:1025–1035. https://doi.org/10.1007/s00425-015-2337-x. (PMID: 10.1007/s00425-015-2337-x)
Santos JV, Varón-López M, Soares CR, Leal PL, Siqueira JO, Moreira FMS (2016) Biological attributes of rehabilitated soils contaminated with heavy metals. Environ Sci Pollut Res 23:6735–6748. https://doi.org/10.1007/s11356-015-5904-6. (PMID: 10.1007/s11356-015-5904-6)
Sarathambal C, Khankhane PJ, Gharde Y, Kumar B, Varun M, Arun S (2017) The effect of plant growth promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Int J Phytorem 19:360–370. https://doi.org/10.1080/15226514.2016.1225289. (PMID: 10.1080/15226514.2016.1225289)
Sarkar S, Dey A, Kumar V, Batiha GES, El-Esawi MA, Tomczyk M, Ray P (2021) Fungal endophyte: an interactive endosymbiont with the capability of modulating host physiology in myriad ways. Front Plant Sci 12:701800. https://doi.org/10.3389/fpls.2021.701800. (PMID: 10.3389/fpls.2021.701800)
Shah MM, Grover T, Aust SD (1992) On the mechanism of the inhibition of the veratryl alcohol oxidase activity of lignin peroxidase by EDTA. J Biol Chem 267:21564–21569. https://doi.org/10.1016/s0021-9258(19)36647-5. (PMID: 10.1016/s0021-9258(19)36647-5)
Shahabivand S, Parvaneh A, Aliloo AA (2017) Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicol Environ Saf 145:496–502. https://doi.org/10.1016/j.ecoenv.2017.07.064. (PMID: 10.1016/j.ecoenv.2017.07.064)
Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. In: Whitacre D (ed) Reviews of environmental contamination and toxicology, vol 232. Springer, Cham, pp 1–44. https://doi.org/10.1007/978-3-319-06746-9&#95;1. (PMID: 10.1007/978-3-319-06746-9_1)
Shui G, Leong LP (2002) Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. J Chromat A 977:89–96. https://doi.org/10.1016/S0021-9673(02)01345-6. (PMID: 10.1016/S0021-9673(02)01345-6)
Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf 62:118–127. https://doi.org/10.1016/j.ecoenv.2004.12.026. (PMID: 10.1016/j.ecoenv.2004.12.026)
Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macropyte Najas indica W. are related to antioxidant system. Bioresour Technol 101:3025–3032. https://doi.org/10.1016/j.biortech.2009.12.031. (PMID: 10.1016/j.biortech.2009.12.031)
Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London.
Sprocati AR, Alisi C, Segre L, Tasso F, Galletti M, Cremisini C (2006) Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. Sci Total Environ 366:649–658. https://doi.org/10.1016/j.scitotenv.2006.01.025. (PMID: 10.1016/j.scitotenv.2006.01.025)
Subramanian KS, Virgine TJS, Jayalakshmi K, Ramachandran V (2011) Antioxidant enzyme activities in arbuscular mycorrhizal (Glomus intraradices) fungus inoculated and non-inoculated maize plants under zinc deficiency. Indian J Microbiol 51:37–43. https://doi.org/10.1007/s12088-011-0078-5. (PMID: 10.1007/s12088-011-0078-5)
Sun X, Zhang J, Zhang H, Ni Y, Zhang Q, Chen J, Guan Y (2010) The responses of Arabidopsis thaliana L. to cadmium exposure explored via metabolite profiling. Chemosphere 78:840–845. https://doi.org/10.1016/j.chemosphere.2009.11.045. (PMID: 10.1016/j.chemosphere.2009.11.045)
Tang K, Zhan JC, Yang HR, Huang WD (2010) Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. J Plant Physiol 167:95–102. https://doi.org/10.1016/j.jplph.2009.07.011. (PMID: 10.1016/j.jplph.2009.07.011)
Teklić T, Hancock JT, Engler M, Parađiković N, Cesar V, Lepedus H, Štolfa I, Bešlo D (2008) Antioxidative responses in radish (Raphanus sativus L.) plants stressed by copper and lead in nutrient solution and soil. Acta Biol Crac Ser Bot 50:79–86.
Tinker PB (1975) Soil chemistry of phosphorus and mycorrhizal effects on plant growth. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, New York, pp 353–371.
Trouvelot A, Kough J, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthode d’estimation ayant une signification fonctionnelle. Paper presented at the Physiological and Genetical Aspects of Mycorrhizae: Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, 1–5 July 1985.
Ullah R, Hadi F, Ahmad S, Jan AU, Rongliang Q (2019) Phytoremediation of lead and chromium contaminated soil improves with the endogenous phenolics and proline production in Parthenium, Cannabis, Euphorbia, and Rumex species. Water Air Soil Pollut 230:40. https://doi.org/10.1007/s11270-019-4089-x. (PMID: 10.1007/s11270-019-4089-x)
USEPA (1996) Method 3050B. Acid digestion of sediments, sludges, and soils. US-EPA, Washington, DC.
Vanhoudt N, Vandenhove H, Horemans N, Wannijn J, Bujanic A, Vangronsveld J, Cuypers A (2010a) Study of oxidative stress related responses induced in Arabidopsis thaliana L. following mixed exposure to uranium and cadmium. Plant Physiol Biochem 48:879–886. https://doi.org/10.1016/j.plaphy.2010.08.005. (PMID: 10.1016/j.plaphy.2010.08.005)
Vanhoudt N, Vandenhove H, Horemans N, Wannijn J, Van Hees M, Vangronsveld J, Cuypers A (2010b) The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana L. J Environ Radioac 101:923–930. https://doi.org/10.1016/j.jenvrad.2010.06.008. (PMID: 10.1016/j.jenvrad.2010.06.008)
Venkatachalam P, Jayalakshmi N, Geetha N, Sahi SV, Sharma NC, Rene ER, Sarkar SK, Favas PJC (2017) Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere 171:544–553. https://doi.org/10.1016/j.chemosphere.2016.12.092. (PMID: 10.1016/j.chemosphere.2016.12.092)
Vergara C, Araujo KEC, Urquiaga S, Schultz N, de Carvalho BF, Medeiros PS (2017) Dark septate endophytic fungi help tomato to acquire nutrients from ground plant material. Front Microbiol 8:2437. https://doi.org/10.3389/fmicb.2017.02437. (PMID: 10.3389/fmicb.2017.02437)
Vyslouzilova M, Tlustos P, Szakova J, Pavlıkova D (2003) As, Cd, Pb and Zn uptake by Salix sp., clones grown in soils enriched by high loads of these elements. Plant Soil Environ 49:191–196. https://doi.org/10.17221/4112-PSE. (PMID: 10.17221/4112-PSE)
Wang MX, Zhang QL, Yao SJ (2015) A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chem Engine J 259:837–844. https://doi.org/10.1016/j.cej.2014.08.003. (PMID: 10.1016/j.cej.2014.08.003)
Wang JL, Li T, Liu GY, Smith JM, Zhao ZW (2016) Unraveling the role of dark septateendophyte (DSE) colonizing maize (Zea mays L.) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028. https://doi.org/10.1038/srep22028. (PMID: 10.1038/srep22028)
Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773. https://doi.org/10.3390/molecules170910754. (PMID: 10.3390/molecules170910754)
Wilke BM (2005) Determination of chemical and physical soil properties. In: Margesin R, Schinner F (eds) Manual for soil analysis-monitoring and assessing soil bioremediation, vol 5. Springer-Verlag, Berlin, pp 47–95. https://doi.org/10.1007/3-540-28904-6&#95;2. (PMID: 10.1007/3-540-28904-6_2)
Wu C, Li B, Wei Q, Pan R, Zhang W (2019) Endophytic fungus Serendipita indica increased nutrition absorption and biomass accumulation in Cunninghamia lanceolata L. seedlings under low phosphate. Acta Ecol Sin 39:21–29. https://doi.org/10.1016/j.chnaes.2018.06.005. (PMID: 10.1016/j.chnaes.2018.06.005)
Xia C, Li N, Zhang X, Feng Y, Christensen MJ, Nan Z (2016) An Epichloë endophyte improves photosynthetic ability and drymatter production of its host Achnatherum inebrians H. infected by Blumeria graminis under various soil water conditions. Fungal Ecol 22:26–34. https://doi.org/10.1016/j.funeco.2016.04.002. (PMID: 10.1016/j.funeco.2016.04.002)
Yihui B, Zhouying X, Yurong Y, Zhang H, Hui C, Ming T (2017) Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L.). Pedosphere 27:283–292. https://doi.org/10.1016/S1002-0160(17)60316-3. (PMID: 10.1016/S1002-0160(17)60316-3)
Yu H, Zhang F, Wang G, Liu Y, Liu D (2013) Partial deficiency of isoleucine impairs root development and alters transcript levels of the genes involved in branched-chain amino acid and glucosinolate metabolism in Arabidopsis. J Experi Bot 64:599–612. https://doi.org/10.1093/jxb/ers352. (PMID: 10.1093/jxb/ers352)
Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91. https://doi.org/10.1016/j.envpol.2010.09.019. (PMID: 10.1016/j.envpol.2010.09.019)
Zhu YG, Christie P, Laidlaw AS (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42:193–199. https://doi.org/10.1016/S0045-6535(00)00125-9. (PMID: 10.1016/S0045-6535(00)00125-9)
فهرسة مساهمة: Keywords: Prosopis juliflora; Bioaugmentation; Fungal inoculum; Heavy metal contamination; Landfill soil; Plant metabolites
المشرفين على المادة: 0 (Soil Pollutants)
0 (Metals, Heavy)
0 (Soil)
تواريخ الأحداث: Date Created: 20240401 Date Completed: 20240429 Latest Revision: 20240429
رمز التحديث: 20240429
DOI: 10.1007/s11356-024-33018-1
PMID: 38561536
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-33018-1