دورية أكاديمية

Chapare virus infection and current perspectives on dentistry.

التفاصيل البيبلوغرافية
العنوان: Chapare virus infection and current perspectives on dentistry.
المؤلفون: Guevara-Vega M; Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.; Biomedical Research Group, University of Sucre, Sincelejo, Colombia., Andrade BS; Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest of Bahia (UESB), Jequié, Bahia, Brazil. brandade@uesb.edu.co., Palmeira LS; Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest of Bahia (UESB), Jequié, Bahia, Brazil., Bernardino SS; Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil., Taveira EB; Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil., Cardoso-Sousa L; Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil., Caixeta DC; Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil., Cunha TM; Department of Pulmonology, School of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil., Goulart LR; Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil., Jardim ACG; Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil., Sabino-Silva R; Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil. robinsonsabino@gmail.com.; Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia (UFU), Av. Pará, 1720, Campus Umuarama, Uberlandia, MG, CEP 38400-902, Brazil. robinsonsabino@gmail.com.
المصدر: Clinical oral investigations [Clin Oral Investig] 2024 Apr 03; Vol. 28 (4), pp. 238. Date of Electronic Publication: 2024 Apr 03.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 9707115 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-3771 (Electronic) Linking ISSN: 14326981 NLM ISO Abbreviation: Clin Oral Investig
أسماء مطبوعة: Publication: Berlin : Springer-Verlag
Original Publication: Berlin : Springer, c1997-
مواضيع طبية MeSH: Computational Biology* , Hemorrhagic Fever, American*, Humans ; Health Personnel ; Dentistry
مستخلص: Objectives: This narrative review addresses relevant points about Chapare virus (CHAV) entry in oral cells, CHAV transmission, and preventive strategies in dental clinical settings. It is critical in dentistry due to the frequent presence of gingival hemorrhage occurred in CHAV-infected patients.
Materials and Methods: Studies related to CHAV were searched in MEDLINE/PubMed, Scopus, EMBASE, and Web-of-Science databases without language restriction or year of publication.
Results: Recently, the PAHO/WHO and CDC indicate a presence of human-to-human transmission of CHAV associated with direct contact with saliva, blood, or urine, and also through droplets or aerosols created in healthcare procedures. CHAV was detected in human oropharyngeal saliva and gingival bleeding was confirmed in all cases of CHAV hemorrhagic fever, including evidence of nosocomial CHAV transmission in healthcare workers. We revisited the human transferrin receptor 1 (TfR1) expression in oral, nasal, and salivary glands tissues, as well as, we firstly identified the critical residues in the pre-glycoprotein (GP) complex of CHAV that interacts with human TfR1 using cutting-edge in silico bioinformatics platforms associated with molecular dynamic analysis.
Conclusions: In this multidisciplinary view, we also point out critical elements to provide perspectives on the preventive strategies for dentists and frontline healthcare workers against CHAV, and in the implementation of salivary diagnostic platforms for virus detection, which can be critical to an urgent plan to prevent human-to-human transmission based on current evidence.
Clinical Relevance: The preventive strategies in dental clinical settings are pivotal due to the aerosol-generating procedures in dentistry with infected patients or suspected cases of CHAV infection.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Loayza Mafayle R, Morales-Betoulle ME, Romero C, Cossaboom CM, Whitmer S, Alvarez Aguilera CE, Avila Ardaya C, Cruz Zambrana M, Davalos Anajia A, Mendoza Loayza N, Montano AM, Morales Alvis FL, Revollo Guzman J, Sasias Martinez S, Alarcon De La Vega G, Medina Ramirez A, Molina Gutierrez JT, Cornejo Pinto AJ, Salas Bacci R, Brignone J, Garcia J, Anez A, Mendez-Rico J, Luz K, Segales A, Torrez Cruz KM, Valdivia-Cayoja A, Amman BR, Choi MJ, Erickson BR, Goldsmith C, Graziano JC, Joyce A, Klena JD, Leach A, Malenfant JH, Nichol ST, Patel K, Sealy T, Shoemaker T, Spiropoulou CF, Todres A, Towner JS, Montgomery JM (2022) Chapare hemorrhagic fever and virus detection in rodents in Bolivia in 2019. N Engl J Med 386:2283–2294. https://doi.org/10.1056/NEJMoa2110339. (PMID: 10.1056/NEJMoa21103393570448010245337)
Centers For Disease Control And Prevention (2019) Centers For Disease Control And Prevention, Chapare Hemorrhagic Fever (CHHF). https://www.cdc.gov/vhf/chapare/index.html Accessed Acces Date 2023.
Pan American Health Organization (2019) Pan American Health Organization, Epidemiological alert: hemorrhagic fever due to arenavirus in Bolivia. https://www.paho.org/en/documents/epidemiological-alert-hemorrhagic-fever-due-arenavirus-bolivia-18-july-2019 . Accessed Acces Date 2023.
Silva-Ramos CR, Faccini-Martinez AA, Calixto OJ, Hidalgo M (2021) Bolivian hemorrhagic fever: a narrative review. Travel Med Infect Dis 40:102001. https://doi.org/10.1016/j.tmaid.2021.102001. (PMID: 10.1016/j.tmaid.2021.10200133640478)
Hallam SJ, Koma T, Maruyama J, Paessler S (2018) Review of mammarenavirus biology and replication. Front Microbiol 9:1751. https://doi.org/10.3389/fmicb.2018.01751. (PMID: 10.3389/fmicb.2018.01751301231986085440)
Salvato MS, Clegg JCS, Buchmeier MJ, Charrel RN, Gonzales JP, Lukashevich IS (2005) V: Family Arenaviridae. In: Van Regenmortel MHVFC, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. Eighth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego (CA).
Sarute N, Ross SR (2017) New world arenavirus biology. Annual Rev Virol 4:141–158. https://doi.org/10.1146/annurev-virology-101416-042001. (PMID: 10.1146/annurev-virology-101416-042001)
Charrel RN, de Lamballerie X, Emonet S (2008) Phylogeny of the genus arenavirus. Curr Opin Microbiol 11:362–368. https://doi.org/10.1016/j.mib.2008.06.001. (PMID: 10.1016/j.mib.2008.06.00118602020)
Bowen MD, Peters CJ, Nichol ST (1997) Phylogenetic analysis of the Arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol Phylogenet Evol 8(3):301–316. https://doi.org/10.1006/mpev.1997.0436. (PMID: 10.1006/mpev.1997.04369417890)
Childs JE, Peters CJ (1993) Ecology and epidemiology of the arena viruses and their hosts. In: Salvato MS (ed) The Arenaviridae. Plenum, New York.
Mercado R (1975) Rodent control programmes in areas affected by Bolivian haemorrhagic fever. Bull World Health Organ 52:691–696. (PMID: 182405)
Delgado S, Erickson BR, Agudo R, Blair PJ, Vallejo E, Albarino CG, Vargas J, Comer JA, Rollin PE, Ksiazek TG, Olson JG, Nichol ST (2008) Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog 4:e1000047. https://doi.org/10.1371/journal.ppat.1000047. (PMID: 10.1371/journal.ppat.1000047184213772277458)
Igonet S, Vaney MC, Vonrhein C, Bricogne G, Stura EA, Hengartner H, Eschli B, Rey FA (2011) X-ray structure of the arenavirus glycoprotein GP2 in its postfusion hairpin conformation. Proc Natl Acad Sci U S A 108:19967–19972. https://doi.org/10.1073/pnas.1108910108. (PMID: 10.1073/pnas.1108910108221239883250147)
Ponka P, Lok CN (1999) The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 31:1111–1137. https://doi.org/10.1016/s1357-2725(99)00070-9. (PMID: 10.1016/s1357-2725(99)00070-910582342)
Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D, Li W, Nagel J, Schmidt PJ, Nunberg JH, Andrews NC, Farzan M, Choe H (2007) Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446:92–96. https://doi.org/10.1038/nature05539. (PMID: 10.1038/nature05539172877273197705)
Tacchini L, Bianchi L, Bernelli-Zazzera A, Cairo G (1999) Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem 274:24142–24146. https://doi.org/10.1074/jbc.274.34.24142. (PMID: 10.1074/jbc.274.34.2414210446187)
Bastian FB, Roux J, Niknejad A, Comte A, Fonseca Costa SS, de Farias TM, Moretti S, Parmentier G, de Laval VR, Rosikiewicz M, Wollbrett J, Echchiki A, Escoriza A, Gharib WH, Gonzales-Porta M, Jarosz Y, Laurenczy B, Moret P, Person E, Roelli P, Sanjeev K, Seppey M, Robinson-Rechavi M (2021) The Bgee suite: integrated curated expression atlas and comparative transcriptomics in animals. Nucleic Acids Res 49:D831–D847. https://doi.org/10.1093/nar/gkaa793. (PMID: 10.1093/nar/gkaa79333037820)
Helguera G, Jemielity S, Abraham J, Cordo SM, Martinez MG, Rodriguez JA, Bregni C, Wang JJ, Farzan M, Penichet ML, Candurra NA, Choe H (2012) An antibody recognizing the apical domain of human transferrin receptor 1 efficiently inhibits the entry of all new world hemorrhagic fever arenaviruses. J Virol 86:4024–4028. https://doi.org/10.1128/JVI.06397-11. (PMID: 10.1128/JVI.06397-11222782443302512)
Flanagan ML, Oldenburg J, Reignier T, Holt N, Hamilton GA, Martin VK, Cannon PM (2008) New world clade B arenaviruses can use transferrin receptor 1 (TfR1)-dependent and -independent entry pathways, and glycoproteins from human pathogenic strains are associated with the use of TfR1. J Virol 82:938–948. https://doi.org/10.1128/JVI.01397-07. (PMID: 10.1128/JVI.01397-0718003730)
Abraham J, Kwong JA, Albarino CG, Lu JG, Radoshitzky SR, Salazar-Bravo J, Farzan M, Spiropoulou CF, Choe H (2009) Host-species transferrin receptor 1 orthologs are cellular receptors for nonpathogenic new world clade B arenaviruses. PLoS Pathog 5:e1000358. https://doi.org/10.1371/journal.ppat.1000358. (PMID: 10.1371/journal.ppat.1000358193432142658809)
Eichler R, Lenz O, Garten W, Strecker T (2006) The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virol J 3:41. https://doi.org/10.1186/1743-422X-3-41. (PMID: 10.1186/1743-422X-3-41167375391524727)
Klewitz C, Klenk HD, Ter Meulen J (2007) Amino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH-dependent membrane fusion and infectivity. J Gen Virol 88:2320–2328. https://doi.org/10.1099/vir.0.82950-0. (PMID: 10.1099/vir.0.82950-017622638)
Bederka LH, Bonhomme CJ, Ling EL, Buchmeier MJ (2014) Arenavirus stable signal peptide is the keystone subunit for glycoprotein complex organization. mBio 5:e02063. https://doi.org/10.1128/mBio.02063-14. (PMID: 10.1128/mBio.02063-14253526244217180)
Buchmeier MJ, de la Torre JC, Peters CJ, Del la Torre JC, Bowen MD (2007) Arenaviridae: the viruses and their replication. Lippincott-Raven, Philadelphia, PA.
Eschli B, Quirin K, Wepf A, Weber J, Zinkernagel R, Hengartner H (2006) Identification of an N-terminal trimeric coiled-coil core within arenavirus glycoprotein 2 permits assignment to class I viral fusion proteins. J Virol 80:5897–5907. https://doi.org/10.1128/JVI.00008-06. (PMID: 10.1128/JVI.00008-06167319281472595)
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291. (PMID: 10.1002/jcc.2029116211538)
Hickerson BT, Westover JB, Wang Z, Lee YM and Gowen BB (2020) Guinea pig transferrin receptor 1 mediates cellular entry of Junin virus and other pathogenic new world arenaviruses. J Virol 94 https://doi.org/10.1128/JVI.01278-19.
Peralta LA, Laguens RP, Cossio PM, Sabattini MS, Maiztegui JI, Arana RM (1979) Presence of viral particles in the salivary gland of Calomys musculinus infected with Junin virus by a natural route. Intervirology 11:111–116. https://doi.org/10.1159/000149021. (PMID: 10.1159/000149021218895)
Vitullo AD, Hodara VL, Merani MS (1987) Effect of persistent infection with Junin virus on growth and reproduction of its natural reservoir, Calomys musculinus. Am J Trop Med Hyg 37:663–669. https://doi.org/10.4269/ajtmh.1987.37.663. (PMID: 10.4269/ajtmh.1987.37.6632825553)
Murphy FWS, Webb P, Johnson K (1973) Ultrastructural studies of arenaviruses. In: Fe Lehmann-Grube (ed) Lymphocytic Choriomeningitis Virus and Other Arenaviruses. Springer, Berlin, Heidelberg.
Justines G, Johnson KM (1969) Immune tolerance in Calomys callosus infected with Machupo virus. Nature 222:1090–1091. https://doi.org/10.1038/2221090a0. (PMID: 10.1038/2221090a05787102)
Bell TM, Shaia CI, Bunton TE, Robinson CG, Wilkinson ER, Hensley LE, Cashman KA (2015) Pathology of experimental Machupo virus infection, Chicava strain, in cynomolgus macaques (Macaca fascicularis) by intramuscular and aerosol exposure. Vet Pathol 52:26–37. https://doi.org/10.1177/0300985814540544. (PMID: 10.1177/030098581454054424990481)
Marien J, Kourouma F, Magassouba N, Leirs H, Fichet-Calvet E (2018) Movement patterns of small rodents in lassa fever-endemic villages in Guinea. EcoHealth 15:348–359. https://doi.org/10.1007/s10393-018-1331-8. (PMID: 10.1007/s10393-018-1331-829572697)
Brisse ME, Ly H (2019) Hemorrhagic fever-causing arenaviruses: lethal pathogens and potent immune suppressors. Front Immunol 10:372. https://doi.org/10.3389/fimmu.2019.00372. (PMID: 10.3389/fimmu.2019.00372309185066424867)
Morales-Betoulle M, Mafayle RL, Avila C et al (2020) Detection and characterization of a novel strain of Chapare virus during an outbreak of viral hemorrhagic fever in Bolivia, 2019. Int J Infect Dis 101:263–264. https://doi.org/10.1016/j.ijid.2020.11.124. (PMID: 10.1016/j.ijid.2020.11.124)
Olayemi A, Cadar D, Magassouba N, Obadare A, Kourouma F, Oyeyiola A, Fasogbon S, Igbokwe J, Rieger T, Bockholt S, Jerome H, Schmidt-Chanasit J, Garigliany M, Lorenzen S, Igbahenah F, Fichet JN, Ortsega D, Omilabu S, Gunther S, Fichet-Calvet E (2016) New hosts of the Lassa virus. Sci Rep 6:25280. https://doi.org/10.1038/srep25280. (PMID: 10.1038/srep25280271409424853722)
Escalera-Antezana JP, Rodriguez-Villena OJ, Arancibia-Alba AW, Alvarado-Arnez LE, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020) Clinical features of fatal cases of Chapare virus hemorrhagic fever originating from rural La Paz, Bolivia, 2019: a cluster analysis. Travel Med Infect Dis 36:101589. https://doi.org/10.1016/j.tmaid.2020.101589. (PMID: 10.1016/j.tmaid.2020.10158932061859)
Salam AP, Horby PW (2017) The breadth of viruses in human semen. Emerg Infect Dis 23:1922–1924. https://doi.org/10.3201/eid2311.171049. (PMID: 10.3201/eid2311.171049290482765652425)
Tan T-W, Chang C-M, Chang M-N (2020) Intra-hospital preventive principles to protect frontline healthcare workers to overcome pandemic COVID-19 in Taiwan. Crit Care 24:328. https://doi.org/10.1186/s13054-020-02983-7. (PMID: 10.1186/s13054-020-02983-7325272997288257)
Sabino-Silva R, Jardim ACG, Siqueira WL (2020) Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clin Oral Investig 24:1619–1621. https://doi.org/10.1007/s00784-020-03248-x. (PMID: 10.1007/s00784-020-03248-x320780487088419)
معلومات مُعتمدة: CNPq #403193/2022-2; 409157/2022-8; 422205/2021-4; 306050/2021-8 Conselho Nacional de Desenvolvimento Científico e Tecnológico; CNPq #403193/2022-2; 409157/2022-8; 422205/2021-4; 306050/2021-8 Conselho Nacional de Desenvolvimento Científico e Tecnológico; APQ-03613-17; APQ-00476-20; APQ-02148-21 Fundação de Amparo à Pesquisa do Estado de Minas Gerais; APQ-03613-17; APQ-00476-20; APQ-02148-21 Fundação de Amparo à Pesquisa do Estado de Minas Gerais; 23038.014934/2020-59; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: Fever; Mouth; Oral health; Saliva; Arenavirus; Transferrin; Virology
SCR Disease Name: Chapare hemorrhagic fever
تواريخ الأحداث: Date Created: 20240403 Date Completed: 20240404 Latest Revision: 20240412
رمز التحديث: 20240412
DOI: 10.1007/s00784-023-05399-z
PMID: 38568249
قاعدة البيانات: MEDLINE
الوصف
تدمد:1436-3771
DOI:10.1007/s00784-023-05399-z