دورية أكاديمية

Effect of poultry litter soil amendment on antibiotic-resistant Escherichia coli.

التفاصيل البيبلوغرافية
العنوان: Effect of poultry litter soil amendment on antibiotic-resistant Escherichia coli.
المؤلفون: Agga GE; USDA-ARS, Food Animal Environmental Research Unit, Bowling Green, Kentucky, USA., Durso LM; USDA-ARS, Agroecosystem Management Research Unit, Lincoln, Nebraska, USA., Sistani KR; USDA-ARS, Food Animal Environmental Research Unit, Bowling Green, Kentucky, USA.
المصدر: Journal of environmental quality [J Environ Qual] 2024 May-Jun; Vol. 53 (3), pp. 300-313. Date of Electronic Publication: 2024 Apr 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 0330666 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1537-2537 (Electronic) Linking ISSN: 00472425 NLM ISO Abbreviation: J Environ Qual Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : [Hoboken, NJ] : Wiley
Original Publication: Madison, WI : Published cooperatively by American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America
مواضيع طبية MeSH: Escherichia coli*/drug effects , Soil Microbiology* , Fertilizers*/analysis , Manure*/analysis , Poultry* , Soil*/chemistry, Animals ; Anti-Bacterial Agents/pharmacology ; Anti-Bacterial Agents/analysis ; Drug Resistance, Bacterial ; Agriculture/methods
مستخلص: Given the high cost and non-renewability of mineral-based fertilizers, there is increasing interest in the innovative use of manure-based materials, such as poultry litter (PL). However, manure-based fertilizers add both nutrients and microbes to the soil, including antibiotic-resistant Escherichia coli (AREc). PL soil amendment impact on AREc in corn fields was evaluated in a randomized field experiment (May-October 2017). Two winter cropping systems (fallow and cover crop) were assigned to whole plots, with three spring-applied fertilizer treatments (untreated control [UC], PL, and commercial fertilizer [CF]) assigned to subplots. Soil was collected from 0 to 15 cm on days 0, 7, 28, 70, 98, and 172 post-treatment applications. Samples were cultured for the enumeration and prevalence of generic, tetracycline-resistant (TET r ), third-generation cephalosporin-resistant (3GC r ) E. coli isolates, and extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. PL soil amendment significantly (p < 0.05) increased the levels of generic E. coli, TET r E. coli, and 3GC r E. coli on days 7 and 28 compared to UC or CF. Beyond day 28, AREc did not significantly (p > 0.05) differ by fertilizer treatment and returned to baseline on day 70. ESBL-producing Enterobacteriaceae were detected from 16 samples, mostly on day 70. Cover crop significantly decreased TET r E. coli concentration on day 28, with no significant effects on the prevalence of 3GC r E. coli and ESBL-producing Enterobacteriaceae compared to no cover crop. All ESBL-producing Enterobacteriaceae and 79% of the 3GC r E. coli isolates were positive for bla CTX-M gene by polymerase chain reaction. Results show that PL soil amendment transiently increases the levels of AREc compared to mineral fertilizer.
(Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Journal of Environmental Quality published by Wiley Periodicals LLC on behalf of American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.)
References: Agga, G. E., Arthur, T. M., Durso, L. M., Harhay, D. M., & Schmidt, J. W. (2015). Antimicrobial‐resistant bacterial populations and antimicrobial resistance genes obtained from environments impacted by livestock and municipal waste. PLoS One, 10(7), e0132586. https://doi.org/10.1371/journal.pone.0132586.
Agga, G. E., Cook, K. L., Netthisinghe, A. M. P., Gilfillen, R. A., Woosley, P. B., & Sistani, K. R. (2019). Persistence of antibiotic resistance genes in beef cattle backgrounding environment over two years after cessation of operation. PLoS One, 14(2), e0212510. https://doi.org/10.1371/journal.pone.0212510.
Agga, G. E., Couch, M., Parekh, R. R., Mahmoudi, F., Appala, K., Kasumba, J., Loughrin, J. H., & Conte, E. D. (2022). Lagoon, anaerobic digestion, and composting of animal manure treatments impact on tetracycline resistance genes. Antibiotics, 11(3), 391. https://www.mdpi.com/2079‐6382/11/3/391.
Agga, G. E., & Galloway, H. O. (2023). Dynamics of extended‐spectrum beta‐lactamase‐producing, third‐generation cephalosporin‐resistant and tetracycline‐resistant Escherichia coli in feedlot cattle with or without tylosin administration. Journal of Food Protection, 86(10), 100144. https://doi.org/10.1016/j.jfp.2023.100144.
Agga, G. E., Galloway, H. O., Netthisinghe, A. M. P., Schmidt, J. W., & Arthur, T. M. (2022). Tetracycline‐resistant, third generation cephalosporin‐resistant, and extended spectrum beta‐lactamase‐producing Escherichia coli in a beef cow‐calf production system. Journal of Food Protection, 85, 1522–1530. https://doi.org/10.4315/JFP‐22‐178.
Broszat, M., & Grohmann, E. (2017). Antimicrobial resistance spread mediated by wastewater irrigation: The Mezquital Valley case study. In P. L. Keen & R. Fugère (Eds.), Antimicrobial resistance in wastewater treatment processes (pp. 207–217). John Wiley & Sons. https://doi.org/10.1002/9781119192428.ch11.
CDC. (2019). Antibiotic resistance threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services,U.S. Centers for Disease control and Prevention (CDC). http://www.cdc.gov/drugresistance/Biggest‐Threats.html.
Chee‐Sanford, J. C., Mackie, R. I., Koike, S., Krapac, I. G., Lin, Y.‐F., Yannarell, A. C., Maxwell, S., & Aminov, R. I. (2009). Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality, 38(3), 1086–1108. https://doi.org/10.2134/jeq2008.0128.
CLSI. (2023). Performance standards for antimicrobial susceptibility testing (33rd ed.). CLSI M100‐ED33. Clinical and Laboratory Standards Institute.
Cook, K. L., Netthisinghe, A. M. P., & Gilfillen, R. A. (2014). Detection of pathogens, indicators, and antibiotic resistance genes after land application of poultry litter. Journal of Environmental Quality, 43(5), 1546–1558. https://doi.org/10.2134/jeq2013.10.0432.
Davis, M. F., Price, L. B., Liu, C. M.‐H., & Silbergeld, E. K. (2011). An ecological perspective on U.S. industrial poultry production: The role of anthropogenic ecosystems on the emergence of drug‐resistant bacteria from agricultural environments. Current Opinion in Microbiology, 14(3), 244–250. https://doi.org/10.1016/j.mib.2011.04.003.
Durso, L. M., & Schmidt, A. M. (2017). Antimicrobial resistance related to agricultural wastewater and biosolids.In P. L. Keen & R. Fugère (Eds.), Antimicrobial resistance in wastewater treatment processes (pp. 219–240). John Wiley & Sons. https://doi.org/10.1002/9781119192428.ch12.
Guo, Z., Wan, S., Hua, K., Yin, Y. E., Chu, H., Wang, D., & Guo, X. (2020). Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Applied Soil Ecology, 149, 103510. https://doi.org/10.1016/j.apsoil.2020.103510.
Horakova, K., Mlejnkova, H., & Mlejnek, P. (2008). Specific detection of Escherichia coli isolated from water samples using polymerase chain reaction targeting four genes: Cytochrome bd complex, lactose permease, beta‐D‐glucuronidase, and beta‐D‐galactosidase. Journal of Applied Microbiology, 105(4), 970–976. https://doi.org/10.1111/j.1365‐2672.2008.03838.x.
Hubbard, L. E., Givens, C. E., Griffin, D. W., Iwanowicz, L. R., Meyer, M. T., & Kolpin, D. W. (2020). Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large‐scale confined poultry feeding operations. Science of the Total Environment, 735, 139459. https://doi.org/10.1016/j.scitotenv.2020.139459.
Kyakuwaire, Olupot, Amoding, Nkedi‐Kizza, & Basamba, (2019). How safe is chicken litter for land application as an organic fertilizer? A review. International Journal of Environmental Research and Public Health, 16(19), 3521. https://doi.org/10.3390/ijerph16193521.
Mcconnell, L. L., Osorio, C., & Hofmann, T. (2023). The future of agriculture and food: Sustainable approaches to achieve zero hunger. Journal of Agricultural and Food Chemistry, 71(36), 13165–13167. https://doi.org/10.1021/acs.jafc.3c05433.
Mckinney, C. W., Dungan, R. S., Moore, A., & Leytem, A. B. (2018). Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure. FEMS Microbiology Ecology, 94(3), fiy010. https://doi.org/10.1093/femsec/fiy010.
Merchant, L. E., Rempel, H., Forge, T., Kannangara, T., Bittman, S., Delaquis, P., Topp, E., Ziebell, K. A., & Diarra, M. S. (2012). Characterization of antibiotic‐resistant and potentially pathogenic Escherichia coli from soil fertilized with litter of broiler chickens fed antimicrobial‐supplemented diets. Canadian Journal of Microbiology, 58(9), 1084–1098. https://doi.org/10.1139/w2012‐082.
Miller, E., Spiehs, M., Arthur, T. M., Woodbury, B., Cortus, E., Chatterjee, A., Rahman, S., & Schmidt, J. W. (2019). Cropland amendment with beef cattle manure minimally affects antimicrobial resistance. Journal of Environmental Quality, 48(6), 1683–1693. https://doi.org/10.2134/jeq2019.02.0042.
Mottet, A., & Tempio, G. (2017). Global poultry production: Current state and future outlook and challenges. World's Poultry Science Journal, 73(2), 245–256. https://doi.org/10.1017/S0043933917000071.
NASS. (2019). Poultry production and value: Final estimates 2013–2017 (Statistical Bulletin Number 1061). United States Department of Agriculture, National Agricultural Statistics Service.
Pagliari, P., Wilson, M., & He, Z. (2020). Animal manure production and utilization: Impact of modern concentrated animal feeding operations. In H. M. Waldrip, P. H. Pagliari, & Z. He (Eds.), Animal manure: Production, characteristics, environmental concerns, and management (pp. 1–14). ASA, CSSA, SSSA Books. https://doi.org/10.2134/asaspecpub67.c1.
Schröder, J. J., Ten Berge, H. F. M., Bampa, F., Creamer, R. E., Giraldez‐Cervera, J. V., Henriksen, C. B., Olesen, J. E., Rutgers, M., Sandén, T., & Spiegel, H. (2020). Multi‐functional land use is not self‐evident for European farmers: A critical review. Frontiers in Environmental Science, 8, 575466. https://doi.org/10.3389/fenvs.2020.575466.
Sengeløv, G. (2003). Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environment International, 28(7), 587–595. https://doi.org/10.1016/S0160‐4120(02)00084‐3.
Sharma, M., Millner, P. D., Hashem, F., Vinyard, B. T., East, C. L., Handy, E. T., White, K., Stonebraker, R., & Cotton, C. P. (2019). Survival of Escherichia coli in manure‐amended soils is affected by spatiotemporal, agricultural, and weather factors in the Mid‐Atlantic United States. Applied and Environmental Microbiology, 85(5), e02392‐18. https://doi.org/10.1128/AEM.02392‐18.
Simmons, J. R., Sistani, K. R., Pote, D. H., Ritchey, E. L., Jn‐Baptiste, M., & Tewolde, H. (2016). Corn response and soil nutrient concentration from subsurface application of poultry litter. Agronomy Journal, 108(4), 1674–1680. https://doi.org/10.2134/agronj2015.0529.
Singer, R. S., Ward, M. P., & Maldonado, G. (2006). Can landscape ecology untangle the complexity of antibiotic resistance? Nature Reviews: Microbiology, 4(12), 943–952. https://doi.org/10.1038/nrmicro1553.
Sun, S., Lu, C., Liu, J., Williams, M. A., Yang, Z., Gao, Y., & Hu, X. (2020). Antibiotic resistance gene abundance and bacterial community structure in soils altered by ammonium and nitrate concentrations. Soil Biology and Biochemistry, 149, 107965. https://doi.org/10.1016/j.soilbio.2020.107965.
Udikovic‐Kolic, N., Wichmann, F., Broderick, N. A., & Handelsman, J. (2014). Bloom of resident antibiotic‐resistant bacteria in soil following manure fertilization. PNAS, 111(42), 15202–15207. https://doi.org/10.1073/pnas.1409836111.
WHO. (2019). Critically important antimicrobials for human medicine, 6th revision. (Licence: CC BY‐NC‐SA 3.0 IGO). Geneva: World Health Organization. https://www.who.int/publications/i/item/9789241515528.
Yang, Y., Ashworth, A. J., Willett, C., Cook, K., Upadhyay, A., Owens, P. R., Ricke, S. C., Debruyn, J. M., & Moore, Jr. P. A. (2019). Review of antibiotic resistance, ecology, dissemination, and mitigation in U.S. broiler poultry systems. Frontiers in Microbiology, 10, 2639. https://doi.org/10.3389/fmicb.2019.02639.
معلومات مُعتمدة: U.S. Department of Agriculture, Agricultural Research Service
المشرفين على المادة: 0 (Fertilizers)
0 (Manure)
0 (Soil)
0 (Anti-Bacterial Agents)
تواريخ الأحداث: Date Created: 20240405 Date Completed: 20240507 Latest Revision: 20240507
رمز التحديث: 20240508
DOI: 10.1002/jeq2.20560
PMID: 38576271
قاعدة البيانات: MEDLINE
الوصف
تدمد:1537-2537
DOI:10.1002/jeq2.20560