دورية أكاديمية

Voxel-Wise Fusion of 3T and 7T Diffusion MRI Data to Extract more Accurate Fiber Orientations.

التفاصيل البيبلوغرافية
العنوان: Voxel-Wise Fusion of 3T and 7T Diffusion MRI Data to Extract more Accurate Fiber Orientations.
المؤلفون: Wu Z; School of Electronic Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China., Weng X; School of Electronic Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China., Shen J; Neurosurgery Department, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China., Hong M; School of Electronic Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China. hongming@hdu.edu.cn.
المصدر: Brain topography [Brain Topogr] 2024 Sep; Vol. 37 (5), pp. 684-698. Date of Electronic Publication: 2024 Apr 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 8903034 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6792 (Electronic) Linking ISSN: 08960267 NLM ISO Abbreviation: Brain Topogr Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York : Kluwer Academic/Plenum Publishers
Original Publication: [New York, NY : Human Sciences Press, c1988-
مواضيع طبية MeSH: Brain*/diagnostic imaging , Diffusion Magnetic Resonance Imaging*/methods , Diffusion Magnetic Resonance Imaging*/standards , Image Processing, Computer-Assisted*/methods , Image Processing, Computer-Assisted*/standards, Humans ; Male ; Female ; Adult ; Diffusion Tensor Imaging/methods ; Diffusion Tensor Imaging/standards ; Young Adult
مستخلص: While 7T diffusion magnetic resonance imaging (dMRI) has high spatial resolution, its diffusion imaging quality is usually affected by signal loss due to B1 inhomogeneity, T2 decay, susceptibility, and chemical shift. In contrast, 3T dMRI has relative higher diffusion angular resolution, but lower spatial resolution. Combination of 3T and 7T dMRI, thus, may provide more detailed and accurate information about the voxel-wise fiber orientations to better understand the structural brain connectivity. However, this topic has not yet been thoroughly explored until now. In this study, we explored the feasibility of fusing 3T and 7T dMRI data to extract voxel-wise quantitative parameters at higher spatial resolution. After 3T and 7T dMRI data was preprocessed, respectively, 3T dMRI volumes were coregistered into 7T dMRI space. Then, 7T dMRI data was harmonized to the coregistered 3T dMRI B0 (b = 0) images. Last, harmonized 7T dMRI data was fused with 3T dMRI data according to four fusion rules proposed in this study. We employed high-quality 3T and 7T dMRI datasets (N = 24) from the Human Connectome Project to test our algorithms. The diffusion tensors (DTs) and orientation distribution functions (ODFs) estimated from the 3T-7T fused dMRI volumes were statistically analyzed. More voxels containing multiple fiber populations were found from the fused dMRI data than from 7T dMRI data set. Moreover, extra fiber directions were extracted in temporal brain regions from the fused dMRI data at Otsu's thresholds of quantitative anisotropy, but could not be extracted from 7T dMRI dataset. This study provides novel algorithms to fuse intra-subject 3T and 7T dMRI data for extracting more detailed information of voxel-wise quantitative parameters, and a new perspective to build more accurate structural brain networks.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Cao R, Wang X, Gao Y, Li T, Zhang H, Hussain W, Xie Y, Wang J, Wang B, Xiang J (2020) Abnormal Anatomical Rich-Club Organization and structural-functional coupling in mild cognitive impairment and Alzheimer’s Disease. Front Neurol 11:53. https://doi.org/10.3389/fneur.2020.00053. (PMID: 10.3389/fneur.2020.00053321170167013042)
Celtikci P, Fernandes-Cabral DT, Yeh FC, Panesar SS, Fernandez-Miranda JC (2018) Generalized q-sampling imaging fiber tractography reveals displacement and infiltration of fiber tracts in low-grade gliomas. Neuroradiology 60:267–280. https://doi.org/10.1007/s00234-018-1985-5. (PMID: 10.1007/s00234-018-1985-529372286)
Cetin Karayumak S, Bouix S, Ning L, James A, Crow T, Shenton M, Kubicki M, Rathi Y (2019) Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters. NeuroImage 184:180–200. https://doi.org/10.1016/j.neuroimage.2018.08.073. (PMID: 10.1016/j.neuroimage.2018.08.07330205206)
Chiang CW, Lin SY, Cho KH, Wu KJ, Wang Y, Kuo LW (2019) Effects of signal averaging, gradient encoding scheme, and spatial resolution on diffusion kurtosis imaging: an empirical study using 7T MRI. J Magn Reson Imaging 50:1593–1603. https://doi.org/10.1002/jmri.26755. (PMID: 10.1002/jmri.2675530990956)
Daianu M, Jahanshad N, Nir TM, Jack CR Jr, Weiner MW, Bernstein MA, Thompson PM, Alzheimer’s Disease Neuroimaging Initiative (2015a) Rich club analysis in the Alzheimer’s disease connectome reveals a relatively undisturbed structural core network. Hum Brain Mapp 36:3087–3103. https://doi.org/10.1002/hbm.22830. (PMID: 10.1002/hbm.22830260372244504816)
Daianu M, Jahanshad N, Villalon-Reina JE, Prasad G, Jacobs RE, Barners S, Zlokovic BV, Montagne A, Thompson PM (2015b) 7T Multi-shell Hybrid Diffusion Imaging (HYDI) for mapping Brain Connectivity in mice. Proc SPIE Int Soc Opt Eng 9413:941309. https://doi.org/10.1117/12.2081491. (PMID: 10.1117/12.2081491258592934386863)
Damoiseaux JS (2017) Effects of aging on functional and structural brain connectivity. NeuroImage 160:32–40. https://doi.org/10.1016/j.neuroimage.2017.01.077. (PMID: 10.1016/j.neuroimage.2017.01.07728159687)
Descoteaux M, Angelino E, Fitzgibbons S, Deriche R (2007) Regularized, fast, and robust analytical Q-ball imaging. Magn Reson Med 58:497–510. https://doi.org/10.1002/mrm.21277. (PMID: 10.1002/mrm.2127717763358)
Diwakar M, Singh P, Shankar A (2021) Multi-modal medical image fusion framework using co-occurrence filter and local extrema in NSST domain. Biomed Signal Process Control 68:102788. https://doi.org/10.1016/j.bspc.2021.102788. (PMID: 10.1016/j.bspc.2021.102788)
Du J, Li W, Lu K, Xiao B (2016) An overview of multi-modal medical image fusion. Neurocomputing 215:3–20. https://doi.org/10.1016/j.neucom.2015.07.160. (PMID: 10.1016/j.neucom.2015.07.160)
Fan Q, Nummenmaa A, Polimeni JR, Witzel T, Huang SY, Wedeen VJ, Rosen BR, Wald LL (2017) HIgh b-value and high Resolution Integrated Diffusion (HIBRID) imaging. NeuroImage 150:162–176. https://doi.org/10.1016/j.neuroimage.2017.02.002. (PMID: 10.1016/j.neuroimage.2017.02.00228188913)
Fang F, Potter T, Nguyen T, Zhang Y (2020) Dynamic reorganization of the cortical functional brain network in affective processing and cognitive reappraisal. Int J Neural Syst 30:2050051. https://doi.org/10.1142/S0129065720500513. (PMID: 10.1142/S012906572050051332812469)
Fang F, Gao Y, Schulz PE, Selvaraj S, Zhang Y (2021) Brain controllability distinctiveness between depression and cognitive impairment. J Affect Disord 294:847–856. https://doi.org/10.1016/j.jad.2021.07.106. (PMID: 10.1016/j.jad.2021.07.10634375212)
Gulban OF, De Martino F, Vu AT, Yacoub E, Ugurbil K, Lenglet C (2018) Cortical fibers orientation mapping using in-vivo whole brain 7T diffusion MRI. NeuroImage 178:104–118. https://doi.org/10.1016/j.neuroimage.2018.05.010. (PMID: 10.1016/j.neuroimage.2018.05.01029753105)
Hasan KM, Yamada K (2021) Overview of Diffusion Tensor, Diffusion Kurtosis, and Q-space imaging and Software Tools. Magn Reson Imaging Clin N Am 29:263–268. https://doi.org/10.1016/j.mric.2021.02.003. (PMID: 10.1016/j.mric.2021.02.00333902908)
Hirsiger S, Koppelmans V, Merillat S, Liem F, Erdeniz B, Seidler RD, Jancke L (2016) Structural and functional connectivity in healthy aging: associations for cognition and motor behavior. Humman Brain Mapp 37:855–867. https://doi.org/10.1002/hbm.23067. (PMID: 10.1002/hbm.23067)
Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL Neuroimage 62:782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015. (PMID: 10.1016/j.neuroimage.2011.09.01521979382)
Kleinnijenhuis M, van Mourik T, Norris DG, Ruiter DJ, van Cappellen AM, Barth M (2015) Diffusion tensor characteristics of gyrencephaly using high resolution diffusion MRI in vivo at 7T. NeuroImage 109:378–387. https://doi.org/10.1016/j.neuroimage.2015.01.001. (PMID: 10.1016/j.neuroimage.2015.01.00125585019)
Kraff O, Quick HH (2017) 7T: physics, safety, and potential clinical applications. J Magn Reson Imaging 46:1573–1589. https://doi.org/10.1002/jmri.25723. (PMID: 10.1002/jmri.2572328370675)
Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546. https://doi.org/10.1002/jmri.1076. (PMID: 10.1002/jmri.107611276097)
Lutzkendorf R, Heidemann RM, Feiweier T, Luchtmann M, Baecke S, Kaufmann J, Stadler J, Budinger E, Bernarding J (2018) Mapping fine-scale anatomy of gray matter, white matter, and trigeminal-root region applying spherical deconvolution to high-resolution 7-T diffusion MRI. MAGMA 31:701–713. https://doi.org/10.1007/s10334-018-0705-9. (PMID: 10.1007/s10334-018-0705-930225801)
Mirzaalian H, Ning L, Savadjiev P, Pasternak O, Bouix S, Michailovich O, Grant G, Marx CE, Morey RA, Flashman LA, George MS, McAllister TW, Andaluz N, Shutter L, Coimbra R, Zafonte RD, Coleman MJ, Kubicki M, Westin CF, Stein MB, Shenton ME, Rathi Y (2016) Inter-site and inter-scanner diffusion MRI data harmonization. NeuroImage 135:311–323. https://doi.org/10.1016/j.neuroimage.2016.04.041. (PMID: 10.1016/j.neuroimage.2016.04.04127138209)
Mirzaalian H, Ning L, Savadjiev P, Pasternak O, Bouix S, Michailovich O, Karmacharya S, Grant G, Marx CE, Morey RA, Flashman LA, George MS, McAllister TW, Andaluz N, Shutter L, Coimbra R, Zafonte RD, Coleman MJ, Kubicki M, Westin CF, Stein MB, Shenton ME, Rathi Y (2018) Multi-site harmonization of diffusion MRI data in a registration framework. Brain Imaging Behav 12:284–295. https://doi.org/10.1007/s11682-016-9670-y. (PMID: 10.1007/s11682-016-9670-y281762637548102)
O’Halloran R, Feldman R, Marcuse L, Fields M, Delman B, Frangou S, Balchandani P (2017) A method for u-fiber quantification from 7 T diffusion-weighted MRI data tested in patients with nonlesional focal epilepsy. NeuroReport 28:457–461. https://doi.org/10.1097/WNR.0000000000000788. (PMID: 10.1097/WNR.0000000000000788284190585689074)
Obusez EC, Lowe M, Oh SH, Wang I, Jennifer Bullen, Ruggieri P, Hill V, Lockwood D, Emch T, Moon D, Loy G, Lee J, Kiczek M, Manoj Massand, Statsevych V, Stultz T, Jones SE (2018) 7T MR of intracranial pathology: preliminary observations and comparisons to 3T and 1.5T. NeuroImage 168:459–476. https://doi.org/10.1016/j.neuroimage.2016.11.030. (PMID: 10.1016/j.neuroimage.2016.11.03027915116)
Ozarslan E, Shepherd TM, Vemuri BC, Blackband SJ, Mareci TH (2006) Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31:1086–1103. https://doi.org/10.1016/j.neuroimage.2006.01.024. (PMID: 10.1016/j.neuroimage.2006.01.02416546404)
Qu L, Zhang Y, Wang S, Yap PT, Shen D (2020) Synthesized 7T MRI from 3T MRI via deep learning in spatial and wavelet domains. Med Image Anal 62:101663. https://doi.org/10.1016/j.media.2020.101663. (PMID: 10.1016/j.media.2020.101663321202697237331)
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051. (PMID: 10.1016/j.neuroimage.2004.07.05115501092)
Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, Glasser MF, Hernandez M, Sapiro G, Jenkinson M, Feinberg DA, Yacoub E, Lenglet C, Van Essen DC, Ugurbil K, Behrens TE, WU-Minn HCP Consortium (2013) Advances in diffusion MRI acquisition and processing in the human Connectome Project. NeuroImage 80:125–143. https://doi.org/10.1016/j.neuroimage.2013.05.057. (PMID: 10.1016/j.neuroimage.2013.05.05723702418)
Sotiropoulos SN, Hernandez-Fernandez M, Vu AT, Andersson JL, Moeller S, Yacoub E, Lenglet C, Ugurbil K, Behrens TEJ, Jbabdi S (2016) Fusion in diffusion MRI for improved fibre orientation estimation: an application to the 3T and 7T data of the human Connectome Project. NeuroImage 134:396–409. https://doi.org/10.1016/j.neuroimage.2016.04.014. (PMID: 10.1016/j.neuroimage.2016.04.01427071694)
Speck O, Tempelmann C (2010) Human 7T MRI: first clinical and neuroscientific applications. Neuroradiol J 23:535–546. https://doi.org/10.1177/197140091002300503. (PMID: 10.1177/19714009100230050324148675)
Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V (2010) Development of functional and structural connectivity within the default mode network in young children. NeuroImage 52:290–301. https://doi.org/10.1016/j.neuroimage.2010.04.009. (PMID: 10.1016/j.neuroimage.2010.04.00920385244)
Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35:1459–1472. https://doi.org/10.1016/j.neuroimage.2007.02.016. (PMID: 10.1016/j.neuroimage.2007.02.01617379540)
Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D, Jeurissen B, Yeh CH, Connelly A (2019) MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202:116137. https://doi.org/10.1016/j.neuroimage.2019.116137. (PMID: 10.1016/j.neuroimage.2019.11613731473352)
Vu AT, Auerbach E, Lenglet C, Moeller S, Sotiropoulos SN, Jbabdi S, Anderson J, Yacoub E, Ugurbil K (2015) High resolution whole brain diffusion imaging at 7T for the human Connectome Project. NeuroImage 122:318–331. https://doi.org/10.1016/j.neuroimage.2015.08.004. (PMID: 10.1016/j.neuroimage.2015.08.00426260428)
Wu Z, Peng Y, Selvaraj S, Schulz PE, Zhang Y (2020) Development of Brain Structural Networks over Age 8: a preliminary study based on Diffusion Weighted Imaging. Front Aging Neurosci 12:61. https://doi.org/10.3389/fnagi.2020.00061. (PMID: 10.3389/fnagi.2020.00061322107927076118)
Wu Z, Gao Y, Potter T, Benoit J, Shen J, Schulz PE, Zhang Y, Alzheimer’s Disease Neuroimaging Initiative (2021) Interactions between aging and Alzheimer’s Disease on Structural Brain Networks. Front Aging Neurosci 13:639795. https://doi.org/10.3389/fnagi.2021.639795. (PMID: 10.3389/fnagi.2021.639795341775488222527)
Yang J, Jiang X, Wei S, Deng X, Zhu Y, Chang M, Yin Z, Geng H, Tang Y, Dai X (2021) White matter tracts in bipolar disorder patients: a comparative study based on diffusion kurtosis and tensor imaging. J Affect Disord 292:45–55. https://doi.org/10.1016/j.jad.2021.05.030. (PMID: 10.1016/j.jad.2021.05.03034098469)
Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29:1626–1635. https://doi.org/10.1109/TMI.2010.2045126. (PMID: 10.1109/TMI.2010.204512620304721)
Zhang X, Zhao H, Li X, Feng Y, Li H (2017) A multi-scale 3D Otsu thresholding algorithm for medical image segmentation. Digit Signal Proc 60:186–199. https://doi.org/10.1016/j.dsp.2016.08.003. (PMID: 10.1016/j.dsp.2016.08.003)
معلومات مُعتمدة: LY20E070005 and LY17E070007 Natural Science Foundation of Zhejiang Province
فهرسة مساهمة: Keywords: Diffusion tensor; Fiber orientation; Fusion of dMRI; General q-ball imaging; High-field dMRI
تواريخ الأحداث: Date Created: 20240403 Date Completed: 20240913 Latest Revision: 20240913
رمز التحديث: 20240913
DOI: 10.1007/s10548-024-01046-2
PMID: 38568279
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-6792
DOI:10.1007/s10548-024-01046-2