دورية أكاديمية

ESR2-HDA6 complex negatively regulates auxin biosynthesis to delay callus initiation in Arabidopsis leaf explants during tissue culture.

التفاصيل البيبلوغرافية
العنوان: ESR2-HDA6 complex negatively regulates auxin biosynthesis to delay callus initiation in Arabidopsis leaf explants during tissue culture.
المؤلفون: Lee K; Department of Chemistry, Seoul National University, Seoul 08826, Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea., Yoon H; Interdisciplinary Program in Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea., Park OS; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea., Lim J; Department of Biological Sciences, KAIST, Daejeon 34141, Korea., Kim SG; Department of Biological Sciences, KAIST, Daejeon 34141, Korea., Seo PJ; Department of Chemistry, Seoul National University, Seoul 08826, Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea; Interdisciplinary Program in Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea. Electronic address: pjseo1@snu.ac.kr.
المصدر: Plant communications [Plant Commun] 2024 Jul 08; Vol. 5 (7), pp. 100892. Date of Electronic Publication: 2024 Apr 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Published by the Plant Communications Shanghai Office in association with Cell Press, an imprint of Elsevier Inc Country of Publication: China NLM ID: 101769147 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2590-3462 (Electronic) Linking ISSN: 25903462 NLM ISO Abbreviation: Plant Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Shanghai] : Published by the Plant Communications Shanghai Office in association with Cell Press, an imprint of Elsevier Inc., [2020]-
مواضيع طبية MeSH: Arabidopsis*/genetics , Arabidopsis*/metabolism , Arabidopsis Proteins*/metabolism , Arabidopsis Proteins*/genetics , Indoleacetic Acids*/metabolism , Plant Leaves*/metabolism, 2,4-Dichlorophenoxyacetic Acid/metabolism ; 2,4-Dichlorophenoxyacetic Acid/pharmacology ; Gene Expression Regulation, Plant ; Histone Deacetylases/metabolism ; Histone Deacetylases/genetics ; Tissue Culture Techniques ; Transcription Factors/metabolism ; Transcription Factors/genetics
مستخلص: Plants exhibit an astonishing ability to regulate organ regeneration upon wounding. Excision of leaf explants promotes the biosynthesis of indole-3-acetic acid (IAA), which is polar-transported to excised regions, where cell fate transition leads to root founder cell specification to induce de novo root regeneration. The regeneration capacity of plants has been utilized to develop in vitro tissue culture technologies. Here, we report that IAA accumulation near the wounded site of leaf explants is essential for callus formation on 2,4-dichlorophenoxyacetic acid (2,4-D)-rich callus-inducing medium (CIM). Notably, a high concentration of 2,4-D does not compensate for the action of IAA because of its limited efflux; rather, it lowers IAA biosynthesis via a negative feedback mechanism at an early stage of in vitro tissue culture, delaying callus initiation. The auxin negative feedback loop in CIM-cultured leaf explants is mediated by an auxin-inducible APETALA2 transcription factor, ENHANCER OF SHOOT REGENERATION 2 (ESR2), along with its interacting partner HISTONE DEACETYLASE 6 (HDA6). The ESR2-HDA6 complex binds directly to, and removes the H3ac mark from, the YUCCA1 (YUC1), YUC7, and YUC9 loci, consequently repressing auxin biosynthesis and inhibiting cell fate transition on 2,4-D-rich CIM. These findings indicate that negative feedback regulation of auxin biosynthesis by ESR2 and HDA6 interferes with proper cell fate transition and callus initiation.
(Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
References: Curr Opin Plant Biol. 2005 Oct;8(5):494-500. (PMID: 16054428)
Plant Physiol. 2017 Nov;175(3):1158-1174. (PMID: 28904073)
Development. 2007 Feb;134(4):681-90. (PMID: 17215297)
Front Plant Sci. 2017 Oct 26;8:1841. (PMID: 29123539)
Curr Opin Plant Biol. 2020 Oct;57:72-77. (PMID: 32738736)
New Phytol. 2021 Apr;230(2):535-549. (PMID: 33438224)
Plant Cell. 2014 Mar;26(3):1081-93. (PMID: 24642937)
J Exp Bot. 2018 Jan 4;69(2):303-312. (PMID: 28992080)
Curr Biol. 2013 Oct 21;23(20):1979-89. (PMID: 24120642)
Nature. 2005 May 26;435(7041):446-51. (PMID: 15917798)
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6910-6917. (PMID: 32152121)
Int J Mol Sci. 2019 Dec 16;20(24):. (PMID: 31888214)
Front Plant Sci. 2021 Oct 05;12:756968. (PMID: 34675956)
Front Plant Sci. 2018 Sep 13;9:1353. (PMID: 30271420)
Development. 2007 May;134(9):1653-62. (PMID: 17376809)
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3246-3251. (PMID: 28270611)
Front Plant Sci. 2018 Nov 13;9:1653. (PMID: 30483299)
Hortic Res. 2022 Jan 20;:. (PMID: 35048108)
Front Plant Sci. 2017 Aug 08;8:1385. (PMID: 28848586)
Plant Physiol. 2011 May;156(1):173-84. (PMID: 21398257)
Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a005546. (PMID: 20504967)
Environ Res. 2014 Aug;133:123-34. (PMID: 24926918)
Nucleic Acids Res. 2021 May 7;49(8):4613-4628. (PMID: 33836077)
J Exp Bot. 2018 Jan 4;69(2):155-167. (PMID: 28992266)
Curr Biol. 2015 Apr 20;25(8):1017-30. (PMID: 25819565)
Regeneration (Oxf). 2017 Aug 27;4(3):132-139. (PMID: 28975033)
Plant Cell. 2017 Aug;29(8):1970-1983. (PMID: 28778955)
Plant J. 2014 Feb;77(3):352-66. (PMID: 24299123)
Plant Biotechnol (Tokyo). 2022 Mar 25;39(1):43-50. (PMID: 35800968)
Plant Cell Physiol. 2018 Apr 1;59(4):734-743. (PMID: 29361138)
Nat Protoc. 2007;2(7):1565-72. (PMID: 17585298)
Plant Cell. 2017 Jan;29(1):54-69. (PMID: 28011694)
Nat Plants. 2018 Feb;4(2):108-115. (PMID: 29358751)
J Exp Bot. 2018 Jan 4;69(2):313-328. (PMID: 29237069)
EMBO J. 2013 Jan 9;32(1):149-58. (PMID: 23178590)
Mol Plant. 2013 Jul;6(4):1247-60. (PMID: 23271028)
PNAS Nexus. 2023 Jan 06;2(2):pgad002. (PMID: 36845349)
J Exp Bot. 2012 Jun;63(10):3815-27. (PMID: 22438304)
Plant Cell. 2017 Jun;29(6):1357-1372. (PMID: 28576846)
Planta. 2007 Oct;226(5):1183-94. (PMID: 17581762)
Cell Rep. 2021 Nov 9;37(6):109980. (PMID: 34758306)
Genes Dev. 2002 Dec 1;16(23):3100-12. (PMID: 12464638)
BMC Plant Biol. 2022 Mar 22;22(1):133. (PMID: 35317749)
Plant Cell Physiol. 2006 Nov;47(11):1443-56. (PMID: 17056621)
Plant Cell. 2016 Sep;28(9):2117-2130. (PMID: 27597774)
Plant Physiol. 2020 Aug;183(4):1780-1793. (PMID: 32554507)
Nature. 2007 Apr 5;446(7136):640-5. (PMID: 17410169)
Plant Mol Biol. 2007 Oct;65(3):219-32. (PMID: 17682829)
Plant Commun. 2022 Jul 11;3(4):100306. (PMID: 35605192)
Mol Plant Microbe Interact. 2018 Sep;31(9):899-902. (PMID: 29547357)
BMC Plant Biol. 2019 Jan 31;19(1):46. (PMID: 30704405)
Cell Res. 2012 Jul;22(7):1169-80. (PMID: 22508267)
Bio Protoc. 2020 Dec 05;10(23):e3832. (PMID: 33659482)
Plant Sci. 2011 Jul;181(1):39-46. (PMID: 21600396)
Nat Commun. 2014 Dec 19;5:5833. (PMID: 25524530)
Int J Mol Sci. 2021 Sep 30;22(19):. (PMID: 34638958)
Sci Rep. 2017 Oct 25;7(1):13992. (PMID: 29070794)
Mol Plant. 2016 Jan 4;9(1):101-112. (PMID: 26458873)
Plant Cell Rep. 2015 Aug;34(8):1343-52. (PMID: 25903543)
Plant Physiol. 2016 Dec;172(4):2363-2373. (PMID: 27784768)
J Exp Bot. 2016 Jul;67(14):4273-84. (PMID: 27255928)
Plant Cell. 2008 May;20(5):1189-98. (PMID: 18515500)
فهرسة مساهمة: Keywords: ESR2; HDA6; YUCCA; auxin biosynthesis; chromatin modification; negative feedback loop
المشرفين على المادة: 2577AQ9262 (2,4-Dichlorophenoxyacetic Acid)
0 (Arabidopsis Proteins)
EC 3.5.1.98 (Histone Deacetylases)
0 (Indoleacetic Acids)
0 (Transcription Factors)
0 (ESR2 protein, Arabidopsis)
EC 3.5.1.- (HDA6 protein, Arabidopsis)
تواريخ الأحداث: Date Created: 20240403 Date Completed: 20240709 Latest Revision: 20240802
رمز التحديث: 20240802
مُعرف محوري في PubMed: PMC11287192
DOI: 10.1016/j.xplc.2024.100892
PMID: 38566417
قاعدة البيانات: MEDLINE
الوصف
تدمد:2590-3462
DOI:10.1016/j.xplc.2024.100892