دورية أكاديمية

Emerging concepts on the FGF23 regulation and activity.

التفاصيل البيبلوغرافية
العنوان: Emerging concepts on the FGF23 regulation and activity.
المؤلفون: Rivoira MA; Laboratorio 'Dr. Fernando Cañas', Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina., Peralta López ME; Laboratorio 'Dr. Fernando Cañas', Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina., Areco V; Laboratorio 'Dr. Fernando Cañas', Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina.; Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, CONICET-UNVM), Córdoba, Argentina., Díaz de Barboza G; Laboratorio 'Dr. Fernando Cañas', Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina., Dionisi MP; Cátedra de Clínica Médica II - UHMI Nº 2, Hospital San Roque, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina., Tolosa de Talamoni N; Laboratorio 'Dr. Fernando Cañas', Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina. ntolosatalamoni@yahoo.com.ar.
المصدر: Molecular and cellular biochemistry [Mol Cell Biochem] 2024 Apr 06. Date of Electronic Publication: 2024 Apr 06.
Publication Model: Ahead of Print
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 0364456 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4919 (Electronic) Linking ISSN: 03008177 NLM ISO Abbreviation: Mol Cell Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: New York : Springer
Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
مستخلص: Fibroblast growth factor 23 (FGF23) discovery has provided new insights into the regulation of Pi and Ca homeostasis. It is secreted by osteoblasts and osteocytes, and acts mainly in the kidney, parathyroid, heart, and bone. The aim of this review is to highlight the current knowledge on the factors modulating the synthesis of FGF23, the canonical and non-canonical signaling pathways of the hormone, the role of FGF23 in different pathophysiological conditions, and the anti-FGF23 therapy. This is a narrative review based on the search of PubMed database in the range of years 2000-2023 using the keywords local and systemic regulators of FGF23 synthesis, FGF23 receptors, canonical and non-canonical pathways, pathophysiological conditions and FGF23, and anti-FGF23 therapy, focusing the data on the molecular mechanisms. The regulation of FGF23 synthesis is complex and multifactorial. It is regulated by local factors and systemic regulators mainly involved in bone mineralization. The excessive FGF23 production is associated with different congenital diseases and with diseases occurring with a secondary high FGF23 production such as in chronic disease kidney and tumor-induced osteomalacia (TIO). The anti-FGF23 therapy appears to be useful to treat chromosome X-linked hypophosphatemia and TIO, but there are doubts about the handle of excessive FGF23 production in CKD. FGF23 biochemistry and pathophysiology are generating a plethora of knowledge to reduce FGF23 bioactivity at many levels that might be useful for future therapeutics of diseases associated with high-serum FGF23 levels.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Vervloet M (2019) Renal and extrarenal effects of fibroblast growth factor 23. Nat Rev Nephrol 15(2):109–120. https://doi.org/10.1038/s41581-018-0087-2. (PMID: 10.1038/s41581-018-0087-230514976)
Murali SK, Roschger P, Zeitz U, Andrukhova KK, Erben ORG (2016) FGF23 regulates bone mineralization in a 1,25(OH)2D3 and klotho-independent manner. J Bone Miner Res 31(1):129–142. https://doi.org/10.1002/jbmr.2606. (PMID: 10.1002/jbmr.260626235988)
Rausch S, Foller M (2022) The regulation of FGF23 under physiological and pathophysiological conditions. Pfügers Archiv Eur J Physiol 474:281–292. https://doi.org/10.1007/s00424-022-02668-w. (PMID: 10.1007/s00424-022-02668-w)
Yamashita T, Yoshioka M, Itoh N (2000) Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277:494–498. https://doi.org/10.1006/bbrc.2000.3696. (PMID: 10.1006/bbrc.2000.369611032749)
ADHR-CONSORTIUM (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348. https://doi.org/10.1038/81664. (PMID: 10.1038/81664)
Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98:6500–6505. https://doi.org/10.1073/pnas.101545198. (PMID: 10.1073/pnas.1015451981134426933497)
Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, Shimada T (2009) Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res 24(11):1879–1888. https://doi.org/10.1359/jbmr.090509. (PMID: 10.1359/jbmr.09050919419316)
Kritmetapak K, Kumar R (2023) Phosphatonins: from discovery to therapeutics. Endocr Pract 29(1):69–79. https://doi.org/10.1016/j.eprac.2022.09.007. (PMID: 10.1016/j.eprac.2022.09.00736210014)
Isakova T, Cai X, Lee J, Mehta R, Zhang X, Yang W, Nessel L, Anderson AH, Lo J, Porter A, Nunes JW, Negrea L, Hamm L, Horwitz E, Chen J, Scialla JJ, de Boer IH, Leonard MB, Feldman HI, Wolf M (2020) Longitudinal evolution of markers of mineral metabolism in patients with CKD: the chronic renal insufficiency cohort (CRIC) study. Am J Kidney Dis 75:235–244. https://doi.org/10.1053/j.ajkd.2019.07.022. (PMID: 10.1053/j.ajkd.2019.07.02231668375)
Bergwitz C, Jüppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 61:91–104. https://doi.org/10.1146/annurev.med.051308.111339. (PMID: 10.1146/annurev.med.051308.111339200593334777331)
Ritter CS, Zhang S, Delmez J, Finch JL, Slatopolsky E (2015) Differential expression and regulation of Klotho by paricalcitol in the kidney, parathyroid, and aorta of uremic rats. Kidney Int 87:1141–1152. https://doi.org/10.1038/ki.2015.22. (PMID: 10.1038/ki.2015.22256929554449811)
Quarles LD (2019) Fibroblast growth factor 23 and α-Klotho co-dependent and independent functions. Curr Opin Nephrol Hypertens 28(1):16–25. https://doi.org/10.1097/MNH.0000000000000467. (PMID: 10.1097/MNH.0000000000000467304517366258326)
Michigami T (2022) Roles of osteocytes in phosphate metabolism. Front Endocrinol 13:967774. https://doi.org/10.3389/fendo.2022.967774. (PMID: 10.3389/fendo.2022.967774)
Noonan ML, White KE (2019) FGF23 synthesis and activity. Curr Mol Biol Rep 5(1):18–25. https://doi.org/10.1007/s40610-019-0111-8. (PMID: 10.1007/s40610-019-0111-8310080216469709)
Leifheit-Nestler M, Grabner A, Hermann L, Richter B, Schmitz K, Fischer DC, Yanucil C, Faul C, Haffner D (2017) Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats. Nephrol Dial Transplant 32:1493–1503. https://doi.org/10.1093/ndt/gfw454. (PMID: 10.1093/ndt/gfw454283398375837317)
Matsui I, Oka T, Kusunoki Y, Mori D, Hashimoto N, Matsumoto A, Shimada K, Yamaguchi S, Kubota K, Yonemoto S, Higo T, Sakaguchi Y, Takabatake Y, Hamano T, Isaka Y (2018) Cardiac hypertrophy elevates serum levels of fibroblast growth factor 23. Kidney Int 94:60–71. https://doi.org/10.1016/j.kint.2018.02.018. (PMID: 10.1016/j.kint.2018.02.01829751971)
Yamazaki Y, Tamada T, Kasai N, Urakawa I, Aono Y, Hasegawa H, Fujita T, Kuroki R, Yamashita T, Fukumoto S, Shimada T (2008) Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res 23(9):1509–1518. https://doi.org/10.1359/jbmr.080417. (PMID: 10.1359/jbmr.08041718442315)
Richter B, Faul C (2018) FGF23 actions on target tissues-with and without Klotho. Front Endocrinol 9:189. https://doi.org/10.3389/fendo.2018.00189. (PMID: 10.3389/fendo.2018.00189)
White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ (2001) Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 60(6):2079–2086. https://doi.org/10.1046/j.1523-1755.2001.00064.x. (PMID: 10.1046/j.1523-1755.2001.00064.x11737582)
Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121(11):4393–4408. https://doi.org/10.1172/JCI46122. (PMID: 10.1172/JCI46122219857883204831)
Tagliabracci V, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, Koller A, Nizet V, White KE, Dixon JE (2014) Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci USA 111(15):5520–5525. https://doi.org/10.1073/pnas.1402218111. (PMID: 10.1073/pnas.1402218111247069173992636)
Ho BB, Bergwitz C (2021) FGF23 Signalling and physiology. J Mol Endocrinol 66(2):R23–R32. https://doi.org/10.1530/JME-20-0178. (PMID: 10.1530/JME-20-0178333380308782161)
Chande S, Bergwitz C (2018) Role of phosphate sensing in bone and mineral metabolism. Nat Rev Endocrinol 14:637–655. https://doi.org/10.1038/s41574-018-0076-3. (PMID: 10.1038/s41574-018-0076-3302180148607960)
Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV, Xu C, Neubert TA, Zhang F, Linhardt RJ, Yu X, White KE, Inagaki T, Kliewer SA, Yamamoto M, Kurosu H, Ogawa Y, Kuo-o M, Lanske B, Razzaque MS, Mohammadi M (2007) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Moll Cell Biol 27:3417–3428. https://doi.org/10.1128/MCB.02249-06. (PMID: 10.1128/MCB.02249-06)
Kato K, Jeanneau C, Tarp MA, Benet-Pagès A, Lorenz-Depiereux B, Bennett EP, Mandel U, Strom TM, Clausen H (2006) Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem 281:18370–18377. https://doi.org/10.1074/jbc.M602469200. (PMID: 10.1074/jbc.M60246920016638743)
Ichikawa S, Imel EA, Sorenson AH, Severe R, Knudson P, Harris GJ, Shaker JL, Econs MJ (2006) Tumoral calcinosis presenting with eyelid calcifications due to novel missense mutations in the glycosyl transferase domain of the GALNT3 gene. J Clin Endocrinol Metab 91(11):4472–4475. https://doi.org/10.1210/jc.2006-1247. (PMID: 10.1210/jc.2006-124716940445)
Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51. https://doi.org/10.1038/36285. (PMID: 10.1038/362859363890)
Komaba H, Kaludjerovic J, Hu DZ, Nagano K, Amano K, Ide N, Sato T, Densmore MJ, Hanai JI, Olauson H, Bellido T, Larsson TE, Baron R, Lanske B (2017) Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int 92(3):599–611. https://doi.org/10.1016/j.kint.2017.02.014. (PMID: 10.1016/j.kint.2017.02.01428396120)
Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H, Nagai R, Kuro-o M, Nabeshima Y (1998) Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 424(1–2):6–10. https://doi.org/10.1016/s0014-5793(98)00127-6. (PMID: 10.1016/s0014-5793(98)00127-69537505)
Navarro-García JA, Fernández-Velasco M, Delgado C, Delgado JF, Kuro-o M, Ruilope LM, Ruiz-Hurtado G (2018) PTH, vitamin D, and the FGF-23-klotho axis and heart: going beyond the confines of nephrology. Eur J Clin Invest. https://doi.org/10.1111/eci.12902. (PMID: 10.1111/eci.1290229394451)
Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2(3):3005. https://doi.org/10.1186/gb-2001-2-3-reviews3005. (PMID: 10.1186/gb-2001-2-3-reviews3005)
Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10(2):116–129. https://doi.org/10.1038/nrc2780. (PMID: 10.1038/nrc278020094046)
Goetz R, Ohnishi M, Kir S, Kurosu H, Wang L, Pastor J, Ma J, Gai W, Kuro-o M, Razzaque MS, Mohammadi M (2012) Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem 287(34):29134–29146. https://doi.org/10.1074/jbc.M112.342980. (PMID: 10.1074/jbc.M112.342980227338153436551)
Suzuki Y, Kuzina E, An SJ, Tome F, Mohanty F, Li W, Lee S, Liu Y, Lax I, Schlessinger J (2020) FGF23 contains two distinct high-affinity binding sites enabling bivalent interactions with α-Klotho. Proc Natl Acad Sci USA 117(50):31800–31807. https://doi.org/10.1073/pnas.2018554117. (PMID: 10.1073/pnas.2018554117332575697749347)
Yanucil C, Kentrup D, Campos I, Czaya B, Heitman K, Westbrook D, Osis G, Grabner A, Wende AR, Vallejo J, Wacker MJ, Navarro-Garcia JA, Ruiz-Hurtado G, Zhang F, Song Y, Linhardt RJ, White K, Kapiloff MS, Faul C (2022) Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney Int 102(2):261–279. https://doi.org/10.1016/j.kint.2022.03.028. (PMID: 10.1016/j.kint.2022.03.028355131259329240)
Miyagawa K, Yamazaki M, Kawai M, Nishino J, Koshimizu T, Ohata Y, Tachikawa K, Mikuni-Takagaki Y, Kogo M, Ozono K, Michigami T (2014) Dysregulated gene expression in the primary osteoblasts and osteocytes isolated from hypophosphatemic hyp mice. PLoS ONE 9(4):e93840. https://doi.org/10.1371/journal.pone.0093840. (PMID: 10.1371/journal.pone.0093840247105203977859)
Dussold C, Gerber C, White S, Wang X, Qi L, Francis C, Capella M, Courbon G, Wang J, Li C, Feng JQ, Isakova T, Wolf M, David V, Martin A (2019) DMP1 prevents osteocyte alterations, FGF23 elevation and left ventricular hypertrophy in mice with chronic kidney disease. Bone Res 7:12. https://doi.org/10.1038/s41413-019-0051-1. (PMID: 10.1038/s41413-019-0051-1310440946483996)
Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, Quarles LD (2011) Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J 25(8):2551–2562. https://doi.org/10.1096/fj.10-177816. (PMID: 10.1096/fj.10-177816215078983136343)
Liu C, Zhang H, Jani P, Wang X, Lu Y, Li N, Xiao J, Qin C (2018) FAM20C regulates osteoblast behaviors and intracellular signaling pathways in a cell-autonomous manner. J Cell Physiol 233(4):3476–3486. https://doi.org/10.1002/jcp.26200. (PMID: 10.1002/jcp.2620028926103)
Ito N, Prideaux M, Wijenayaka AR, Yang D, Ormsby RT, Bonewald LF, Atkins GJ (2021) Sclerostin directly stimulates osteocyte synthesis of fibroblast growth factor-23. Calcif Tissue Int 109(1):66–76. https://doi.org/10.1007/s00223-021-00823-6. (PMID: 10.1007/s00223-021-00823-633616712)
Razzaque MS (2022) Interactions between FGF23 and vitamin D. Endocr Connect 11(10):e220239. https://doi.org/10.1530/EC-22-0239. (PMID: 10.1530/EC-22-0239360404599578066)
Zittermann A, Berthold HK, Pilz S (2021) The effect of vitamin D on fibroblast growth factor 23: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 75:980–987. https://doi.org/10.1038/s41430-020-00725-0. (PMID: 10.1038/s41430-020-00725-032855522)
Meshkini F, Soltani S, Clark CCT, Tam V, Meyre D, Toupchian O, Saraf-Bank S, Abdollahi S (2022) The effect of vitamin D supplementation on serum levels of fibroblast growth factor-23: a systematic review and meta-analysis of randomized controlled trials. J Steroid Biochem Mol Biol 215:106012. https://doi.org/10.1016/j.jsbmb.2021.106012. (PMID: 10.1016/j.jsbmb.2021.10601234710560)
Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghishan FK (2005) 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289(6):G1036–G1042. https://doi.org/10.1152/ajpgi.00243.2005. (PMID: 10.1152/ajpgi.00243.200516020653)
Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, Bouillon R, Carmeliet G (2006) Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 116(12):3150–3159. https://doi.org/10.1172/JCI29463. (PMID: 10.1172/JCI29463170997751635166)
Nguyen-Yamamoto L, Karaplis AC, St-Arnaud R, Goltzman D (2017) Fibroblast growth factor 23 regulation by systemic and local osteoblast-synthesized 1,25-dihydroxyvitamin D. J Am Soc Nephrol 28(2):586–597. https://doi.org/10.1681/ASN.2016010066. (PMID: 10.1681/ASN.201601006627535551)
Saji F, Shigematsu T, Sakaguchi T, Ohya M, Orita H, Maeda Y, Ooura M, Mima T, Negi S (2010) Fibroblast growth factor 23 production in bone is directly regulated by 1{alpha},25-dihydroxyvitamin D, but not PTH. Am J Physiol Renal Physiol 299(5):F1212–F1217. https://doi.org/10.1152/ajprenal.00169.2010. (PMID: 10.1152/ajprenal.00169.201020739393)
Lanske B, Razzaque MS (2014) Molecular interactions of FGF23 and PTH in phosphate regulation. Kidney Int 86(6):1072–1074. https://doi.org/10.1038/ki.2014.316. (PMID: 10.1038/ki.2014.316254270804246422)
Kobayashi K, Imanishi Y, Miyauchi A, Onoda N, Kawata T, Tahara H, Goto H, Miki T, Ishimura E, Sugimoto T, Ishikawa T, Inaba M, Nishizawa Y (2006) Regulation of plasma fibroblast growth factor 23 by calcium in primary hyperparathyroidism. Eur J Endocrinol 154(1):93–99. https://doi.org/10.1530/eje.1.02053. (PMID: 10.1530/eje.1.0205316381997)
Yamashita H, Yamashita T, Miyamoto M, Shigematsu T, Kazama JJ, Shimada T, Yamazaki Y, Fukumoto S, Fukagaw M, Noguchi S (2004) Fibroblast growth factor (FGF)-23 in patients with primary hyperparathyroidism. Eur J Endocrinol 151(1):55–60. https://doi.org/10.1530/eje.0.1510055. (PMID: 10.1530/eje.0.151005515248822)
Knab VM, Corbin B, Andrukhova O, Hum JM, Ni P, Rabadi S, Maeda A, White KE, Erben RG, Jüppner H, Christov M (2017) Acute parathyroid hormone injection increases C-terminal but not intact fibroblast growth factor 23 levels. Endocrinology 158(5):1130–1139. https://doi.org/10.1210/en.2016-1451. (PMID: 10.1210/en.2016-1451283240135460828)
Onal M, Carlson AH, Thostenson JD, Benkusky NA, Meyer MB, Lee SM, Pike JW (2018) A novel distal enhancer mediates inflammation-, PTH-, and early onset murine kidney disease-induced expression of the mouse Fgf23 gene. JBMR Plus 2(1):32–47. https://doi.org/10.1002/jbm4.10023. (PMID: 10.1002/jbm4.1002329527594)
Wolf M (2010) Forging forward with 10 burning questions on FGF23 in kidney disease. J Am Soc Nephrol 21(9):1427–1435. https://doi.org/10.1681/asn.2009121293. (PMID: 10.1681/asn.200912129320507943)
Mace ML, Olgaard K, Lewin E (2020) New aspects of the kidney in the regulation of fibroblast growth factor 23 (FGF23) and mineral homeostasis. Int J Mol Sci 21(22):8810. (PMID: 10.3390/ijms21228810332338407699902)
Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, Ono K, Kakitani M, Tomizuka K, Fujita T, Fukumoto S, Yamashita T (2005) Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289(5):F1088-1095. https://doi.org/10.1152/ajprenal.00474.2004. (PMID: 10.1152/ajprenal.00474.200415998839)
Rodriguez-Ortiz ME, Lopez I, Muñoz-Castañeda JR, Martinez-Moreno JM, Peralta Ramírez A, Pineda C, Canalejo A, Jaeger P, Aguilera-Tejero E, Rodriguez M, Felsenfeld A, Almaden Y (2012) Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol 23(7):1190–1197. https://doi.org/10.1681/ASN.2011101006. (PMID: 10.1681/ASN.2011101006225819963380648)
David V, Dai B, Martin A, Huang J, Han X, Quarles LD (2013) Calcium regulates FGF-23 expression in bone. Endocrinology 154(12):4469–4482. https://doi.org/10.1210/en.2013-1627. (PMID: 10.1210/en.2013-1627241407143836077)
Quinn SJ, Thomsen AR, Pang JL, Kantham L, Bräuner-Osborne H, Pollak M, Goltzman D, Brown EM (2013) Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol Endocrinol Metab 304(3):E310-320. https://doi.org/10.1152/ajpendo.00460.2012. (PMID: 10.1152/ajpendo.00460.201223233539)
Akiyama KI, Miura Y, Hayashi H, Sakata A, Matsumura Y, Kojima M, Tsuchiya K, Nitta K, Shiizaki K, Kurosu H, Kuro-o M (2020) Calciprotein particles regulate fibroblast growth factor-23 expression in osteoblasts. Kidney Int 97(4):702–712. https://doi.org/10.1016/j.kint.2019.10.019. (PMID: 10.1016/j.kint.2019.10.01932001068)
Thein OS, Ali NA, Mahida RY, Dancer RCA, Ostermann M, Amrein K, Martucci G, Scott A, Thickett DR, Parekh D (2023) Raised FGF23 correlates to increased mortality in critical illness, independent of Vitamin D. Biology (Basel) 12(2):309. https://doi.org/10.3390/biology12020309. (PMID: 10.3390/biology1202030936829583)
Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA (2005) Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146(12):5358–5864. https://doi.org/10.1210/en.2005-0777. (PMID: 10.1210/en.2005-077716123154)
Nishida Y, Taketani Y, Yamanaka-Okumura H, Imamura F, Taniguchi A, Sato T, Shuto E, Nashiki K, Arai H, Yamamoto H, Takeda E (2006) Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int 70(12):2141–2147. https://doi.org/10.1038/sj.ki.5002000. (PMID: 10.1038/sj.ki.500200017063170)
Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91(8):3144–3149. https://doi.org/10.1210/jc.2006-0021. (PMID: 10.1210/jc.2006-002116735491)
Larsson T, Nisbeth U, Ljunggren O, Jüppner H, Jonsson KB (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64(6):2272–2279. https://doi.org/10.1046/j.1523-1755.2003.00328.x. (PMID: 10.1046/j.1523-1755.2003.00328.x14633152)
Tsai WC, Wu HY, Peng YS, Hsu SP, Chiu YL, Yang JY, Chen HY, Pai MF, Lin WY, Hung KY, Chu FY, Tsai SM, Chien KL (2019) Short-term effects of very-low-phosphate and low-phosphate diets on fibroblast growth factor 23 in hemodialysis patients: a randomized crossover trial. Clin J Am Soc Nephrol 14(10):1475–1483. https://doi.org/10.2215/CJN.04250419. (PMID: 10.2215/CJN.04250419315195506777602)
Isakova T, Gutiérrez OM, Smith K, Epstein M, Keating LK, Jüppner H, Wolf M (2011) Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol Dial Transplant 26(2):584–591. https://doi.org/10.1093/ndt/gfq419. (PMID: 10.1093/ndt/gfq41920631407)
Oliveira RB, Cancela AL, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L, Carvalho AB, Jorgetti V, Canziani ME, Moysés RM (2010) Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol 5(2):286–291. (PMID: 10.2215/CJN.05420709199655402827593)
Memmos E, Papagianni A (2021) New insights into the role of FGF-23 and Klotho in cardiovascular disease in chronic kidney disease patients. Curr Vasc Pharmacol 19(1):55–62. https://doi.org/10.2174/1570161118666200420102100. (PMID: 10.2174/157016111866620042010210032310050)
Hori M, Kinoshita Y, Taguchi M, Fukumoto S (2016) Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells. J Bone Miner Metab 34(2):132–139. https://doi.org/10.1007/s00774-015-0651-9. (PMID: 10.1007/s00774-015-0651-925792238)
Heijboer AC, Cavalier E (2023) The measurement and interpretation of fibroblast growth factor 23 (FGF23) concentrations. Calcif Tissue Int 112(2):258–270. https://doi.org/10.1007/s00223-022-00987-9. (PMID: 10.1007/s00223-022-00987-935665817)
Kato H, Miyazaki H, Kimura T, Hoshino Y, Hidaka N, Koga M, Nangaku M, Makita N, Ito N (2023) Clinical performance of a new intact FGF23 immunoassay in healthy individuals and patients with chronic hypophosphatemia. Bone Rep 18:101659. https://doi.org/10.1016/j.bonr.2023.101659. (PMID: 10.1016/j.bonr.2023.101659368171679932357)
Bouma-de Krijger A, Vervloet MG (2020) Fibroblast growth factor 23: are we ready to use it in clinical practice? J Nephrol 33(3):509–527. https://doi.org/10.1007/s40620-020-00715-2. (PMID: 10.1007/s40620-020-00715-2321307207220896)
Pons-Belda OD, Alonso-Álvarez MA, González-Rodríguez JD, Mantecón-Fernández L, Santos-Rodríguez F (2023) Mineral metabolism in children: interrelation between vitamin D and FGF23. Int J Mol Sci 24(7):6661. https://doi.org/10.3390/ijms24076661. (PMID: 10.3390/ijms240766613704763610094813)
Lerch C, Shroff R, Wan M, Rees L, Aitkenhead H, Kaplan Bulut I, Thurn D, Karabay Bayazit A, Niemirska A, Canpolat N, Duzova A, Azukaitis K, Yilmaz E, Yalcinkaya F, Harambat J, Kiyak A, Alpay H, Habbig S, Zaloszyc A, Soylemezoglu O, Candan C, Rosales A, Melk A, Querfeld U, Leifheit-Nestler M, Sander A, Schaefer F, Haffner D, 4C Study Consortium; ESPN CKD-MBD Working Group (2018) Effects of nutritional vitamin D supplementation on markers of bone and mineral metabolism in children with chronic kidney disease. Nephrol Dial Transplant 33(12):2208–2217. https://doi.org/10.1093/ndt/gfy012. (PMID: 10.1093/ndt/gfy01229481636)
Aurelle M, Basmaison O, Ranchin B, Kassai-Koupai B, Sellier-Leclerc AL, Bertholet-Thomas A, Bacchetta J (2020) Intermittent cholecalciferol supplementation in children and teenagers followed in pediatric nephrology: data from a prospective single-center single-arm open trial. Eur J Pediatr 179(4):661–669. https://doi.org/10.1007/s00431-019-03553-y. (PMID: 10.1007/s00431-019-03553-y31873802)
Sheriff A, Mathew G, Sinha A, Hari S, Gupta N, Ramakrishnan L, Hari P, Bagga A (2022) Short-term effects of cholecalciferol supplementation on cFGF23 levels in children with chronic kidney disease and vitamin D insufficiency. Indian J Pediatr 89(10):1037–1039. https://doi.org/10.1007/s12098-022-04247-4. (PMID: 10.1007/s12098-022-04247-435771347)
Ali FN, Josefson J, Mendez AJ, Mestan K, Wolf M (2016) Cord blood ferritin and fibroblast growth factor-23 levels in neonates. J Clin Endocrinol Metab 101(4):1673–1679. https://doi.org/10.1210/jc.2015-3709. (PMID: 10.1210/jc.2015-3709268591044880165)
Fischer DC, Mischek A, Wolf S, Rahn A, Salweski B, Kundt G, Haffner D (2012) Paediatric reference values for the C-terminal fragment of fibroblast-growth factor-23, sclerostin, bone-specific alkaline phosphatase and isoform 5b of tartrate-resistant acid phosphatase. Ann Clin Biochem 49(Pt 6):546–553. https://doi.org/10.1258/acb.2012.011274. (PMID: 10.1258/acb.2012.01127422984195)
Stanczyk M, Chrul S, Wyka K, Tkaczyk M (2021) Serum intact fibroblast growth factor 23 in healthy paediatric population. Open Med (Wars) 16(1):1022–1027. (PMID: 10.1515/med-2021-028834258392)
Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG (2012) FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone 51(3):621–628. https://doi.org/10.1016/j.bone.2012.05.015. (PMID: 10.1016/j.bone.2012.05.015226479683419258)
Kawai M (2016) The FGF23/Klotho axis in the regulation of mineral and metabolic homeostasis. Horm Mol Biol Clin Investig 28(1):55–67. https://doi.org/10.1515/hmbci-2015-0068. (PMID: 10.1515/hmbci-2015-006826943611)
Ide N, Olauson H, Sato T, Densmore MJ, Wang H, Hanai J, Larsson T, Lanske B (2016) In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int 90(2):348–362. https://doi.org/10.1016/j.kint.2016.04.009. (PMID: 10.1016/j.kint.2016.04.00927292223)
Blau JE, Collins MT (2015) The PTH-vitamin D-FGF23 axis. Rev Endocr Metab Disord 16:165–174. https://doi.org/10.1007/s11154-015-9318-z. (PMID: 10.1007/s11154-015-9318-z26296372)
Latic N, Erben RG (2022) Interaction of vitamin D with peptide hormones with emphasis on parathyroid hormone, FGF23, and the renin-angiotensin-aldosterone system. Nutrients 14(23):5186. https://doi.org/10.3390/nu14235186. (PMID: 10.3390/nu14235186365012159736617)
Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008. https://doi.org/10.1172/JCI32409. (PMID: 10.1172/JCI32409179922552066196)
Han X, Cai C, Xiao Z, Quarles LD (2020) FGF23 induced left ventricular hypertrophy mediated by FGFR4 signaling in the myocardium is attenuated by soluble Klotho in mice. J Mol Cell Cardiol 138:66–74. https://doi.org/10.1016/j.yjmcc.2019.11.149. (PMID: 10.1016/j.yjmcc.2019.11.14931758962)
Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, Czaja MJ, Bartz R, Abraham R, Di Marco GS, Brand M, Wolf M, Faul C (2016) Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int 90(5):985–996. https://doi.org/10.1016/j.kint.2016.05.019. (PMID: 10.1016/j.kint.2016.05.019274579125065745)
Vogt I, Haffner D, Leifheit-Nestler M (2019) FGF23 and phosphate-cardiovascular toxins in CKD. Toxins (Basel) 11(11):647. https://doi.org/10.3390/toxins11110647. (PMID: 10.3390/toxins1111064731698866)
Leifheit-Nestler M, Haffner D (2021) How FGF23 shapes multiple organs in chronic kidney disease. Mol Cell Pediatr 8(1):12. https://doi.org/10.1186/s40348-021-00123-x. (PMID: 10.1186/s40348-021-00123-x345361618449753)
Yamada S, Giachelli CM (2017) Vascular calcification in CKD-MBD: roles for phosphate, FGF23, and Klotho. Bone 100:87–93. https://doi.org/10.1016/j.bone.2016.11.012. (PMID: 10.1016/j.bone.2016.11.01227847254)
Figurek A, Rroji M, Spasovski G (2023) FGF23 in chronic kidney disease: bridging the heart and anemia. Cells 12(4):609. https://doi.org/10.3390/cells12040609. (PMID: 10.3390/cells12040609368312769954184)
Muras-Szwedziak K, Pawłowicz-Szlarska E, Nowicki M (2023) Effect of intravenous iron on endogenous erythropoietin and FGF-23 secretion in patients with chronic kidney disease. Ren Fail 45(1):2164305. https://doi.org/10.1080/0886022X.2022.2164305. (PMID: 10.1080/0886022X.2022.2164305366888119873275)
Lindberg K, Amin R, Moe OW, Hu M, Erben RG, Östman Wernerson A, Lanske B, Olauson H, Larsoon TE (2014) The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol 25(10):2169–2175. https://doi.org/10.1681/ASN.2013111209. (PMID: 10.1681/ASN.2013111209248542714178446)
Sakan H, Nakatani K, Asai O, Imura A, Tanaka T, Yoshimoto S, Iwamoto N, Kurumatami N, Iwano M, Nabeshima I, Konishi N, Saito Y (2014) Reduced renal alpha-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism. PLoS ONE 9(1):e86301. https://doi.org/10.1371/journal.pone.0086301. (PMID: 10.1371/journal.pone.0086301244660133900516)
Eisenga MF, De Jong MA, Van der Meer P, Leaf DE, Huls G, Nolte IM, Gaillard CA, Bakker SJL, De Borst MH (2019) Iron deficiency, elevated erythropoietin, fibroblast growth factor 23, and mortality in the general population of the Netherlands: a cohort study. PLoS Med 16(6):e1002818. https://doi.org/10.1371/journal.pmed.1002818. (PMID: 10.1371/journal.pmed.1002818311701596553711)
Hain D, Bednarski D, Cahill M, Dix A, Foote B, Haras MS, Pace R, Gutierrez OM (2023) Iron-deficiency anemia in CKD: a narrative review for the kidney care team. Kidney Med 5(8):100677. https://doi.org/10.1016/j.xkme.2023.100677. (PMID: 10.1016/j.xkme.2023.1006773741562110319843)
Imel EA, Liu Z, Coffman M, Acton D, Mehta R, Econs MJ (2020) Oral iron replacement normalizes fibroblast growth factor 23 in iron-deficient patients with autosomal dominant hypophosphatemic rickets. J Bone Miner Res 35(2):231–238. https://doi.org/10.1002/jbmr.3878. (PMID: 10.1002/jbmr.387831652009)
Artunc F, Risler T (2007) Serum erythropoietin concentrations and responses to anaemia in patients with or without chronic kidney disease. Nephrol Dial Transplant 22(10):2900–2908. https://doi.org/10.1093/ndt/gfm316. (PMID: 10.1093/ndt/gfm31617556407)
Afsar B, Kanbay M, Afsar RE (2022) Interconnections of fibroblast growth factor 23 and klotho with erythropoietin and hypoxia-inducible factor. Mol Cell Biochem 477(7):1973–1985. https://doi.org/10.1007/s11010-022-04422-3. (PMID: 10.1007/s11010-022-04422-335381946)
Eitner F, Richter B, Schwänen S, Szaroszyk M, Vogt I, Grund A, Thum T, Heineke J, Haffner D, Leifheit-Nestler M (2022) Comprehensive expression analysis of cardiac fibroblast growth factor 23 in health and pressure-induced cardiac hypertrophy. Front Cell Dev Biol 9:791479. https://doi.org/10.3389/fcell.2021.791479. (PMID: 10.3389/fcell.2021.791479351180768804498)
Akhabue E, Montag S, Reis JP, Pool LR, Mehta R, Yancy CW, Zhao L, Wolf M, Gutierrez OM, Carnethon MR, Isakova T (2018) FGF23 (fibroblast growth factor-23) and incident hypertension in young and middle-aged adults: the CARDIA study. Hypertension 72(1):70–76. https://doi.org/10.1161/HYPERTENSIONAHA.118.11060. (PMID: 10.1161/HYPERTENSIONAHA.118.1106029712737)
Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B, Pohl EE, Erben RG (2014) FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med 6(6):744–59. https://doi.org/10.1002/emmm.201303716. (PMID: 10.1002/emmm.201303716247976674203353)
Kanbay M, Demiray A, Afsar B, Covic A, Tapoi L, Ureche C, Ortiz A (2021) Role of klotho in the development of essential hypertension. Hypertension 77(3):740–750. https://doi.org/10.1161/HYPERTENSIONAHA.120.16635. (PMID: 10.1161/HYPERTENSIONAHA.120.1663533423524)
Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, Hasegawa H, Yamashita T, Nakatani K, Saito Y, Okamoto N, Kurumatani N, Namba N, Kitaoka T, Ozono K, Sakai T, Hataya H, Ichikawa S, Imel EA, Econs MJ, Nabeshima Y (2010) Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun 398(3):513–8. https://doi.org/10.1016/j.bbrc.2010.06.110. (PMID: 10.1016/j.bbrc.2010.06.110205997644130489)
Citterio L, Delli Carpini S, Lupoli S, Brioni E, Simonini M, Fontana S, Zagato L, Messaggio E, Barlassina C, Cusi D, Manunta P, Lanzani C (2020) Klotho gene in human salt-sensitive hypertension. Clin J Am Soc Nephrol 15(3):375–383. https://doi.org/10.2215/CJN.08620719. (PMID: 10.2215/CJN.08620719319925757057312)
Nanba K, Vaidya A, Williams GH, Zheng I, Else T, Rainey WE (2017) Age-related autonomous aldosteronism. Circulation 136(4):347–355. https://doi.org/10.1161/CIRCULATIONAHA.117.028201. (PMID: 10.1161/CIRCULATIONAHA.117.028201285663375568806)
Gao P, Xu TT, Lu J, Li L, Xu J, Hao DL, Chen HZ, Liu DP (2014) Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol Med (Berl) 92(4):347–357. https://doi.org/10.1007/s00109-013-1111-4. (PMID: 10.1007/s00109-013-1111-424352856)
Kitagawa M, Sugiyama H, Morinaga H, Inoue T, Takiue K, Ogawa A, Yamanari T, Kikumoto Y, Uchida HA, Kitamura S, Maeshima Y, Nakamura K, Ito H, Makino H (2013) A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS ONE 8(2):e56695. https://doi.org/10.1371/journal.pone.0056695. (PMID: 10.1371/journal.pone.0056695234313883576368)
Richter B, Haller J, Haffner D, Leifheit-Nestler M (2016) Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells. Pflugers Arch 468(9):1621–1635. https://doi.org/10.1007/s00424-016-1858-x. (PMID: 10.1007/s00424-016-1858-x27448998)
Courbebaisse M, Lanske B (2018) Biology of fibroblast growth factor 23: from physiology to pathology. Cold Spring Harb Perspect Med 8(5):a031260. https://doi.org/10.1101/cshperspect.a031260. (PMID: 10.1101/cshperspect.a031260287789655932574)
Zuo Q, Yang W, Liu B, Yan D, Wang Z, Wang H, Deng W, Cao X, Yang J (2022) A novel FGF23 mutation in hyperphosphatemic familial tumoral calcinosis and its deleterious effect on protein O-glycosylation. Front Endocrinol (Lausanne) 13:1008800. https://doi.org/10.3389/fendo.2022.1008800. (PMID: 10.3389/fendo.2022.100880036213261)
Huang T, He Y, Li Y, Zang H, Wang Q, Gao Y (2024) The relationship between serum fibroblast growth factor 23 and klotho protein and low bone mineral density in middle-aged and elderly patients with end-stage renal disease. Horm Metab Res 56(2):142–149. https://doi.org/10.1055/a-2168-5089. (PMID: 10.1055/a-2168-508937875141)
Lima F, Monier-Faugere MC, Mawad H, David V, Malluche HH (2023) FGF-23 and sclerostin in serum and bone of CKD patients. Clin Nephrol 99(5):209–218. https://doi.org/10.5414/CN111111. (PMID: 10.5414/CN1111113697096710286735)
Zhang H, Xiang G, Li J, He S, Wang Y, Deng A, Wang Y, Guo C (2023) Promotion effect of FGF23 on osteopenia in congenital scoliosis through FGFr3/TNAP/OPN pathway. Chin Med J (Engl) 136(12):1468–1477. https://doi.org/10.1097/CM9.0000000000002690. (PMID: 10.1097/CM9.000000000000269037192015)
Liu Y, Cheng Y, Sun M, Hao X, Li M (2023) Analysis of serum insulin-like growth factor-1, fibroblast growth factor 23, and Klotho levels in girls with rapidly progressive central precocious puberty. Eur J Pediatr 182(11):5007–5013. https://doi.org/10.1007/s00431-023-05174-y. (PMID: 10.1007/s00431-023-05174-y3764416910640509)
Ewendt F, Feger M, Föller M (2021) Role of fibroblast growth factor 23 (FGF23) and αKlotho in cancer. Front Cell Dev Biol 8:601006. https://doi.org/10.3389/fcell.2020.601006. (PMID: 10.3389/fcell.2020.601006335209857841205)
Boland JM, Tebben PJ, Folpe AL (2018) Phosphaturic mesenchymal tumors: what an endocrinologist should know. J Endocrinol Invest 41(10):1173–1184. https://doi.org/10.1007/s40618-018-0849-5. (PMID: 10.1007/s40618-018-0849-529446010)
Minisola S, Peacock M, Fukumoto S, Cipriani C, Pepe J, Tella SH, Collins MT (2017) Tumour-induced osteomalacia. Nat Rev Dis Primers 3:17044. https://doi.org/10.1038/nrdp.2017.44. (PMID: 10.1038/nrdp.2017.4428703220)
Mansinho A, Ferreira AR, Casimiro S, Alho I, Vendrell I, Costa AL, Sousa R, Abreu C, Pulido C, Macedo D, Pacheco TR, Correia L, Costa L (2019) Levels of circulating fibroblast growth factor 23 (FGF23) and prognosis in cancer patients with bone metastases. Int J Mol Sci 20(3):695. https://doi.org/10.3390/ijms20030695. (PMID: 10.3390/ijms20030695307362856387099)
Feng S, Wang J, Zhang Y, Creighton CJ, Ittmann M (2015) FGF23 promotes prostate cancer progression. Oncotarget 6(19):17291–17301. https://doi.org/10.18632/oncotarget.4174. (PMID: 10.18632/oncotarget.4174260191374627308)
Choudhary S, Ramasundaram P, Dziopa E, Mannion C, Kissin Y, Tricoli L, Albanese C, Lee W, Zilberberg J (2018) Human ex vivo 3D bone model recapitulates osteocyte response to metastatic prostate cancer. Sci Rep 8(1):17975. https://doi.org/10.1038/s41598-018-36424-x. (PMID: 10.1038/s41598-018-36424-x305682326299475)
Cymbaluk-Płoska A, Gargulińska P, Chudecka-Głaz A, Kwiatkowski S, Pius-Sadowska E, Machaliński B (2020) The suitability of FGF21 and FGF23 as new biomarkers in endometrial cancer patients. Diagnostics (Basel) 10(6):414. https://doi.org/10.3390/diagnostics10060414. (PMID: 10.3390/diagnostics1006041432570721)
Lamb YN (2018) Burosumab: first global approval. Drugs 78(6):707–714. https://doi.org/10.1007/s40265-018-0905-7. (PMID: 10.1007/s40265-018-0905-729679282)
Kubota T, Namba N, Tanaka H, Muroya K, Imanishi Y, Takeuchi Y, Kanematsu M, Sun W, SeinoY OK (2023) Self-administration of burosumab in children and adults with X-linked hypophosphataemia in two open-label. Single-Arm Clinical Studies Adv Ther 40(4):1530–1545. https://doi.org/10.1007/s12325-022-02412-x. (PMID: 10.1007/s12325-022-02412-x36719566)
Ewert A, Rehberg M, Schlingmann KP, Hiort O, John-Kroegel U, Metzing O, Wühl E, Schaefer F, Kemper MJ, Derichs U, Richter-Unruh A, Patzer L, Albers N, Dunstheimer D, Haberland H, Heger S, Schröder C, Jorch N, Schmid E, Staude H, Weitz M, Freiberg C, Leifheit-Nestler M, Zivicnjak M, Schnabel D, Haffner D (2023) Effects of burosumab treatment on mineral metabolism in children and adolescents with X-linked hypophosphatemia. J Clin Endocrinol Metab 108(10):e998–e1006. https://doi.org/10.1210/clinem/dgad223. (PMID: 10.1210/clinem/dgad22337097907)
Levy-Shraga Y, Levi S, Regev R, Gal S, Brener A, Lebenthal Y, Gillis D, Strich D, Zung A, Cleper R, Borovitz Y, Bello R, Tenenbaum A, Zadik Z, Davidovits M, Zeitlin L, Tiosano D (2023) Linear growth of children with X-linked hypophosphatemia treated with burosumab: a real-life observational study. Eur J Pediatr 182(11):5191–5202. https://doi.org/10.1007/s00431-023-05190-y. (PMID: 10.1007/s00431-023-05190-y37707589)
Crotti C, Zucchi F, Alfieri C, Caporali R, Varenna M (2023) Long-term use of burosumab for the treatment of tumor-induced osteomalacia. Osteoporos Int 34(1):201–206. https://doi.org/10.1007/s00198-022-06516-6. (PMID: 10.1007/s00198-022-06516-635925260)
Jan de Beur SM, Miller PD, Weber TJ, Peacock M, Insogna K, Kumar R, Rauch F, Luca D, Cimms T, Roberts MS, San Martin J, Carpenter TO (2021) Burosumab for the treatment of tumor-induced osteomalacia. J Bone Miner Res 36(4):627–635. https://doi.org/10.1002/jbmr.4233. (PMID: 10.1002/jbmr.423333338281)
Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W, Linglart A, Padidela R, Van’t Hoff W, Mao M, Chen CY, Skrinar A, Kakkis E, San Martin J, Portale AA (2018) Burosumab therapy in children with X-linked hypophosphatemia. N Engl J Med 378(21):1987–1998. https://doi.org/10.1056/NEJMoa1714641. (PMID: 10.1056/NEJMoa171464129791829)
Seefried L, Bravenboer N, Imel EA (2023) Editorial: rare musculoskeletal disorders: disease mechanisms and therapies. Front Endocrinol (Lausanne) 14:1215941. https://doi.org/10.3389/fendo.2023.1215941. (PMID: 10.3389/fendo.2023.121594137293483)
Perwad F, Portale AA (2019) Burosumab therapy for X-linked hypophosphatemia and therapeutic implications for CKD. Clin J Am Soc Nephrol CJASN 14(7):1097. https://doi.org/10.2215/CJN.15201218. (PMID: 10.2215/CJN.1520121831171590)
Verbueken D, Moe OW (2022) Strategies to lower fibroblast growth factor 23 bioactivity. Nephrol Dial Transplant 37(10):1800–1807. https://doi.org/10.1093/ndt/gfab012. (PMID: 10.1093/ndt/gfab01233502502)
معلومات مُعتمدة: PICT 2018-1809 Fondo para la Investigación Científica y Tecnológica (FONCYT)
فهرسة مساهمة: Keywords: Anti-FGF23 therapy; Canonical pathway; FGFRs; Local regulators; Non-canonical pathway; Pathophysiological conditions; Systemic regulators
تواريخ الأحداث: Date Created: 20240406 Latest Revision: 20240406
رمز التحديث: 20240407
DOI: 10.1007/s11010-024-04982-6
PMID: 38581553
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4919
DOI:10.1007/s11010-024-04982-6