دورية أكاديمية

Molecular Dynamic Simulations to Determine Individualized Therapy: Tetrabenazine for the GNAO1 Encephalopathy E246K Variant.

التفاصيل البيبلوغرافية
العنوان: Molecular Dynamic Simulations to Determine Individualized Therapy: Tetrabenazine for the GNAO1 Encephalopathy E246K Variant.
المؤلفون: Falsaperla R; Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico 'Rodolico-San Marco', San Marco Hospital, University of Catania, Catania, Italy. raffaelefalsaperla@hotmail.com.; Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, 'Rodolico-San Marco', San Marco Hospital, Catania, Italy. raffaelefalsaperla@hotmail.com.; Pediatric Clinic, University of Ferrara, Ferrara, Italy. raffaelefalsaperla@hotmail.com., Sortino V; Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, 'Rodolico-San Marco', San Marco Hospital, Catania, Italy., Marino SD; Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, 'Rodolico-San Marco', San Marco Hospital, Catania, Italy., Collotta AD; Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, 'Rodolico-San Marco', San Marco Hospital, Catania, Italy.; Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy., Gammeri C; Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy., Sipala FM; Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy., Volti GL; Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95125, Catania, Italy., Ruggieri M; Unit of Clinical Pediatrics, Unit of Rare Diseases, AOU 'Policlinico', PO 'G. Rodolico', University of Catania, Catania, Italy., Ronsisvalle S; Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
المصدر: Molecular diagnosis & therapy [Mol Diagn Ther] 2024 May; Vol. 28 (3), pp. 329-337. Date of Electronic Publication: 2024 Apr 06.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Adis, Springer International Country of Publication: New Zealand NLM ID: 101264260 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1179-2000 (Electronic) Linking ISSN: 11771062 NLM ISO Abbreviation: Mol Diagn Ther Subsets: MEDLINE
أسماء مطبوعة: Publication: Auckland : Adis, Springer International
Original Publication: Auckland, N.Z. : Adis International, c2006-
مواضيع طبية MeSH: Molecular Dynamics Simulation* , GTP-Binding Protein alpha Subunits, Gi-Go*/genetics , GTP-Binding Protein alpha Subunits, Gi-Go*/metabolism , Tetrabenazine*/therapeutic use, Humans ; Mutation ; Brain Diseases/drug therapy ; Brain Diseases/genetics ; Precision Medicine/methods ; Signal Transduction/drug effects
مستخلص: Introduction: GNAO1 encephalopathy is characterized by severe hypotonia, psychomotor retardation, epilepsy, and movement disorders. Genetic variations in GNAO1 have been linked to neurological symptoms including movement disorders like dystonia. The correlation between the E246K mutation in the Gα subunit and aberrant signal transduction of G proteins has been established but no data are reported regarding the efficacy of medical treatment with tetrabenazine.
Methods: Molecular modeling studies were performed to elucidate the molecular mechanisms underlying this mutation. We developed drug efficacy models using molecular dynamic simulations that replicated the behavior of wild-type and mutated proteins in the presence or absence of ligands.
Results and Discussion: We demonstrated that the absence of the mutation leads to normal signal transduction upon receptor activation by the endogenous ligand, but not in the presence of tetrabenazine. In contrast, the presence of the mutation resulted in abnormal signal transduction in the presence of the endogenous ligand, which was corrected by the drug tetrabenazine. Tetrabenazine was identified as a promising therapeutic option for pediatric patients suffering from encephalopathy due to an E246K mutation in the GNAO1 gene validated through molecular dynamics. This is a potential first example of the use of this technique in a rare neurological pediatric disease.
(© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Brogi S, Ramalho TC, Kuca K, Medina-Franco JL, Valko M. Editorial: In silico methods for drug design and discovery. vol. 8, frontiers in chemistry. Frontiers Media S.A.; 2020.
Bissantz C, Kuhn B, Stahl M. A medicinal chemist’s guide to molecular interactions. Vol. 53. J Med Chem. American Chemical Society; 2010. pp. 5061–84.
Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov. Taylor and Francis Ltd. 2018;13:23–37.
Kumar S, Kumar S. Molecular docking: a structure-based approach for drug repurposing. In: In silico drug design: repurposing techniques and methodologies. Elsevier; 2019. pp. 161–89.
Pradeepkiran JA, Munikumar M, Hema K, Natarajan P, Sainath SB. Molecular docking and dynamics simulations of novel drug targets. In: Brucella Melitensis. Elsevier; 2021. pp. 79–131.
Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput Biol. 2009;5(7).
Chen H, Fu W, Wang Z, Wang X, Lei T, Zhu F, et al. Reliability of docking-based virtual screening for GPCR ligands with homology modeled structures: a case study of the angiotensin II type I receptor. ACS Chem Neurosci. 2019;10(1):677–89. (PMID: 10.1021/acschemneuro.8b0048930265513)
Danti FR, Galosi S, Romani M, Montomoli M, Carss KJ, Raymond FL, et al. GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome. Neurol Genet. 2017;3(2): e143. (PMID: 10.1212/NXG.0000000000000143283574115362187)
Feng H, Khalil S, Neubig RR, Sidiropoulos C. A mechanistic review on GNAO1-associated movement disorder. Neurobiol Dis. 2018;116:131–41. (PMID: 10.1016/j.nbd.2018.05.00529758257)
Schorling D, Dietel T, Evers C, Hinderhofer K, Korinthenberg R, Ezzo D, et al. Expanding phenotype of de novo mutations in GNAO1: four new cases and review of literature. Neuropediatrics. 2017;48(05):371–7. (PMID: 10.1055/s-0037-160397728628939)
Egaña LA, Cuevas RA, Baust TB, Parra LA, Leak RK, Hochendoner S, et al. Physical and functional interaction between the dopamine transporter and the synaptic vesicle protein synaptogyrin-3. J Neurosci. 2009;29(14):4592–604. (PMID: 10.1523/JNEUROSCI.4559-08.2009193572842846176)
TETRABENAZINE-tetrabenazine tablet, coated Camber Pharmaceuticals , Inc.
Hong M, Roots EJ, Jenner P, Marsden CD. The effect of long-term treatment with amine-depleting drugs or chlorpromazine on α-adrenoreceptors and 5-HT2 receptors in the brain of the rat. Neuropharmacology. 1988;27(5):519–27. (PMID: 10.1016/0028-3908(88)90135-92899303)
Ananth AL, Robichaux-Viehoever A, Kim YM, Hanson-Kahn A, Cox R, Enns GM, et al. Clinical course of six children with GNAO1 mutations causing a severe and distinctive movement disorder. Pediatr Neurol. 2016;59:81–4. (PMID: 10.1016/j.pediatrneurol.2016.02.01827068059)
Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990;348(6297):125–32. (PMID: 10.1038/348125a02122258)
Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2008;9(1):60–71. (PMID: 10.1038/nrm229918043707)
Lin C, Koval A, Tishchenko S, Gabdulkhakov A, Tin U, Solis GP, et al. Double suppression of the Gα protein activity by RGS proteins. Mol Cell. 2014;53(4):663–71. (PMID: 10.1016/j.molcel.2014.01.01424560274)
Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, signaling, and physiological functions of G-proteins. J Mol Biol. 2016;428(19):3850–68. (PMID: 10.1016/j.jmb.2016.08.002275153975023507)
Larasati YA, Savitsky M, Koval A, Solis GP, Valnohova J, Katanaev VL. Restoration of the GTPase activity and cellular interactions of Gα o mutants by Zn 2+ in GNAO1 encephalopathy models [Internet]. Sci Adv. 8;2022. http://www.proteinatlas.org .
Huff RM, Axton JM, Neer EJ. Physical and immunological characterization of a guanine nucleotide-binding protein purified from bovine cerebral cortex. J Biol Chem. 1985;260(19):10864–71. (PMID: 10.1016/S0021-9258(19)85162-13928624)
Valenzuela D, Han X, Mende U, Fankhauser C, Mashimo H, Huang P, et al. Gαo is necessary for muscarinic regulation of Ca2+ channels in mouse heart. Proc Natl Acad Sci. 1997;94(5):1727–32. (PMID: 10.1073/pnas.94.5.1727905084619984)
Jiang M, Gold MS, Boulay G, Spicher K, Peyton M, Brabet P, et al. Multiple neurological abnormalities in mice deficient in the G protein Go. Proc Natl Acad Sci. 1998;95(6):3269–74. (PMID: 10.1073/pnas.95.6.3269950125219731)
Silachev D, Koval A, Savitsky M, Padmasola G, Quairiaux C, Thorel F, et al. Mouse models characterize GNAO1 encephalopathy as a neurodevelopmental disorder leading to motor anomalies: from a severe G203R to a milder C215Y mutation. Acta Neuropathol Commun. 2022;10(1):9. (PMID: 10.1186/s40478-022-01312-z350905648796625)
Akamine S, Okuzono S, Yamamoto H, Setoyama D, Sagata N, Ohgidani M, et al. GNAO1 organizes the cytoskeletal remodeling and firing of developing neurons. FASEB J. 2020;34(12):16601–21. (PMID: 10.1096/fj.202001113R33107105)
Ghahremani MH, Cheng P, Lembo PMC, Albert PR. Distinct roles for Gαi2, Gαi3, and Gβγ in modulation of forskolin- or Gs-mediated cAMP accumulation and calcium mobilization by dopamine D2S receptors. J Biol Chem. 1999;274(14):9238–45. (PMID: 10.1074/jbc.274.14.923810092597)
Feng H, Sjögren B, Karaj B, Shaw V, Gezer A, Neubig RR. Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations. Neurology. 2017;89(8):762–70. (PMID: 10.1212/WNL.0000000000004262287474485580866)
Schirinzi T, Garone G, Travaglini L, Vasco G, Galosi S, Rios L, et al. Phenomenology and clinical course of movement disorder in GNAO1 variants: Results from an analytical review. Parkinsonism Relat Disord. 2019;61:19–25. (PMID: 10.1016/j.parkreldis.2018.11.01930642806)
Kelly M, Park M, Mihalek I, Rochtus A, Gramm M, Pérez-Palma E, et al. Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate–binding region. Epilepsia. 2019;60(3):406–18. (PMID: 10.1111/epi.14653306822246452443)
Axeen E, Bell E, Robichaux Viehoever A, Schreiber JM, Sidiropoulos C, Goodkin HP. Results of the First GNAO1-related neurodevelopmental disorders caregiver survey. Pediatr Neurol. 2021;121:28–32. (PMID: 10.1016/j.pediatrneurol.2021.05.00534139551)
Knight KM, Ghosh S, Campbell SL, Lefevre TJ, Olsen RHJ, Smrcka AV, et al. A universal allosteric mechanism for G protein activation. Mol Cell. 2021;81(7):1384-1396.e6. (PMID: 10.1016/j.molcel.2021.02.002336361268026646)
Philipp M, Brede M, Hein L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol. 2002;283(2):R287–95. (PMID: 10.1152/ajpregu.00123.200212121839)
Sayer C, Lumsden DE, Kaminska M, Lin JP. Clonidine use in the outpatient management of severe secondary dystonia. Eur J Paediatr Neurol. 2017;21(4):621–6. (PMID: 10.1016/j.ejpn.2017.03.00128372940)
Bellows S, Jankovic J. Treatment of dystonia and tics. Clin Park Relat Disord. 2020;2:12–9. (PMID: 34316614)
Szot P, Lester M, Laughlin ML, Palmiter RD, Liles LC, Weinshenker D. The anticonvulsant and proconvulsant effects of α2-adrenoreceptor agonists are mediated by distinct populations of α2a-adrenoreceptors. Neuroscience. 2004;126(3):795–803. (PMID: 10.1016/j.neuroscience.2004.04.03015183527)
Sitnikova E, Rutskova E, Smirnov K. Alpha2-adrenergic receptors as a pharmacological target for spike-wave epilepsy. Int J Mol Sci. 2023;24(2):1477. (PMID: 10.3390/ijms24021477366749929862736)
Bhunia SS, Saxena AK. Efficiency of homology modeling assisted molecular docking in g-protein coupled receptors. Curr Top Med Chem. 2021;21(4):269–94. (PMID: 10.2174/156802662066620090816525032901584)
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank, vol. 28. Nucl Acids Res. 2000. http://www.rcsb.org/pdb/status.html.
Xu J, Cao S, Hübner H, Weikert D, Chen G, Lu Q, et al. Structural insights into ligand recognition, activation, and signaling of the α 2A adrenergic receptor. Sci Adv. 2022; 8.
Bauer MR, Mackey MD. Electrostatic complementarity as a fast and effective tool to optimize binding and selectivity of protein-ligand complexes. J Med Chem. 2019;62(6):3036–50. (PMID: 10.1021/acs.jmedchem.8b0192530807144)
Kuhn M, Firth-Clark S, Tosco P, Mey ASJS, MacKey M, Michel J. Assessment of binding affinity via alchemical free-energy calculations. J Chem Inf Model. 2020;60(6):3120–30. (PMID: 10.1021/acs.jcim.0c0016532437145)
National Center for Biotechnology Information. PubChem compound summary for CID 5816, epinephrine. https://pubchem.ncbi.nlm.nih.gov/compound/Epinephrine . Accessed 26 Oct 2023.
National Center for Biotechnology Information. PubChem compound summary for CID 6018, tetrabenazine. https://pubchem.ncbi.nlm.nih.gov/compound/Tetrabenazine . Accessed 26 Oct 2023.
National Center for Biotechnology Information. PubChem compound summary for CID 5572, trihexyphenidyl. https://pubchem.ncbi.nlm.nih.gov/compound/Trihexyphenidyl . Accessed 26 Oct 2023.
Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucl Acids Res. 2012;40(D1).
Case DA, Cheatham Iii TE, Darden T, Gohlke H, Luo R, Merz KM, et al. The amber biomolecular simulation programs [internet]. http://amber.scripps.edu .
Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci. 2013;3(2):198–210. (PMID: 10.1002/wcms.1121)
Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV. Bernardi RC, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. 2020;153(4).
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. 1996.
National Center for Biotechnology Information. PubChem Compound Summary for CID 6018, Tetrabenazine. 2024. https://pubchem.ncbi.nlm.nih.gov/compound/Tetrabenazine . Retrieved 18 Feb 2024.
المشرفين على المادة: EC 3.6.5.1 (GTP-Binding Protein alpha Subunits, Gi-Go)
Z9O08YRN8O (Tetrabenazine)
0 (GNAO1 protein, human)
تواريخ الأحداث: Date Created: 20240406 Date Completed: 20240503 Latest Revision: 20240507
رمز التحديث: 20240507
DOI: 10.1007/s40291-024-00706-0
PMID: 38581611
قاعدة البيانات: MEDLINE
الوصف
تدمد:1179-2000
DOI:10.1007/s40291-024-00706-0