دورية أكاديمية

Factors associated with pathologic myopia onset and progression: A systematic review and meta-analysis.

التفاصيل البيبلوغرافية
العنوان: Factors associated with pathologic myopia onset and progression: A systematic review and meta-analysis.
المؤلفون: Yii F; Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.; Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK., Nguyen L; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK., Strang N; Department of Vision Sciences, Glasgow Caledonian University, Glasgow, UK., Bernabeu MO; Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK.; The Bayes Centre, The University of Edinburgh, Edinburgh, UK., Tatham AJ; Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.; Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, UK., MacGillivray T; Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.; Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK., Dhillon B; Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.; Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.; Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, UK.
المصدر: Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians (Optometrists) [Ophthalmic Physiol Opt] 2024 Jul; Vol. 44 (5), pp. 963-976. Date of Electronic Publication: 2024 Apr 02.
نوع المنشور: Journal Article; Systematic Review; Meta-Analysis; Review
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishers Country of Publication: England NLM ID: 8208839 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1475-1313 (Electronic) Linking ISSN: 02755408 NLM ISO Abbreviation: Ophthalmic Physiol Opt Subsets: MEDLINE
أسماء مطبوعة: Publication: 2002- : Oxford : Blackwell Publishers
Original Publication: Oxford ; New York : Pergamon Press, c1981-
مواضيع طبية MeSH: Myopia, Degenerative*/physiopathology , Myopia, Degenerative*/epidemiology , Myopia, Degenerative*/diagnosis , Disease Progression*, Humans ; Risk Factors ; Refraction, Ocular/physiology
مستخلص: Purpose: To synthesise evidence across studies on factors associated with pathologic myopia (PM) onset and progression based on the META-analysis for Pathologic Myopia (META-PM) classification framework.
Methods: Findings from six longitudinal studies (5-18 years) were narratively synthesised and meta-analysed, using odds ratio (OR) as the common measure of association. All studies adjusted for baseline myopia, age and sex at a minimum. The quality of evidence was rated using the Grades of Recommendation, Assessment, Development and Evaluation framework.
Results: Five out of six studies were conducted in Asia. There was inconclusive evidence of an independent effect (or lack thereof) of ethnicity and sex on PM onset/progression. The odds of PM onset increased with greater axial length (pooled OR: 2.03; 95% CI: 1.71-2.40; p < 0.001), older age (pooled OR: 1.07; 1.05-1.09; p < 0.001) and more negative spherical equivalent refraction, SER (OR: 0.77; 0.68-0.87; p < 0.001), all of which were supported by an acceptable level of evidence. Fundus tessellation was found to independently increase the odds of PM onset in a population-based study (OR: 3.02; 2.58-3.53; p < 0.001), although this was only supported by weak evidence. There was acceptable evidence that greater axial length (pooled OR: 1.23; 1.09-1.39; p < 0.001), more negative SER (pooled OR: 0.87; 0.83-0.92; p < 0.001) and higher education level (pooled OR: 3.17; 1.36-7.35; p < 0.01) increased the odds of PM progression. Other baseline factors found to be associated with PM progression but currently supported by weak evidence included age (pooled OR: 1.01), severity of myopic maculopathy (OR: 3.61), intraocular pressure (OR: 1.62) and hypertension (OR: 0.21).
Conclusions: Most PM risk/prognostic factors are not supported by an adequate evidence base at present (an indication that PM remains understudied). Current factors for which an acceptable level of evidence exists (limited in number) are unmodifiable in adults and lack personalised information. More longitudinal studies focusing on uncovering modifiable factors and imaging biomarkers are warranted.
(© 2024 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.)
References: Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye. I. The posterior fundus. Trans Am Ophthalmol Soc. 1970;68:312–334.
Ohno‐Matsui K, Kawasaki R, Jonas JB, Cheung CM, Saw SM, Verhoeven VJ, et al. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol. 2015;159:877–883.e7.
Fredrick DR. Myopia. BMJ. 2002;324:1195–1199.
Paluru PC, Nallasamy S, Devoto M, Rappaport EF, Young TL. Identification of a novel locus on 2q for autosomal dominant high‐grade myopia. Invest Ophthalmol Vis Sci. 2005;46:2300–2307.
Young TL, Ronan SM, Alvear AB, Wildenberg SC, Oetting WS, Atwood LD, et al. A second locus for familial high myopia maps to chromosome 12q. Am J Hum Genet. 1998;63:1419–1424.
Ohno‐Matsui K, Lai TY, Lai CC, Cheung CM. Updates of pathologic myopia. Prog Retin Eye Res. 2016;52:156–187.
Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–1042.
Xu L, Wang Y, Li Y, Cui T, Li J, Jonas JB. Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study. Ophthalmology. 2006;113:1134.e1–1134.e11.
Hsu WM, Cheng CY, Liu JH, Tsai SY, Chou P. Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan: the Shihpai Eye Study. Ophthalmology. 2004;111:62–69.
Iwase A, Araie M, Tomidokoro A, Yamamoto T, Shimizu H, Kitazawa Y, et al. Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi Study. Ophthalmology. 2006;113:1354–1362.
Yamada M, Hiratsuka Y, Roberts CB, Pezzullo ML, Yates K, Takano S, et al. Prevalence of visual impairment in the adult Japanese population by cause and severity and future projections. Ophthalmic Epidemiol. 2010;17:50–57.
Fricke TR, Jong M, Naidoo KS, Sankaridurg P, Naduvilath TJ, Ho SM, et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta‐analysis and modelling. Br J Ophthalmol. 2018;102:855–862.
Naidoo KS, Fricke TR, Frick KD, Jong M, Naduvilath TJ, Resnikoff S, et al. Potential lost productivity resulting from the global burden of myopia: systematic review, meta‐analysis, and modeling. Ophthalmology. 2019;126:338–346.
Fenwick EK, Ong PG, Sabanayagam C, Rees G, Xie J, Holloway E, et al. Assessment of the psychometric properties of the Chinese Impact of Vision Impairment Questionnaire in a population‐based study: findings from the Singapore Chinese Eye Study. Qual Life Res. 2016;25:871–880.
Wong YL, Sabanayagam C, Ding Y, Wong CW, Yeo AC, Cheung YB, et al. Prevalence, risk factors, and impact of myopic macular degeneration on visual impairment and functioning among adults in Singapore. Invest Ophthalmol Vis Sci. 2018;59:4603–4613.
Avila MP, Weiter JJ, Jalkh AE, Trempe CL, Pruett RC, Schepens CL. Natural history of choroidal neovascularization in degenerative myopia. Ophthalmology. 1984;91:1573–1581.
Tokoro T, editor. Types of fundus changes in the posterior pole. Atlas of posterior fundus changes in pathologic myopia. Tokyo: Springer‐Verlag; 1998. p. 5–22.
Hayashi K, Ohno‐Matsui K, Shimada N, Moriyama M, Kojima A, Hayashi W, et al. Long‐term pattern of progression of myopic maculopathy: a natural history study. Ophthalmology. 2010;117:1595–1611, 1611.e1–4.
Chen SJ, Cheng CY, Li AF, Peng KL, Chou P, Chiou SH, et al. Prevalence and associated risk factors of myopic maculopathy in elderly Chinese: the Shihpai eye study. Invest Ophthalmol Vis Sci. 2012;53:4868–4873.
Asakuma T, Yasuda M, Ninomiya T, Noda Y, Arakawa S, Hashimoto S, et al. Prevalence and risk factors for myopic retinopathy in a Japanese population: the Hisayama Study. Ophthalmology. 2012;119:1760–1765.
Liu HH, Xu L, Wang YX, Wang S, You QS, Jonas JB. Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing Eye Study. Ophthalmology. 2010;117:1763–1768.
Moons KG, Hooft L, Williams K, Hayden JA, Damen JA, Riley RD. Implementing systematic reviews of prognosis studies in Cochrane. Cochrane Database Syst Rev. 2018;10:ED000129. https://doi.org/10.1002/14651858.ED000129.
Riley RD, Moons KGM, Snell KIE, Ensor J, Hooft L, Altman DG, et al. A guide to systematic review and meta‐analysis of prognostic factor studies. BMJ. 2019;364:k4597. https://doi.org/10.1136/bmj.k4597.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.
Ohno‐Matsui K, Wu PC, Yamashiro K, Vutipongsatorn K, Fang Y, Cheung CMG, et al. IMI pathologic myopia. Invest Ophthalmol Vis Sci. 2021;62:ARVO E‐Abstract 5.
Ingui BJ, Rogers MA. Searching for clinical prediction rules in MEDLINE. J Am Med Inform Assoc. 2001;8:391–397.
Biesheuvel CJ, Vergouwe Y, Oudega R, Hoes AW, Grobbee DE, Moons KG. Advantages of the nested case–control design in diagnostic research. BMC Med Res Methodol. 2008;8:48. https://doi.org/10.1186/1471‐2288‐8‐48.
Song JW, Chung KC. Observational studies: cohort and case–control studies. Plast Reconstr Surg. 2010;126:2234–2242.
Flitcroft DI, He M, Jonas JB, Jong M, Naidoo K, Ohno‐Matsui K, et al. IMI—defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Invest Ophthalmol Vis Sci. 2019;60:M20–M30.
Fang Y, Yokoi T, Nagaoka N, Shinohara K, Onishi Y, Ishida T, et al. Progression of myopic maculopathy during 18‐year follow‐up. Ophthalmology. 2018;125:863–877.
Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158:280–286.
Higgins JP, Li T, Deeks JJ. Chapter 6: Choosing effect measures and computing estimates of effect. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al., editors. Cochrane handbook for systematic reviews of interventions. 2nd ed. Chichester (UK): John Wiley & Sons; 2019. p. 143–176.
Deeks J, Higgins J, Altman D. Chapter 10: Analysing data and undertaking meta‐analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al., editors. Cochrane handbook for systematic reviews of interventions. 2nd ed. Chichester (UK): John Wiley & Sons; 2019. p. 241–284.
Grant RL. Converting an odds ratio to a range of plausible relative risks for better communication of research findings. BMJ. 2014;348:f7450. https://doi.org/10.1136/bmj.f7450.
Prasad K, Jaeschke R, Wyer P, Keitz S, Guyatt G, Group E‐BMTTW. Tips for teachers of evidence‐based medicine: understanding odds ratios and their relationship to risk ratios. J Gen Intern Med. 2008;23:635–640.
DerSimonian R, Laird N. Meta‐analysis in clinical trials. Control Clin Trials. 1986;7:177–188.
Jackson D, Turner R. Power analysis for random‐effects meta‐analysis. Res Synth Methods. 2017;8:290–302.
Dettori JR, Norvell DC, Chapman JR. Fixed‐effect vs random‐effects models for meta‐analysis: 3 points to consider. Global Spine J. 2022;12:1624–1626.
Huguet A, Hayden JA, Stinson J, McGrath PJ, Chambers CT, Tougas ME, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev. 2013;2:71. https://doi.org/10.1186/2046‐4053‐2‐71.
Hayden JA, Côté P, Steenstra IA, Bombardier C, Group Q‐LW. Identifying phases of investigation helps planning, appraising, and applying the results of explanatory prognosis studies. J Clin Epidemiol. 2008;61:552–560.
Foo LL, Xu L, Sabanayagam C, Htoon HM, Ang M, Zhang J, et al. Predictors of myopic macular degeneration in a 12‐year longitudinal study of Singapore adults with myopia. Br J Ophthalmol. 2022;107:1363–1368.
Hopf S, Heidt F, Korb CA, Schulz A, Münzel T, Wild PS, et al. Five‐year cumulative incidence and progression of myopic maculopathy in a German population. Ophthalmology. 2022;129:562–570.
Lin C, Li SM, Ohno‐Matsui K, Wang BS, Fang YX, Cao K, et al. Five‐year incidence and progression of myopic maculopathy in a rural Chinese adult population: the Handan Eye Study. Ophthalmic Physiol Opt. 2018;38:337–345.
Ueda E, Yasuda M, Fujiwara K, Hashimoto S, Ohno‐Matsui K, Hata J, et al. Five‐year incidence of myopic maculopathy in a general Japanese population: the Hisayama Study. JAMA Ophthalmol. 2020;138:887–893.
Wong YL, Sabanayagam C, Wong CW, Cheung YB, Man REK, Yeo AC, et al. Six‐year changes in myopic macular degeneration in adults of the Singapore Epidemiology of Eye Diseases Study. Invest Ophthalmol Vis Sci. 2020;61:ARVO E‐Abstract 14.
Liang YB, Friedman DS, Wong TY, Wang FH, Duan XR, Yang XH, et al. Rationale, design, methodology, and baseline data of a population‐based study in rural China: the Handan Eye Study. Ophthalmic Epidemiol. 2009;16:115–127.
Höhn R, Kottler U, Peto T, Blettner M, Münzel T, Blankenberg S, et al. The ophthalmic branch of the Gutenberg Health Study: study design, cohort profile and self‐reported diseases. PLoS One. 2015;10:e0120476. https://doi.org/10.1371/journal.pone.0120476.
Hata J, Ninomiya T, Hirakawa Y, Nagata M, Mukai N, Gotoh S, et al. Secular trends in cardiovascular disease and its risk factors in Japanese: half‐century data from the Hisayama Study (1961–2009). Circulation. 2013;128:1198–1205.
Yasuda M, Kiyohara Y, Hata Y, Arakawa S, Yonemoto K, Doi Y, et al. Nine‐year incidence and risk factors for age‐related macular degeneration in a defined Japanese population the Hisayama Study. Ophthalmology. 2009;116:2135–2140.
Majithia S, Tham YC, Chee ML, Nusinovici S, Teo CL, Thakur S, et al. Cohort profile: The Singapore Epidemiology of Eye Diseases study (SEED). Int J Epidemiol. 2021;50:41–52.
Cox LA. Modernizing the Bradford Hill criteria for assessing causal relationships in observational data. Crit Rev Toxicol. 2018;48:682–712.
Altman DG, Lyman GH. Methodological challenges in the evaluation of prognostic factors in breast cancer. Breast Cancer Res Treat. 1998;52:289–303.
Morgan IG, Wu PC, Ostrin LA, Tideman JWL, Yam JC, Lan W, et al. IMI risk factors for myopia. Invest Ophthalmol Vis Sci. 2021;62:ARVO E‐Abstract 3.
Yan YN, Wang YX, Yang Y, Xu L, Xu J, Wang Q, et al. Ten‐year progression of myopic maculopathy: the Beijing Eye Study 2001–2011. Ophthalmology. 2018;125:1253–1263.
Choudhury F, Meuer SM, Klein R, Wang D, Torres M, Jiang X, et al. Prevalence and characteristics of myopic degeneration in an adult Chinese American population: the Chinese American Eye Study. Am J Ophthalmol. 2018;187:34–42.
Gao LQ, Liu W, Liang YB, Zhang F, Wang JJ, Peng Y, et al. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: the Handan Eye Study. Arch Ophthalmol. 2011;129:1199–1204.
Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology. 2002;109:704–711.
Coco‐Martin RM, Belani‐Raju M, De La Fuente‐Gomez D, Sanabria MR, Fernández I. Progression of myopic maculopathy in a Caucasian cohort of highly myopic patients with long follow‐up: a multistate analysis. Graefes Arch Clin Exp Ophthalmol. 2021;259:81–92.
Zou M, Wang S, Chen A, Liu Z, Young CA, Zhang Y, et al. Prevalence of myopic macular degeneration worldwide: a systematic review and meta‐analysis. Br J Ophthalmol. 2020;104:1748–1754.
Wong YL, Zhu X, Tham YC, Yam JCS, Zhang K, Sabanayagam C, et al. Prevalence and predictors of myopic macular degeneration among Asian adults: pooled analysis from the Asian Eye Epidemiology Consortium. Br J Ophthalmol. 2021;105:1140–1148.
Cheng T, Deng J, Xu X, Zhang B, Wang J, Xiong S, et al. Prevalence of fundus tessellation and its associated factors in Chinese children and adolescents with high myopia. Acta Ophthalmol. 2021;99:e1524–e1533.
Itoi M, Hieda O, Kusada N, Miyatani T, Kojima K, Sotozono C. Progression of myopic maculopathy: a systematic review and meta‐analysis. Eye Contact Lens. 2023;49:83–87.
Lee CS, Lee AY, Baughman D, Sim D, Akelere T, Brand C, et al. The United Kingdom Diabetic Retinopathy Electronic Medical Record Users Group: report 3: baseline retinopathy and clinical features predict progression of diabetic retinopathy. Am J Ophthalmol. 2017;180:64–71.
Chew EY, Clemons TE, Agrón E, Sperduto RD, Sangiovanni JP, Davis MD, et al. Ten‐year follow‐up of age‐related macular degeneration in the age‐related eye disease study: AREDS report no. 36. JAMA Ophthalmol. 2014;132:272–277.
Rao HL, Kumar AU, Babu JG, Senthil S, Garudadri CS. Relationship between severity of visual field loss at presentation and rate of visual field progression in glaucoma. Ophthalmology. 2011;118:249–253.
Cook SF, Bies RR. Disease progression modeling: key concepts and recent developments. Curr Pharmacol Rep. 2016;2:221–230.
Del Buey MA, Lavilla L, Ascaso FJ, Lanchares E, Huerva V, Cristóbal JA. Assessment of corneal biomechanical properties and intraocular pressure in myopic Spanish healthy population. J Ophthalmol. 2014;2014:905129. https://doi.org/10.1155/2014/905129.
Wong YZ, Lam AK. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: a pilot study. Curr Eye Res. 2015;40:282–289.
Sedaghat MR, Momeni‐Moghaddam H, Azimi A, Fakhimi Z, Ziaei M, Danesh Z, et al. Corneal biomechanical properties in varying severities of myopia. Front Bioeng Biotechnol. 2020;8:595330. https://doi.org/10.3389/fbioe.2020.595330.
Ang GS, Bochmann F, Townend J, Azuara‐Blanco A. Corneal biomechanical properties in primary open angle glaucoma and normal tension glaucoma. J Glaucoma. 2008;17:259–262.
Sun L, Shen M, Wang J, Fang A, Xu A, Fang H, et al. Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle‐closure glaucoma. Am J Ophthalmol. 2009;147:1061–1066, 1066.e1–2.
Jammal AA, Medeiros FA. Corneal hysteresis: ready for prime time? Curr Opin Ophthalmol. 2022;33:243–249.
Ruiz‐Medrano J, Montero JA, Flores‐Moreno I, Arias L, García‐Layana A, Ruiz‐Moreno JM. Myopic maculopathy: current status and proposal for a new classification and grading system (ATN). Prog Retin Eye Res. 2019;69:80–115.
Wang P, Chen S, Liu Y, Lin F, Song Y, Li T, et al. Lowering intraocular pressure: a potential approach for controlling high myopia progression. Invest Ophthalmol Vis Sci. 2021;62:17. https://doi.org/10.1167/iovs.62.14.17.
Sarao V, Veritti D, Macor S, Lanzetta P. Intravitreal bevacizumab for choroidal neovascularization due to pathologic myopia: long‐term outcomes. Graefes Arch Clin Exp Ophthalmol. 2016;254:445–454.
Ruiz‐Moreno JM, Montero JA, Araiz J, Arias L, García‐Layana A, Carneiro A, et al. Intravitreal anti‐vascular endothelial growth factor therapy for choroidal neovascularization secondary to pathologic myopia: six years outcome. Retina. 2015;35:2450–2456.
Kasahara K, Moriyama M, Morohoshi K, Yoshida T, Simada N, Nagaoka N, et al. Six‐year outcomes of intravitreal bevacizumab for choroidal neovascularization in patients with pathologic myopia. Retina. 2017;37:1055–1064.
Saw SM, Matsumura S, Hoang QV. Prevention and management of myopia and myopic pathology. Invest Ophthalmol Vis Sci. 2019;60:488–499.
Li Y, Foo LL, Wong CW, Li J, Hoang QV, Schmetterer L, et al. Pathologic myopia: advances in imaging and the potential role of artificial intelligence. Br J Ophthalmol. 2022;107:600–606.
Li Y, Zheng F, Foo LL, Wong QY, Ting D, Hoang QV, et al. Advances in OCT imaging in myopia and pathologic myopia. Diagnostics. 2022;12:1418. https://doi.org/10.3390/diagnostics12061418.
European Society of Radiology (ESR). Medical imaging in personalised medicine: a white paper of the research committee of the European Society of Radiology (ESR). Insights Imaging. 2015;6:141–155.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444.
Varadarajan AV, Poplin R, Blumer K, Angermueller C, Ledsam J, Chopra R, et al. Deep learning for predicting refractive error from retinal fundus images. Invest Ophthalmol Vis Sci. 2018;59:2861–2868.
Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2:158–164.
Li Z, Wang W, Liu R, Wang D, Zhang J, Xiao O, et al. Choroidal thickness predicts progression of myopic maculopathy in high myopes: a 2‐year longitudinal study. Br J Ophthalmol. 2021;105:1744–1750.
معلومات مُعتمدة: MR/N013166/1 United Kingdom MRC_ Medical Research Council
فهرسة مساهمة: Keywords: META‐PM; epidemiology; longitudinal; pathologic myopia; prognostic factors; risk factors
تواريخ الأحداث: Date Created: 20240402 Date Completed: 20240610 Latest Revision: 20240610
رمز التحديث: 20240611
DOI: 10.1111/opo.13312
PMID: 38563652
قاعدة البيانات: MEDLINE
الوصف
تدمد:1475-1313
DOI:10.1111/opo.13312