دورية أكاديمية

Carbon Dioxide Toxicity to Zebra Mussels (Dreissena polymorpha) is Dependent on Water Chemistry.

التفاصيل البيبلوغرافية
العنوان: Carbon Dioxide Toxicity to Zebra Mussels (Dreissena polymorpha) is Dependent on Water Chemistry.
المؤلفون: Barbour MT; Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin., Meulemans MJ; Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin., Severson TJ; Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin., Wise JK; Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin., Waller DL; Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin.
المصدر: Environmental toxicology and chemistry [Environ Toxicol Chem] 2024 Jun; Vol. 43 (6), pp. 1312-1319. Date of Electronic Publication: 2024 Apr 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: SETAC Press Country of Publication: United States NLM ID: 8308958 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-8618 (Electronic) Linking ISSN: 07307268 NLM ISO Abbreviation: Environ Toxicol Chem Subsets: MEDLINE
أسماء مطبوعة: Publication: Pensacola, FL : SETAC Press
Original Publication: New York : Pergamon Press, c1982-
مواضيع طبية MeSH: Dreissena*/drug effects , Carbon Dioxide*, Animals ; Water Pollutants, Chemical/toxicity ; Water/chemistry ; Lethal Dose 50
مستخلص: Carbon dioxide (CO 2 ) is gaining interest as a tool to combat aquatic invasive species, including zebra mussels (Dreissena polymorpha). However, the effects of water chemistry on CO 2 efficacy are not well described. We conducted five trials in which we exposed adult zebra mussels to a range of CO 2 in water with adjusted total hardness and specific conductance. We compared dose-responses and found differences in lethal concentration to 50% of organisms (LC50) estimates ranging from 108.3 to 179.3 mg/L CO 2 and lethal concentration to 90% of organisms (LC90) estimates ranging from 163.7 to 216.6 mg/L CO 2 . We modeled LC50 and LC90 estimates with measured water chemistry variables from the trials. We found sodium (Na + ) concentration to have the strongest correlation to changes in the LC50 and specific conductance to have the strongest correlation to changes in the LC90. Our results identify water chemistry as an important factor in considering efficacious CO 2 concentrations for zebra mussel control. Additional research into the physiological responses of zebra mussels exposed to CO 2 may be warranted to further explain mode of action and reported selectivity. Further study could likely develop a robust and relevant model to refine CO 2 applications for a wider range of water chemistries. Environ Toxicol Chem 2024;43:1312-1319. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
(Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.)
References: Abbey‐Lambertz, M., Ray, A., Layhee, M., Densmore, C., Sepulveda, A., Gross, J., & Watten, B. (2014). Suppressing bullfrog larvae with carbon dioxide. Journal of Herpetology, 48(1), 59–66. https://doi.org/10.1670/12-126.
Abdelrahman, H., Gibson, R., Fogelman, K., Cupp, A., Allert, A., & Stoecke, J. (2021). Evaluation of dissolved carbon dioxide to stimulate emergence of red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) from infested ponds. Management of Biological Invasions, 12(4), 952–974. https://doi.org/10.3391/mbi.2021.12.4.11.
American Public Health Association, American Water Works Association, & Water Environment Federation. (2017). In Baird, R. B., Eaton, A. D. & Rice, E. W., (Eds.), Standard methods for the examination of water and wastewater (23rd ed.). American Public Health Association.
ASTM International. (2013). E2455‐06: Standard guide for conducting laboratory toxicity tests with freshwater mussels (p. 52). www.astm.org.
Barbour, M. T., Meulemans, M. J., Severson, T. J., Wise, J. K., & Waller, D. L. (2023). Carbon dioxide toxicity to zebra mussel (Dreissena polymorpha) is dependent on water chemistry [data release]. US Geological Survey software release. https://doi.org/10.5066/P9NJUQYH.
Byrne, R., & Dietz, T. (1997). Ion transport and acid‐base balance in freshwater bivalves. Journal of Experimental Biology, 200(3), 457–465. https://doi.org/10.1242/jeb.200.3.457.
Churchill, C. J., Hoeinghaus, D. J., & La Point, T. W. (2017). Environmental conditions increase growth rates and mortality of zebra mussels (Dreissena polymorpha) along the southern invasion front in North America. Biological Invasions, 19(8), 2355–2373. https://doi.org/10.1007/s10530-017-1447-8.
Cohen, A. N. (2005). A review of zebra mussels' environmental requirements (p. 33). San Fransisco Estuary Institute.
Cupp, A. R., Smerud, J. R., Thomas, L. M., Waller, D. L., Smith, D. L., Erickson, R. A., & Gaikowski, M. P. (2020). Toxicity of carbon dioxide to freshwater fishes: Implications for aquatic invasive species management. Environmental Toxicology and Chemistry, 39(11), 2247–2255. https://doi.org/10.1002/etc.4855.
Dennis, C., Wright, A., & Suski, C. (2016). Potential for carbon dioxide to act as a non‐physical barrier for invasive sea lamprey movement. Journal of Great Lakes Research, 42(1), 150–155. https://doi.org/10.1016/j.jglr.2015.10.013.
Dietz, T. H., Lessard, D., Silverman, H., & Lynn, J. W. (1994). Osmoregulation in Dreissena polymorpha: The importance of Na, Cl, K, and particularly Mg. The Biological Bulletin, 187, 76–83. https://doi.org/10.2307/1542167.
Drake, J. M., & Bossenbroek, J. M. (2004). The potential distribution of zebra mussels in the United States. BioScience, 54(10), 931. https://doi.org/10.1641/0006-3568(2004)054[0931:TPDOZM]2.0.CO;2.
Fisher, S. W., Stromberg, P., Bruner, K. A., & Boulet, L. D. (1991). Molluscicidal activity of potassium to the zebra mussel, Dreissena polymorphia: Toxicity and mode of action. Aquatic Toxicology, 20(4), Article 4.
Fredricks, K., Tix, J., Smerud, J., & Cupp, A. (2020). Laboratory trials to evaluate carbon dioxide as a potential behavioral control method for invasive red swamp (Procambarus clarkii) and rusty crayfish (Faxonius rusticus). Management of Biological Invasions, 11(2), 259–278. https://doi.org/10.3391/mbi.2020.11.2.06.
Gallardo, B., zu Ermgassen, P. S. E., & Aldridge, D. C. (2013). Invasion ratcheting in the zebra mussel (Dreissena polymorpha) and the ability of native and invaded ranges to predict its global distribution. Journal of Biogeography, 40(12), 2274–2284. https://doi.org/10.1111/jbi.12170.
Hargreaves, J., & Brunson, M. (1996). Carbon dioxide in fish ponds (Vol. 468). Southern Regional Aquaculture Center.
Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22(3), 534–543. https://doi.org/10.1111/j.1523-1739.2008.00951.x.
Horohov, J., Silverman, H., Lynn, J. W., & Dietz, T. H. (1992). Ion transport in the freshwater zebra mussel, Dreissena polymorpha. The Biological Bulletin, 183(2), 297–303. https://doi.org/10.2307/1542216.
Jones, L. A., & Ricciardi, A. (2005). Influence of physicochemical factors on the distribution and biomass of invasive mussels (Dreissena polymorpha and Dreissena bugensis) in the St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences, 62, 1953–1962. https://doi.org/10.1139/F05-096.
Mackie, G. L., & Schloesser, D. W. (1996). Comparative biology of zebra mussels in Europe and North America: An overview. American Zoologist, 36(3), Article 3.
Martem'yanov, V. I. (2000). The dynamics of the sodium, potassium, calcium, magnesium contents in the fresh water mollusc zebra mussel Dreissenia polymorpha during stress. Journal of Evolutionary Biochemistry and Physiology, 36(1), 41–46. https://doi.org/10.1007/BF02890664.
McMahon, R. F. (1996). The physiological ecology of the zebra mussel, Dreissena polymorpha, in North America and Europe. American Zoologist, 36(3), 339–363. https://doi.org/10.1093/icb/36.3.339.
Moffitt, C. M., Stockton‐Fiti, K. A., & Claudi, R. (2016). Toxicity of potassium chloride to veliger and byssal stage dreissenid mussels related to water quality. Management of Biological Invasions, 7(3), 257–268. https://doi.org/10.3391/mbi.2016.7.3.05.
Naddafi, R., Blenckner, T., Eklöv, P., & Pettersson, K. (2011). Physical and chemical properties determine zebra mussel invasion success in lakes. Hydrobiologia, 669(1), Article 1. https://doi.org/10.1007/s10750-011-0689-1.
Naddy, R. B., Stubblefield, W. A., May, J. R., Tucker, S. A., & Hockett, J. R. (2002). The effect of calcium and magnesium ratios on the toxicity of copper to five aquatic species in freshwater. Environmental Toxicology and Chemistry, 21(2), Article 2. https://doi.org/10.1002/etc.5620210217.
Paquin, P. R., Santore, R. C., Wu, K. B., Kavvadas, C. D., & Di Toro, D. M. (2000). The biotic ligand model: A model of the acute toxicity of metals to aquatic life. Environmental Science & Policy, 3, 175–182. https://doi.org/10.1016/S1462-9011(00)00047-2.
Petsch, D. K., Ribas, L. G., dos, S., Mantovano, T., Pulzatto, M. M., Alves, A. T., Pinha, G. D., & Thomaz, S. M. (2021). Invasive potential of golden and zebra mussels in present and future climatic scenarios in the new world. Hydrobiologia, 848(9), 2319–2330. https://doi.org/10.1007/s10750-020-04412-w.
Pynnonen, K. (1990). Physiological responses to severe acid stress in four species of freshwater clams (Unionidae). Archives of Environmental Contamination and Toxicology, 19(4), 471–478. https://doi.org/10.1007/BF01059064.
R Core Team. (2021). R: A language and environment for statistical computing (4.1.1) [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/.
Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose‐response analysis using R. PLoS One, 10(12), Article 12. https://doi.org/10.1371/journal.pone.0146021.
Santore, R. C., Di Toro, D. M., Paquin, P. R., Allen, H. E., & Meyer, J. S. (2001). Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environmental Toxicology and Chemistry, 20(10), Article 10.
Spidle, A. P., May, B., & Mills, E. L. (1995). Limits to tolerance of temperature and salinity in the quagga mussel (Dreissena bugensis) and the zebra mussel (Dreissena polymorpha). Canadian Journal of Fisheries and Aquatic Sciences, 52, 2108–2119.
US Bureau of Reclamation. (2015). Zebra mussel eradication project for San Justo Reservoir, Hollister Conduit, and San Benito County water distribution system (FONSI FONSI‐09‐010; p. 65). US Bureau of Reclamation, South‐Central California Area Office.
US Environmental Protection Agency. (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (5th ed.). https://www.epa.gov/sites/production/files/2015-08/documents/acute-freshwater-and-marine-wet-manual_2002.pdf.
US Environmental Protection Agency. (2013). Aquatic life ambient water quality criterion for ammonia—Freshwater. Office of Water. https://www.epa.gov/sites/default/files/2015-08/documents/aquatic-life-ambient-water-quality-criteria-for-ammonia-freshwater-2013.pdf.
US Environmental Protection Agency. (2019). Carbon dioxide—Carp (Reg.: 6704‐95 6). https://www3.epa.gov/pesticides/chem_search/ppls/006704-00095-20190419.pdf.
US Geological Survey. (2022). Nonindigenous aquatic species database. https://nas.er.usgs.gov/default.aspx.
Waller, D., Bartsch, M., Bartsch, L., & Jackson, C. (2019). Lethal and sublethal responses of native mussels (Unionidae: Lampsilis siliquoidea and Lampsilis higginsii) to elevated carbon dioxide. Canadian Journal of Fisheries and Aquatic Sciences, 76(2), 238–248. https://doi.org/10.1139/cjfas-2017-0543.
Waller, D. L., & Bartsch, M. R. (2018). Use of carbon dioxide in zebra mussel (Dreissena polymorpha) control and safety to a native freshwater mussel (Fatmucket, Lampsilis siliquoidea). Management of Biological Invasions, 9(4), 439–450. https://doi.org/10.3391/mbi.2018.9.4.07.
Waller, D. L., Bartsch, M. R., Lord, E. G., & Erickson, R. A. (2020). Temperature‐related responses of an invasive mussel and 2 unionid mussels to elevated carbon dioxide. Environmental Toxicology and Chemistry, 39(8), 1546–1557. https://doi.org/10.1002/etc.4743.
Waller, D., Pucherelli, S., Barbour, M., Tank, S., Meulemans, M., Wise, J., Dahlberg, A., Aldridge, D. C., Claudi, R., Cope, W. G., Gillis, P. L., Kashian, D. R., Mayer, D., Stockton‐Fiti, K., & Wong, W. H. (2023). Review and development of best practices for toxicity tests with dreissenid mussels. Environmental Toxicology and Chemistry, 42(8), 1649–1666. https://doi.org/10.1002/etc.5648.
Wurts, W. A., & Durborow, R. M. (1992). Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds (No. 464, p. 4). Southern Regional Aquaculture Center.
معلومات مُعتمدة: U.S. Geological Survey
فهرسة مساهمة: Keywords: Aquatic invasive species; Control tool; Dose–response; Dreissenid mussels
المشرفين على المادة: 142M471B3J (Carbon Dioxide)
0 (Water Pollutants, Chemical)
059QF0KO0R (Water)
تواريخ الأحداث: Date Created: 20240405 Date Completed: 20240603 Latest Revision: 20240603
رمز التحديث: 20240603
DOI: 10.1002/etc.5864
PMID: 38578198
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-8618
DOI:10.1002/etc.5864