دورية أكاديمية

Interactions between microsporidia and other members of the microbiome.

التفاصيل البيبلوغرافية
العنوان: Interactions between microsporidia and other members of the microbiome.
المؤلفون: Tersigni J; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada., Tamim El Jarkass H; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada., James EB; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada., Reinke AW; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
المصدر: The Journal of eukaryotic microbiology [J Eukaryot Microbiol] 2024 Apr 01, pp. e13025. Date of Electronic Publication: 2024 Apr 01.
Publication Model: Ahead of Print
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 9306405 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1550-7408 (Electronic) Linking ISSN: 10665234 NLM ISO Abbreviation: J Eukaryot Microbiol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2010->: Hoboken, NJ : Wiley
Original Publication: Lawrence, Kan. : Society of Protozoologists, c1993-
مستخلص: The microbiome is the collection of microbes that are associated with a host. Microsporidia are intracellular eukaryotic parasites that can infect most types of animals. In the last decade, there has been much progress to define the relationship between microsporidia and the microbiome. In this review, we cover an increasing number of reports suggesting that microsporidia are common components of the microbiome in both invertebrates and vertebrates. These microsporidia infections can range from mutualistic to pathogenic, causing several physiological phenotypes, including death. Infection with microsporidia often causes a disruption in the normal microbiome, with both increases and decreases of bacterial, fungal, viral, and protozoan species being observed. This impact on the microbiome can occur through upregulation and downregulation of innate immunity as well as morphological changes to tissues that impact interactions with these microbes. Other microbes, particularly bacteria, can inhibit microsporidia and have been exploited to control microsporidia infections. These bacteria can function through regulating immunity, secreting anti-microsporidia compounds, and, in engineered versions, expressing double-stranded RNA targeting microsporidia genes. We end this review by discussing potential future directions to further understand the complex interactions between microsporidia and the other members of the microbiome.
(© 2024 The Authors. Journal of Eukaryotic Microbiology published by Wiley Periodicals LLC on behalf of International Society of Protistologists.)
References: Abdel‐Ghaffar, F., Bashtar, A.‐R., Mehlhorn, H., AL‐Rasheid, K. & Morsy, K. (2011) Microsporidian parasites: a danger facing marine fishes of the Red Sea. Parasitology Research, 108, 219–225.
Alberoni, D., Di Gioia, D. & Baffoni, L. (2023) Alterations in the microbiota of caged honeybees in the presence of Nosema ceranae infection and related changes in functionality. Microbial Ecology, 86, 601–616.
Alberoni, D., Gaggìa, F., Baffoni, L. & Di Gioia, D. (2016) Beneficial microorganisms for honey bees: problems and progresses. Applied Microbiology and Biotechnology, 100, 9469–9482.
An, G., Tang, Y., Mo, B., Ran, M., He, X., Bao, J. et al. (2020) Characterization of a murine model for Encephalitozoon hellem infection after dexamethasone immunosuppression. Microorganisms, 8, 1891.
Andrearczyk S., Kadhim M. & Knaga S. 2014. Influence of a probiotic on the mortality, sugar syrup ingestion and infection of honeybees with Nosema spp. under laboratory assessment. Medycyna Weterynaryjna.
Aranguren, C.L.F., Mai, H.N., Cruz‐Florez, R., Marcos, F.L.A., Alenton, R.R.R. & Dhar, A.K. (2021) Experimental reproduction of White feces syndrome in whiteleg shrimp, Penaeus vannamei. PLoS One, 16, e0261289.
Arbulo, N., Antúnez, K., Salvarrey, S., Santos, E., Branchiccela, B., Martín‐Hernández, R. et al. (2015) High prevalence and infection levels of Nosema ceranae in bumblebees Bombus atratus and Bombus bellicosus from Uruguay. Journal of Invertebrate Pathology, 130, 165–168.
Arismendi, N., Caro, S., Castro, M.P., Vargas, M., Riveros, G. & Venegas, T. (2020) Impact of mixed infections of gut parasites Lotmaria passim and Nosema ceranae on the lifespan and immune‐related biomarkers in Apis mellifera. Insects, 11, 420.
Arredondo, D., Castelli, L., Porrini, M.P., Garrido, P.M., Eguaras, M.J., Zunino, P. et al. (2018) Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae. Beneficial Microbes, 9, 279–290.
Audisio, M.C., Sabaté, D.C. & Benítez‐Ahrendts, M.R. (2015) Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Beneficial Microbes, 6, 687–695.
Aufauvre, J., Misme‐Aucouturier, B., Viguès, B., Texier, C., Delbac, F. & Blot, N. (2014) Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One, 9, e91686.
Baffoni, L., Gaggìa, F., Alberoni, D., Cabbri, R., Nanetti, A., Biavati, B. et al. (2016) Effect of dietary supplementation of Bifidobacterium and lactobacillus strains in Apis mellifera L. against Nosema ceranae. Beneficial Microbes, 7, 45–51.
Balla, K.M., Luallen, R.J., Bakowski, M.A. & Troemel, E.R. (2016) Cell‐to‐cell spread of microsporidia causes Caenorhabditis elegans organs to form syncytia. Nature Microbiology, 1, 16144.
Bauer, L.S., Miller, D.L., Maddox, J.V. & McManus, M.L. (1998) Interactions between a Nosema sp. (Microspora: Nosematidae) and nuclear Polyhedrosis virus infecting the gypsy Moth, Lymantria dispar(Lepidoptera: Lymantriidae). Journal of Invertebrate Pathology, 72, 147–153.
Ben‐Ami, F., Rigaud, T. & Ebert, D. (2011) The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies. Journal of Evolutionary Biology, 24, 1307–1316.
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.‐C.C., Charles, T. et al. (2020) Microbiome definition re‐visited: old concepts and new challenges. Microbiome, 8, 103.
Biju, N., Sathiyaraj, G., Raj, M., Shanmugam, V., Baskaran, B., Govindan, U. et al. (2016) High prevalence of Enterocytozoon hepatopenaei in shrimps Penaeus monodon and Litopenaeus vannamei sampled from slow growth ponds in India. Diseases of Aquatic Organisms, 120, 225–230.
Bojko, J., Reinke, A.W., Stentiford, G.D., Williams, B., Rogers, M.S.J. & Bass, D. (2022) Microsporidia: a new taxonomic, evolutionary, and ecological synthesis. Trends in Parasitology, Available from: https://www.cell.com/trends/parasitology/abstract/S1471‐4922(22)00110‐6, 38, 642–659.
Borges, D., Guzman‐Novoa, E. & Goodwin, P.H. (2021) Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms, 9, 481.
Bosmans, L., Pozo, M.I., Verreth, C., Crauwels, S., Wilberts, L., Sobhy, I.S. et al. (2018) Habitat‐specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris). PLoS One, 13, e0204612.
Brogden, K.A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews. Microbiology, 3, 238–250.
Cariveau, D.P., Elijah, P.J., Koch, H., Winfree, R. & Moran, N.A. (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). The ISME Journal, 8, 2369–2379.
Castelli, L., Branchiccela, B., Garrido, M., Invernizzi, C., Porrini, M., Romero, H. et al. (2020) Impact of nutritional stress on honeybee gut microbiota, immunity, and Nosema ceranae infection. Microbial Ecology, 80, 908–919.
Chaimanee, V., Chantawannakul, P., Chen, Y., Evans, J.D. & Pettis, J.S. (2012) Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. Journal of Insect Physiology, 58, 1090–1095.
Cheng, H.‐Y., Ning, M.‐X., Chen, D.‐K. & Ma, W.‐T. (2019) Interactions between the gut microbiota and the host innate immune response against pathogens. Frontiers in Immunology, 10, 607. Available from: https://doi.org/10.3389/fimmu.2019.00607.
Corby‐Harris, V., Snyder, L., Meador, C.A.D., Naldo, R., Mott, B. & Anderson, K.E. (2016) Parasaccharibacter apium, gen. Nov., sp. nov., improves honey bee (hymenoptera: Apidae) resistance to Nosema. Journal of Economic Entomology, 109, 537–543.
Costa, C., Tanner, G., Lodesani, M., Maistrello, L. & Neumann, P. (2011) Negative correlation between Nosema ceranae spore loads and deformed wing virus infection levels in adult honey bee workers. Journal of Invertebrate Pathology, 108, 224–225.
Desjardins, C.A., Sanscrainte, N.D., Goldberg, J.M., Heiman, D., Young, S., Zeng, Q. et al. (2015) Contrasting host–pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes. Nature Communications, 6, 7121.
Deutsch, K.R., Graham, J.R., Boncristiani, H.F., Bustamante, T., Mortensen, A.N., Schmehl, D.R. et al. (2023) Widespread distribution of honey bee‐associated pathogens in native bees and wasps: trends in pathogen prevalence and co‐occurrence. Journal of Invertebrate Pathology, 200, 107973.
Dierking, K., Yang, W. & Schulenburg, H. (2016) Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda. Philosophical Transactions of the Royal Society, B: Biological Sciences, 371, 20150299.
Ding, Z., Pan, J., Huang, H., Jiang, G., Chen, J., Zhu, X. et al. (2018) An integrated metabolic consequence of Hepatospora eriocheir infection in the Chinese mitten crab Eriocheir sinensis. Fish & Shellfish Immunology, 72, 443–451.
Dolgikh, V.V., Tsarev, A.A., Timofeev, S.A. & Zhuravlyov, V.S. (2019) Heterologous overexpression of active hexokinases from microsporidia Nosema bombycis and Nosema ceranae confirms their ability to phosphorylate host glucose. Parasitology Research, 118, 1511–1518.
Doublet, V., Labarussias, M., de Miranda, J.R., Moritz, R.F.A. & Paxton, R.J. (2015) Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environmental Microbiology, 17, 969–983.
Dussaubat, C., Brunet, J.‐L., Higes, M., Colbourne, J.K., Lopez, J., Choi, J.‐H. et al. (2012) Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS One, 7, e37017.
Dziuba M.K., K.M. McIntire, K Seto, ES. Davenport, MA. Rogalski, CD. Gowler, et al. (2023). Phylogeny, morphology, virulence, ecology, and host range of Ordospora pajunii (Ordosporidae), a microsporidian symbiont of Daphnia spp. bioRxiv. Available from: https://doi.org/10.1101/2023.04.21.537887.
El Khoury, S., Rousseau, A., Lecoeur, A., Cheaib, B., Bouslama, S., Mercier, P.‐L. et al. (2018) Deleterious interaction between honeybees (Apis mellifera) and its microsporidian intracellular parasite Nosema ceranae was mitigated by administrating either endogenous or Allochthonous gut microbiota strains. Frontiers in Ecology and Evolution, 6, 58. Available from: https://doi.org/10.3389/fevo.2018.00058.
El‐Dougdoug, N.K., Magistrado, D. & Short, S.M. (2024) An obligate microsporidian parasite modulates defense against opportunistic bacterial infection in the yellow fever mosquito, Aedes Aegypti. mSphere, 9(2), e00678‐23.
Elzinga, J., van der Oost, J., de Vos, W.M. & Smidt, H. (2019) The use of defined microbial communities to model host‐microbe interactions in the human gut. Microbiology and Molecular Biology Reviews, 83, 10–1128. Available from: https://doi.org/10.1128/mmbr.00054‐18.
Estes, K.A., Szumowski, S.C. & Troemel, E.R. (2011) Non‐lytic, Actin‐based exit of intracellular parasites from C. elegans intestinal cells. PLoS Pathogens, 7, e1002227.
Fernandez De Landa, G., Alberoni, D., Baffoni, L., Fernandez De Landa, M., Revainera, P.D., Porrini, L.P. et al. (2023) The gut microbiome of solitary bees is mainly affected by pathogen assemblage and partially by land use. Environmental Microbiomes, 18, 38.
Figueiredo, A.R.T. & Kramer, J. (2020) Cooperation and conflict within the microbiota and their effects on animal hosts. Frontiers in Ecology and Evolution, 8, 132. Available from: https://doi.org/10.3389/fevo.2020.00132.
Flores, J., Takvorian, P.M., Weiss, L.M., Cali, A. & Gao, N. (2021) Human microsporidian pathogen Encephalitozoon intestinalis impinges on enterocyte membrane trafficking and signaling. Journal of Cell Science, 134, jcs253757.
Formato, G., Rivera‐Gomis, J., Bubnic, J., Martín‐Hernández, R., Milito, M., Croppi, S. et al. (2022) Nosemosis prevention and control. Applied Sciences, 12, 783.
Franchet, A., Niehus, S., Caravello, G. & Ferrandon, D. (2019) Phosphatidic acid as a limiting host metabolite for the proliferation of the microsporidium Tubulinosema ratisbonensis in drosophila flies. Nature Microbiology, 4, 645–655.
Franzen, C. (2008) Microsporidia: a review of 150 years of research. TOPARAJ, 2, 1–34.
Gisder, S., Schüler, V., Horchler, L.L., Groth, D. & Genersch, E. (2017) Long‐term temporal trends of Nosema spp. infection prevalence in Northeast Germany: continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but no general replacement of Nosema apis. Frontiers in Cellular and Infection Microbiology, 7. 301. Available from: https://doi.org/10.3389/fcimb.2017.00301.
Haine, E.R., Brondani, E., Hume, K.D., Perrot‐Minnot, M.‐J., Gaillard, M. & Rigaud, T. (2004) Coexistence of three microsporidia parasites in populations of the freshwater amphipod Gammarus roeseli: evidence for vertical transmission and positive effect on reproduction. International Journal for Parasitology, 34, 1137–1146.
Han, B. & Weiss, L.M. (2017) Microsporidia: obligate intracellular pathogens within the fungal kingdom. Microbiology Spectrum, 5(2), 101–128. Available from: https://doi.org/10.1128/microbiolspec.funk‐0018–2016.
Han, B., Pan, G., & Weiss, L.M. (2021). Microsporidiosis in Humans. Clinical Microbiology Reviews, 34, e00010‐20.
Hedtke, K., Jensen, P.M., Jensen, A.B. & Genersch, E. (2011) Evidence for emerging parasites and pathogens influencing outbreaks of stress‐related diseases like chalkbrood. Journal of Invertebrate Pathology, 108, 167–173.
Hegedus, D., Erlandson, M., Gillott, C., & Toprak, U. (2009). New insights into peritrophic matrix synthesis, architecture, and function. Annual review of entomology, 54, 285–302. Available from:https://doi.org/10.1146/annurev.ento.54.110807.090559.
Herren, J.K., Mbaisi, L., Mararo, E., Makhulu, E.E., Mobegi, V.A., Butungi, H. et al. (2020) A microsporidian impairs plasmodium falciparum transmission in anopheles arabiensis mosquitoes. Nature Communications, 11, 2187.
Higes, M., Juarranz, Á., Dias‐Almeida, J., Lucena, S., Botías, C., Meana, A. et al. (2013) Apoptosis in the pathogenesis of Nosema ceranae (microsporidia: Nosematidae) in honey bees (Apis mellifera). Environmental Microbiology Reports, 5, 530–536.
Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B. et al. (2014) The international scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514.
Hou, K., Wu, Z.‐X., Chen, X.‐Y., Wang, J.‐Q., Zhang, D., Xiao, C. et al. (2022) Microbiota in health and diseases. Signal Transduction and Targeted Therapy, 7, 1–28.
Huang, Q., Chen, J., Pan, G. & Reinke, A.W. (2023) Screening of the pandemic response box identifies anti‐microsporidia compounds. PLoS Neglected Tropical Diseases, 17, e0011806.
Huang, Q., Lariviere, P.J., Powell, J.E. & Moran, N.A. (2023) Engineered gut symbiont inhibits microsporidian parasite and improves honey bee survival. Proceedings of the National Academy of Sciences of the United States of America, 120(25), e2220922120.
Huang, S.K., Ye, K.T., Huang, W.F., Ying, B.H., Su, X., Lin, L.H. et al. (2018) Influence of feeding type and Nosema ceranae infection on the gut microbiota of Apis cerana workers. mSystems, 3, e00177‐18.
Hubert, J., Bicianova, M., Ledvinka, O., Kamler, M., Lester, P.J., Nesvorna, M. et al. (2017) Changes in the Bacteriome of honey bees associated with the parasite Varroa destructor, and pathogens Nosema and Lotmaria passim. Microbial Ecology, 73, 685–698.
Hui, S., Dou, Y., Haolan, L., Qiao, Y., Jiang, G., Wan, X. et al. (2022) Changes in the intestinal microbiota of Pacific white shrimp (Litopenaeus vannamei) with different severities of Enterocytozoon hepatopenaei infection. Journal of Invertebrate Pathology, 191, 107763.
Huiyu, S., Zhang, X., Qian, D., Chen, J. & Xiong, J. (2022) Pathobiology of Enterocytozoon hepatopenaei (EHP) in shrimp: diagnosis and interpretation from the gut bacterial community. Aquaculture, 554, 738169.
Jabal‐Uriel, C., Barrios, L., Bonjour‐Dalmon, A., Caspi‐Yona, S., Chejanovsly, N., Erez, T. et al. (2022) Epidemiology of the microsporidium Nosema ceranae in four Mediterranean countries. Insects, 13, 844.
Jiang, J., Qu, R., Grigorescu, M., Zhao, W. & Reinke, A.W. (2024) Functional consequences of reductive protein evolution in a minimal eukaryotic genome. bioRxiv. 2023.12.31.573788.
Jin, J., Tang, Y., Cao, L., Wang, X., Chen, Y., An, G. et al. (2023) Microsporidia persistence in host impairs epithelial barriers and increases chances of inflammatory bowel disease. Microbiology Spectrum, 12(2), e0361023.
Katznelson, H. & Jamieson, C.A. (1952) Control of Nosema disease of honeybees with Fumagillin. Science, 115, 70–71.
Koch, H., Cisarovsky, G. & Schmid‐Hempel, P. (2012) Ecological effects on gut bacterial communities in wild bumblebee colonies. Journal of Animal Ecology, 81, 1202–1210.
Koch, H. & Schmid‐Hempel, P. (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences, 108, 19288–19292.
Kralj, J. & Fuchs, S. (2010) Nosema sp. influences flight behavior of infected honey bee (Apis mellifera) foragers. Apidologie, 41, 21–28.
Kurze, C., Le Conte, Y., Kryger, P., Lewkowski, O., Müller, T. & Moritz, R.F.A. (2018) Infection dynamics of Nosema ceranae in honey bee midgut and host cell apoptosis. Journal of Invertebrate Pathology, 154, 1–4.
Lang, H., Wang, H., Wang, H., Zhong, Z., Xie, X., Zhang, W. et al. (2023) Engineered symbiotic bacteria interfering Nosema redox system inhibit microsporidia parasitism in honeybees. Nature Communications, 14, 2778.
Leitch, G.J. & Ceballos, C. (2009) A role for antimicrobial peptides in intestinal microsporidiosis. Parasitology, 136, 175–181.
Li, J., Qin, H., Wu, J., Sadd, B.M., Wang, X., Evans, J.D. et al. (2012) The prevalence of parasites and pathogens in Asian honeybees Apis cerana in China. PLoS One, 7, e47955.
Li, J.H., Evans, J.D., Li, W.F., Zhao, Y.Z., DeGrandi‐Hoffman, G., Huang, S.K. et al. (2017) New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee's vulnerability to Nosema infection. PLoS One, 12, e0187505.
Liang, G. & Bushman, F.D. (2021) The human virome: assembly, composition and host interactions. Nature Reviews Microbiology, 19, 514–527.
Lopez, M.I., Pettis, J.S., Smith, I.B. & Chu, P.‐S. (2008) Multiclass determination and confirmation of antibiotic residues in honey using LC‐MS/MS. Journal of Agricultural and Food Chemistry, 56, 1553–1559.
López‐Carvallo, J.A., Cruz‐Flores, R. & Dhar, A.K. (2022) The emerging pathogen Enterocytozoon hepatopenaei drives a degenerative cyclic pattern in the hepatopancreas microbiome of the shrimp (Penaeus vannamei). Scientific Reports, 12, 14766.
Lopez‐Ezquerra, A., Mitschke, A., Bornberg‐Bauer, E. & Joop, G. (2018) Tribolium castaneum gene expression changes after Paranosema whitei infection. Journal of Invertebrate Pathology, 153, 92–98.
Luallen, R.J., Reinke, A.W., Tong, L., Botts, M.R., Felix, M.‐A. & Troemel, E.R. (2016) Discovery of a natural microsporidian pathogen with a broad tissue tropism in Caenorhabditis elegans. PLoS Pathogens, 12, e1005724.
MacInnis, C.I., Luong, L.T. & Pernal, S.F. (2023) A tale of two parasites: responses of honey bees infected with Nosema ceranae and Lotmaria passim. Scientific Reports, 13, 22515.
Maes, P.W., Rodrigues, P.A.P., Oliver, R., Mott, B.M. & Anderson, K.E. (2016) Diet‐related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Molecular Ecology, 25, 5439–5450.
Martin, S.J., Hardy, J., Villalobos, E., Martín‐Hernández, R., Nikaido, S. & Higes, M. (2013) Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically? Environmental Microbiology Reports, 5, 506–510.
Martín‐Hernández, R., Bartolomé, C., Chejanovsky, N., Conte, Y.L., Dalmon, A., Dussaubat, C. et al. (2018) Nosema ceranae in Apis mellifera: a 12 years postdetection perspective. Environmental Microbiology, 20, 1302–1329.
Martín‐Hernández, R., Higes, M., Sagastume, S., Juarranz, Á., Dias‐Almeida, J., Budge, G.E. et al. (2017) Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis. PLoS One, 12, e0170183.
Matijašić, M., Meštrović, T., Čipčić, P.H., Perić, M., Barešić, A. & Verbanac, D. (2020) Gut microbiota beyond bacteria—Mycobiome, Virome, Archaeome, and eukaryotic parasites in IBD. International Journal of Molecular Sciences, 21, 2668.
Mok, C., Xiao, M.A., Wan, Y.C., Zhao, W., Ahmed, S.M., Luallen, R.J. et al. (2023) High‐throughput phenotyping of infection by diverse microsporidia species reveals a wild C. elegans strain with opposing resistance and susceptibility traits. PLoS Pathogens, 19, e1011225.
Moratal, S., Magnet, A., Izquierdo, F., del Águila, C., López‐Ramon, J. & Dea‐Ayuela, M.A. (2023) Microsporidia in commercially harvested marine fish: a potential health risk for consumers. Animals, 13, 2673.
Mossallam, S.F., Amer, E.I. & Diab, R.G. (2014) Potentiated anti‐microsporidial activity of lactobacillus acidophilus CH1 bacteriocin using gold nanoparticles. Experimental Parasitology, 144, 14–21.
Munkongwongsiri, N., Prachumwat, A., Eamsaard, W., Lertsiri, K., Flegel, T.W., Stentiford, G.D. et al. (2022) Propionigenium and vibrio species identified as possible component causes of shrimp white feces syndrome (WFS) associated with the microsporidian Enterocytozoon hepatopenaei. Journal of Invertebrate Pathology, 192, 107784.
Murareanu, B.M., Antao, N.V., Zhao, W., Dubuffet, A., El Alaoui, H., Knox, J. et al. (2022) High‐throughput small molecule screen identifies inhibitors of microsporidia invasion and proliferation in C. elegans. Nature Communications, 13, 5653.
Murareanu, B.M., Sukhdeo, R., Qu, R., Jiang, J. & Reinke, A.W. (2021) Generation of a microsporidia species attribute database and analysis of the extensive ecological and phenotypic diversity of microsporidia. MBio, 12, e0149021. Available from: https://doi.org/10.1128/mbio.01490‐21.
Naree, S., Ellis, J.D., Benbow, M.E. & Suwannapong, G. (2022) Experimental Nosema ceranae infection is associated with microbiome changes in the midguts of four species of Apis (honey bees). Journal of Apicultural Research, 61, 435–447.
Natsopoulou, M.E., McMahon, D.P., Doublet, V., Bryden, J. & Paxton, R.J. (2015) Interspecific competition in honeybee intracellular gut parasites is asymmetric and favours the spread of an emerging infectious disease. Proceedings of the Royal Society B: Biological Sciences, 282, 20141896.
Ning, M., Huang, Y., Cao, X., Shen, H., Gu, W., Ren, X. et al. (2024) The shrimp C‐type lectins modulate intestinal microbiota homeostasis in microsporidia infection. Aquaculture, 581, 740435.
Ning, M., Wei, P., Shen, H., Wan, X., Jin, M., Li, X. et al. (2019) Proteomic and metabolomic responses in hepatopancreas of whiteleg shrimp Litopenaeus vannamei infected by microsporidian Enterocytozoon hepatopenaei. Fish & Shellfish Immunology, 87, 534–545.
Ojala, T., Häkkinen, A.‐E., Kankuri, E. & Kankainen, M. (2023) Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics. Trends in Genetics, 39, 686–702.
O'Keeffe, F.E., Pendleton, R.C., Holland, C.V. & Luijckx, P. (2024) Increased virulence due to multiple infection in Daphnia leads to limited growth in 1 of 2 co‐infecting microsporidian parasites. Parasitology, 151, 58–67.
Paldi, N., Glick, E., Oliva, M., Zilberberg, Y., Aubin, L., Pettis, J. et al. (2010) Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) Colony declines. Applied and Environmental Microbiology, 76, 5960–5964.
Panek, J., Paris, L., Roriz, D., Mone, A., Dubuffet, A., Delbac, F. et al. (2018) Impact of the microsporidian Nosema ceranae on the gut epithelium renewal of the honeybee, Apis mellifera. Journal of Invertebrate Pathology, 159, 121–128.
Panjad, P., Yongsawas, R., Sinpoo, C., Pakwan, C., Subta, P., Krongdang, S. et al. (2021) Impact of Nosema disease and American foulbrood on gut bacterial communities of honeybees Apis mellifera. Insects, 12, 525.
Paris, L., Peghaire, E., Moné, A., Diogon, M., Debroas, D., Delbac, F. et al. (2020) Honeybee gut microbiota dysbiosis in pesticide/parasite co‐exposures is mainly induced by Nosema ceranae. Journal of Invertebrate Pathology, 172, 107348.
Perlman, D., Martínez‐Álvaro, M., Moraïs, S., Altshuler, I., Hagen, L.H., Jami, E. et al. (2022) Concepts and consequences of a Core gut microbiota for animal growth and development. Annual Review of Animal Biosciences, 10, 177–201.
Pilarska, D.K., Solter, L.F., Kereselidze, M., Linde, A. & Hoch, G. (2006) Microsporidian infections in Lymantria dispar larvae: interactions and effects of multiple species infections on pathogen horizontal transmission. Journal of Invertebrate Pathology, 93, 105–113.
Porrini, M.P., Audisio, M.C., Sabaté, D.C., Ibarguren, C., Medici, S.K., Sarlo, E.G. et al. (2010) Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitology Research, 107, 381–388.
Ptaszyńska, A., Borsuk, G., Zdybicka‐Barabas, A., Cytryńska, M. & Małek, W. (2016) Are commercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C? Parasitology Research, 115, 397–406.
Ptaszyńska, A., Grzegorz, B., Mułenko, W. & Wilk, J. (2016) Impact of vertebrate probiotics on honeybee yeast microbiota and on the course of nosemosis. Medycyna Weterynaryjna, 72, 430–434.
Ptaszyńska, A.A., Paleolog, J. & Borsuk, G. (2016) Nosema ceranae infection promotes proliferation of yeasts in honey bee intestines. PLoS One, 11, e0164477.
Pyle, J.D., Keeling, P.J. & Nibert, M.L. (2017) Amalga‐like virus infecting Antonospora locustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Research, 233, 95–104.
Rajendran K. V., Shivam S., Ezhil P.P., Joseph Sahaya Rajan J., Sathish K.T., Avunje S., Jagadeesan V., et al., 2016. Emergence of Enterocytozoon hepatopenaei (EHP) in farmed Penaeus (Litopenaeus) vannamei in India. Aquaculture, 454:272–280.
Rode, N.O., Lievens, E.J.P., Segard, A., Flaven, E., Jabbour‐Zahab, R. & Lenormand, T. (2013) Cryptic microsporidian parasites differentially affect invasive and native Artemia spp. International Journal for Parasitology, 43, 795–803.
Rogalski, M.A., Stewart, M.T., Gowler, C.D., Cáceres, C.E. & Duffy, M.A. (2021) Context‐dependent host‐symbiont interactions: shifts along the parasitism‐mutualism continuum. The American Naturalist, 198, 563–575.
Ross, A.A., Rodrigues, H.A. & Neufeld, J.D. (2019) The skin microbiome of vertebrates. Microbiome, 7, 79.
Rouzé, R., Moné, A., Delbac, F., Belzunces, L. & Blot, N. (2019) The honeybee gut microbiota is altered after chronic exposure to different families of insecticides and infection by Nosema ceranae. Microbes and Environments, 34, 226–233.
Ruan, Y., Xu, X., He, Q., Li, L., Guo, J., Bao, J. et al. (2021) The largest meta‐analysis on the global prevalence of microsporidia in mammals, avian and water provides insights into the epidemic features of these ubiquitous pathogens. Parasites & Vectors, 14, 186.
Rubanov, A., Russell, K.A., Rothman, J.A., Nieh, J.C. & McFrederick, Q.S. (2019) Intensity of Nosema ceranae infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. Scientific Reports, 9, 3820.
Ryan, J.A. & Kohler, S.L. (2010) Virulence is context‐dependent in a vertically transmitted aquatic host–microparasite system. International Journal for Parasitology, 40, 1665–1673.
Sabaté, D.C., Cruz, M.S., Benítez‐Ahrendts, M.R. & Audisio, M.C. (2012) Beneficial effects of Bacillus subtilis subsp. subtilis Mori2, a honey‐associated strain, on honeybee Colony performance. Probiotics and Antimicrobial Proteins, 4, 39–46.
Sanders, J.L., Watral, V. & Kent, M.L. (2012) Microsporidiosis in zebrafish research facilities. ILAR Journal, 53, 106–113.
Sbaghdi, T., Garneau, J.R., Yersin, S., Chaucheyras‐Durand, F., Bocquet, M., Moné, A. et al. (2024) The response of the honey bee gut microbiota to Nosema ceranae is modulated by the probiotic Pediococcus acidilactici and the neonicotinoid Thiamethoxam. Microorganisms, 12, 192.
Schwarz, R.S. & Evans, J.D. (2013) Single and mixed‐species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Developmental & Comparative Immunology, 40, 300–310.
Shen, H., Qiao, Y., Wan, X., Jiang, G., Fan, X., Li, H. et al. (2019) Prevalence of shrimp microsporidian parasite Enterocytozoon hepatopenaei in Jiangsu Province, China. Aquaculture International, 27, 675–683.
Shi, W., Guo, Y., Xu, C., Tan, S., Miao, J., Feng, Y. et al. (2014) Unveiling the mechanism by which microsporidian parasites prevent locust swarm behavior. Proceedings of the National Academy of Sciences of the United States of America, 111, 1343–1348.
Strauss, A.T., Suh, D.C., Galbraith, K., Coker, S.M., Schroeder, K., Brandon, C. et al. (2023) Mysterious microsporidians: springtime outbreaks of disease in Daphnia communities in shallow pond ecosystems. Oecologia, 204, 303–314. Available from: https://doi.org/10.1007/s00442‐023‐05421‐x.
Subash, P., Uma, A. & Ahilan, B. (2022) Early responses in Penaeus vannamei during experimental infection with Enterocytozoon hepatopenaei (EHP) spores by injection and oral routes. Journal of Invertebrate Pathology, 190, 107740.
Sui, Y., Tong, C., Li, X., Zheng, L., Guo, Y., Lu, Y. et al. (2021) Molecular detection and genotyping of Enterocytozoon bieneusi in captive foxes in Xinxiang, Central China and its impact on gut bacterial communities. Research in Veterinary Science, 141, 138–144.
Suraporn, S. & Terenius, O. (2021) Supplementation of lactobacillus casei reduces the mortality of Bombyx mori larvae challenged by Nosema bombycis. BMC Research Notes, 14, 398.
Taghipour, A., Ghodsian, S., Jabbari, M., Rajabpour, V., Bahadory, S., Malih, N. et al. (2023) The global epidemiology of microsporidia infection in birds: a systematic review and meta‐analysis. International Journal of Environmental Health Research, 1–17.
Tamim El Jarkass, H. & Reinke, A.W. (2020) The ins and outs of host‐microsporidia interactions during invasion, proliferation and exit. Cellular Microbiology, 22, e13247.
Tan, S., Zhang, K., Chen, H., Ge, Y., Ji, R. & Shi, W. (2015) The mechanism for microsporidian parasite suppression of the hindgut bacteria of the migratory locust Locusta migratoria manilensis. Scientific Reports, 5, 17365.
Tan, S.‐Q., Yin, Y., Cao, K.‐L., Zhao, X.‐X., Wang, X.‐Y., Zhang, Y.‐X. et al. (2021) Effects of a combined infection with Paranosema locustae and Beauveria bassiana on Locusta migratoria and its gut microflora. Insect Science, 28, 347–354.
Tang, K.F.J., Han, J.E., Aranguren, L.F., White‐Noble, B., Schmidt, M.M., Piamsomboon, P. et al. (2016) Dense populations of the microsporidian Enterocytozoon hepatopenaei (EHP) in feces of Penaeus vannamei exhibiting white feces syndrome and pathways of their transmission to healthy shrimp. Journal of Invertebrate Pathology, 140, 1–7.
Tecle, E. & Troemel, E.R. (2022) Insights from C. elegans into microsporidia biology and host‐pathogen relationships. Experientia. Supplementum, 114, 115–136.
Terry, R.S., Smith, J.E., Sharpe, R.G., Rigaud, T., Littlewood, D.T.J., Ironside, J.E. et al. (2004) Widespread vertical transmission and associated host sex–ratio distortion within the eukaryotic phylum Microspora. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, 1783–1789.
Tlak, G.I., Nejedli, S. & Cvetnić, L. (2023) Influence of probiotic feed supplement on Nosema spp. infection level and the gut microbiota of adult honeybees (Apis mellifera L.). Microorganisms, 11, 610.
Tritschler, M., Retschnig, G., Yañez, O., Williams, G.R. & Neumann, P. (2017) Host sharing by the honey bee parasites Lotmaria passim and Nosema ceranae. Ecology and Evolution, 7, 1850–1857.
Troemel, E.R., Félix, M.‐A., Whiteman, N.K., Barrière, A. & Ausubel, F.M. (2008) Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans. PLoS Biology, 6, 2736–2752.
Trzebny, A., Mizera, J. & Dabert, M. (2023) Microsporidians (microsporidia) parasitic on mosquitoes (Culicidae) in central Europe are often multi‐host species. Journal of Invertebrate Pathology, 197, 107873.
Trzebny, A., Slodkowicz‐Kowalska, A., Becnel, J.J., Sanscrainte, N. & Dabert, M. (2020) A new method of metabarcoding microsporidia and their hosts reveals high levels of microsporidian infections in mosquitoes (Culicidae). Molecular Ecology Resources, 20, 1486–1504.
Trzebny, A., Slodkowicz‐Kowalska, A., Björkroth, J. & Dabert, M. (2023) Microsporidian infection in mosquitoes (Culicidae) is associated with gut microbiome composition and predicted gut microbiome functional content. Microbial Ecology, 85, 247–263.
Ubeda, C., Djukovic, A. & Isaac, S. (2017) Roles of the intestinal microbiota in pathogen protection. Clinical & Translational Immunology, 6, e128.
Wadi, L., El Jarkass, H.T., Tran, T.D., Islah, N., Luallen, R.J. & Reinke, A.W. (2023) Genomic and phenotypic evolution of nematode‐infecting microsporidia. PLoS Pathogens, 19, e1011510.
Wadi, L. & Reinke, A.W. (2020) Evolution of microsporidia: An extremely successful group of eukaryotic intracellular parasites. PLoS Pathogens, 16, e1008276.
Wang, Y., Chen, J., Na, Y., Li, X., Zhou, J., Fang, W. et al. (2023) Ecytonucleospora hepatopenaei n. gen. Et comb. (microsporidia: Enterocytozoonidae): a redescription of the Enterocytozoon hepatopenaei (Tourtip et al., 2009), a microsporidian infecting the widely cultivated shrimp Penaeus vannamei. Journal of Invertebrate Pathology, 201, 107988.
Willis, A.R. & Reinke, A.W. (2022) Factors that determine microsporidia infection and host specificity. Experientia. Supplementum, 114, 91–114.
Willis, A.R., Zhao, W., Sukhdeo, R., Burton, N.O. & Reinke, A.W. (2023) Parental dietary vitamin B12 causes intergenerational growth acceleration and protects offspring from pathogenic microsporidia and bacteria. biorxiv. Available from: https://doi.org/10.1101/2023.09.05.556441v1.
Willis, A.R., Zhao, W., Sukhdeo, R., Wadi, L., El Jarkass, H.T., Claycomb, J.M. et al. (2021) A parental transcriptional response to microsporidia infection induces inherited immunity in offspring. Science Advances, 7, eabf3114.
Wu, Y., Zheng, Y., Chen, Y., Chen, G., Zheng, H. & Hu, F. (2020) Apis cerana gut microbiota contribute to host health though stimulating host immune system and strengthening host resistance to Nosema ceranae. Royal Society Open Science, 7, 192100.
Xie, J. & Jiang, D. (2014) New insights into Mycoviruses and exploration for the biological control of crop fungal diseases. Annual Review of Phytopathology, 52, 45–68.
Yue, Y.‐J., Tang, X.‐D., Xu, L., Yan, W., Li, Q.‐L., Xiao, S.‐Y. et al. (2015) Early responses of silkworm midgut to microsporidium infection—a digital gene expression analysis. Journal of Invertebrate Pathology, 124, 6–14.
Zhang, G., Sachse, M., Prevost, M.‐C., Luallen, R.J., Troemel, E.R. & Félix, M.‐A. (2016) A large collection of novel nematode‐infecting microsporidia and their diverse interactions with Caenorhabditis elegans and other related nematodes. PLoS Pathogens, 12, e1006093.
Zhang, X., Feng, H., He, J., Liang, X., Zhang, N., Shao, Y. et al. (2022) The gut commensal bacterium enterococcus faecalis LX10 contributes to defending against Nosema bombycis infection in Bombyx mori. Pest Management Science, 78, 2215–2227.
Zhang, Y., Lu, X., Huang, S., Zhang, L., Su, S. & Huang, W.‐F. (2019) Nosema ceranae infection enhances Bifidobacterium spp. abundances in the honey bee hindgut. Apidologie, 50, 353–362.
Zhang, Y., Su, M., Wang, L., Huang, S., Su, S. & Huang, W.‐F. (2021) Vairimorpha (Nosema) ceranae infection alters honey bee microbiota composition and sustains the survival of adult honey bees. Biology, 10, 905.
Zheng, H.‐Q., Gong, H.‐R., Huang, S.‐K., Sohr, A., Hu, F.‐L. & Chen, Y.P. (2015) Evidence of the synergistic interaction of honey bee pathogens Nosema ceranae and deformed wing virus. Veterinary Microbiology, 177, 1–6.
معلومات مُعتمدة: 400784 Canada CAPMC CIHR
فهرسة مساهمة: Keywords: bacteria; fungus; infection; microbiome; microsporidia; protist; virus
تواريخ الأحداث: Date Created: 20240402 Latest Revision: 20240402
رمز التحديث: 20240402
DOI: 10.1111/jeu.13025
PMID: 38561869
قاعدة البيانات: MEDLINE
الوصف
تدمد:1550-7408
DOI:10.1111/jeu.13025