دورية أكاديمية

Membrane-based inverse-transition purification facilitates a rapid isolation of various spider-silk elastin-like polypeptide fusion proteins from extracts of transgenic tobacco.

التفاصيل البيبلوغرافية
العنوان: Membrane-based inverse-transition purification facilitates a rapid isolation of various spider-silk elastin-like polypeptide fusion proteins from extracts of transgenic tobacco.
المؤلفون: Gruchow HM; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany., Opdensteinen P; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany., Buyel JF; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany. johannes.buyel@boku.ac.at.; Institute of Bioprocess Science and Engineering (IBSE), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria. johannes.buyel@boku.ac.at.
المصدر: Transgenic research [Transgenic Res] 2024 Apr; Vol. 33 (1-2), pp. 21-33. Date of Electronic Publication: 2024 Apr 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 9209120 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-9368 (Electronic) Linking ISSN: 09628819 NLM ISO Abbreviation: Transgenic Res Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: London, UK : Chapman & Hall, c1991-
مواضيع طبية MeSH: Silk*/genetics , Elastin-Like Polypeptides*, Arthropod Proteins ; Elastin/genetics ; Elastin/chemistry ; Elastin/metabolism ; Nicotiana/genetics ; Recombinant Fusion Proteins/genetics
مستخلص: Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.
(© 2024. The Author(s).)
References: Environ Chem Lett. 2021;19(2):1737-1763. (PMID: 33424525)
Nat Biotechnol. 2001 Jun;19(6):573-7. (PMID: 11385464)
Biotechnol Adv. 2014 Mar-Apr;32(2):366-81. (PMID: 24334194)
Int J Mol Sci. 2016 Oct 09;17(10):. (PMID: 27735843)
Protein Eng. 2001 Oct;14(10):803-6. (PMID: 11739900)
N Biotechnol. 2022 Nov 25;71:37-46. (PMID: 35926774)
Front Plant Sci. 2015 Dec 21;6:1134. (PMID: 26734037)
Biotechnol Adv. 2012 Mar-Apr;30(2):419-33. (PMID: 21843625)
Biotechnol Bioeng. 2023 Apr;120(4):1038-1054. (PMID: 36539373)
PLoS One. 2011;6(8):e24183. (PMID: 21918684)
Biotechnol Bioeng. 2009 Jun 15;103(3):562-73. (PMID: 19266472)
J Am Chem Soc. 2008 Jan 16;130(2):687-94. (PMID: 18085778)
PLoS One. 2014 Jun 10;9(6):e99347. (PMID: 24914995)
Proteins. 2008 Nov 15;73(3):552-65. (PMID: 18473392)
Anal Biochem. 2006 Dec 15;359(2):216-23. (PMID: 17081490)
Front Plant Sci. 2019 Jun 11;10:720. (PMID: 31244868)
Methods Enzymol. 2012;502:215-37. (PMID: 22208987)
Plant Biotechnol J. 2014 Feb;12(2):265-75. (PMID: 24237483)
Anal Biochem. 2011 Aug 15;415(2):200-2. (PMID: 21600185)
Front Bioeng Biotechnol. 2023 Aug 08;11:1238917. (PMID: 37614627)
Ann N Y Acad Sci. 2005 Dec;1066:12-33. (PMID: 16533916)
Trends Biotechnol. 2010 Jan;28(1):37-45. (PMID: 19897265)
Biotechnol Lett. 2019 Mar;41(3):335-346. (PMID: 30684155)
J Protein Chem. 1988 Feb;7(1):1-34. (PMID: 3076447)
MAbs. 2010 Jan-Feb;2(1):42-52. (PMID: 20093856)
Plant Biotechnol J. 2009 Dec;7(9):899-913. (PMID: 19843249)
Protein Expr Purif. 2018 Dec;152:122-130. (PMID: 30059744)
Front Plant Sci. 2019 Oct 08;10:1245. (PMID: 31649707)
Curr Pharm Biotechnol. 2015;16(11):966-82. (PMID: 26343135)
Plant Biotechnol J. 2014 Feb;12(2):240-52. (PMID: 24165151)
Front Microbiol. 2014 Feb 19;5:63. (PMID: 24600443)
Biotechnol J. 2014 Mar;9(3):415-25. (PMID: 24323869)
Biotechnol Lett. 2011 May;33(5):869-81. (PMID: 21267760)
Crit Rev Biotechnol. 2016 Oct;36(5):840-50. (PMID: 26042351)
Nat Biotechnol. 1999 Nov;17(11):1112-5. (PMID: 10545920)
Biotechnol J. 2012 May;7(5):620-34. (PMID: 22442034)
Plant Biotechnol J. 2013 Jun;11(5):582-93. (PMID: 23398695)
Biopolymers. 1992 Sep;32(9):1243-50. (PMID: 1420991)
Curr Protoc Protein Sci. 2010 Aug;Chapter 6:6.11.1-6.11.16. (PMID: 20814933)
Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):271-94. (PMID: 27049632)
Front Bioeng Biotechnol. 2019 Jan 09;6:206. (PMID: 30687700)
Biomacromolecules. 2013 May 13;14(5):1514-9. (PMID: 23565607)
BMC Biotechnol. 2015 Feb 19;15:9. (PMID: 25888206)
Biotechnol Prog. 2006 Jan-Feb;22(1):288-96. (PMID: 16454522)
Protein Expr Purif. 2018 Nov;151:46-55. (PMID: 29894805)
Eur Phys J E Soft Matter. 2007 Dec;24(4):331-41. (PMID: 18180876)
Plant Biotechnol J. 2023 Jun;21(6):1254-1269. (PMID: 36811226)
J Biol Chem. 2003 Dec 5;278(49):48553-62. (PMID: 14500713)
Int J Mol Sci. 2011;12(5):2808-21. (PMID: 21686152)
معلومات مُعتمدة: 269110 International ERC_ European Research Council
فهرسة مساهمة: Keywords: Downstream processing; Plant molecular farming; Process optimization; Spider silk proteins; Surface plasmon resonance spectroscopy; Ultrafiltration/diafiltration
المشرفين على المادة: 0 (Silk)
0 (Elastin-Like Polypeptides)
0 (Arthropod Proteins)
9007-58-3 (Elastin)
0 (Recombinant Fusion Proteins)
تواريخ الأحداث: Date Created: 20240404 Date Completed: 20240418 Latest Revision: 20240425
رمز التحديث: 20240425
مُعرف محوري في PubMed: PMC11021290
DOI: 10.1007/s11248-024-00375-z
PMID: 38573429
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-9368
DOI:10.1007/s11248-024-00375-z