دورية أكاديمية

A true facultative carnivore? Effects of replacing ground chicken carcasses with soybean meal on the growth of captive broad-snouted caiman (Caiman latirostris) and its economics implications.

التفاصيل البيبلوغرافية
العنوان: A true facultative carnivore? Effects of replacing ground chicken carcasses with soybean meal on the growth of captive broad-snouted caiman (Caiman latirostris) and its economics implications.
المؤلفون: Hilevski S; Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral (ICIVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.; Laboratorio de Zoología Aplicada, Gobierno de Santa Fe, Facultad Humanidades y Ciencias, Universidad Nacional del Litoral, Santa Fe, Argentina., Manolis C; Wildlife Management International, Karama, Northern Territory, Australia., Siroski P; Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral (ICIVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.; Laboratorio de Zoología Aplicada, Gobierno de Santa Fe, Facultad Humanidades y Ciencias, Universidad Nacional del Litoral, Santa Fe, Argentina.
المصدر: Journal of animal physiology and animal nutrition [J Anim Physiol Anim Nutr (Berl)] 2024 Jul; Vol. 108 (4), pp. 1134-1141. Date of Electronic Publication: 2024 Apr 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Country of Publication: Germany NLM ID: 101126979 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-0396 (Electronic) Linking ISSN: 09312439 NLM ISO Abbreviation: J Anim Physiol Anim Nutr (Berl) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Berlin] : Blackwell Science, c2001-
مواضيع طبية MeSH: Animal Feed*/analysis , Alligators and Crocodiles*/physiology , Diet*/veterinary , Animal Nutritional Physiological Phenomena* , Glycine max* , Chickens*/growth & development , Chickens*/physiology, Animals
مستخلص: A specific diet for broad-snouted caiman, Caiman latirostris has not been designed despite the value of farm-raised caiman as an aquaculture product. To fill this gap, the objectives of this study were to evaluate the performance dietary replacement of ground chicken carcasses by of soybean meal (SM) as diet complement for C. latirostris. We conducted a 3-month growth trial to determine effects of graded levels of dietary SM on caiman growth as measured by increase in body length, body weight gain, food consumption (FC) and food conversion rate (FCR). Forty-eight hatchling caimans were fed with diets, composed primarily of practical feed ingredients, with 0, 25, or 40% dietary SM. Diets were fed three times per week for 90 days under temperature controlled. Body lengths and body weights were measured at 30-day intervals, and FC samples were taken between the 31-60-day interval. The results of this study indicate that the inclusion of SM in the diet of C. latirostris at levels of 25% increases in body length, body weight gain, FC and improve the FCR indicated that a concentration of 25% dietary SM (as fed) was adequate for growth of caimans under the conditions of this study. Results suggest that SM have a real nutritional contribution in the diet of broad-snouted caiman and can be used as an ingredient of the diet of the crocodilians raised in captivity, reducing production costs for sustainable use and conservation programs of this species.
(© 2024 Wiley‐VCH GmbH. Published by John Wiley & Sons Ltd.)
References: Aleixo, V., Cotta, T., Logato, P., Gomes, A., & Fialho, E. (2002). Efeitos da adiçao de diferentes teores de farelo de soja na dieta sobre o desenvolvimento de filhotes de jacare do pantanal (Caiman yacare). CiencAgrotéc, 26, 411–417.
Allen, D., Miller, C., & Phelps, R. (2005). Replacement of fish meal with soybean meal in the production diets of juvenile red snapper, Lutjanus campechanus. Journal of World Aquaculture Society, 36(1), 114–119.
Bagatto, B., Crossley, D. A., Altimiras, J., Elsey, R. M., & Hicks, J. W. (2012). Physiological variability in yearling alligators: Clutch differences at rest and during activity. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 162, 44–50.
Blackman, S. A., Obendorf, R. L., & Leopold, A. C. (1992). Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiology, 100(1), 225–230.
Brito, S., Andrade, D., & Abe, A. (2002). Do caimans eat fruit? Herpetological Natural History, 9(1), 95–96.
Coulson, R. A., & Coulson, T. D. (1986). Effect of temperature on the rates of digestion, amino acid absorption and assimilation in the Alligator. Comparative Biochemistry and Physiology Part A: Physiology, 83, 585–588.
Coulson, R. A., Coulson, T. D., Herbert, J. D., & Staton, M. A. (1987). Protein nutrition in the Alligator. Comparative Biochemistry and Physiology Part A: Physiology, 87(2), 449–459.
Coulson, R. A., & Hernandez, T. (1964). Biochemistry of the Alligator. A Study of metabolism in slow motion. Louisiana State University Press.
Coulson, R. A., & Hernandez, T. (1974). Intermediary metabolism of reptiles. In M. Florkin, & B. Scheer (Eds.), Chemical Zoology (pp. 217–247). Academic Press.
Coulson, R. A., & Hernandez, T. (1983). Alligator metabolism: Studies on chemical reactions in vivo. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 74(1), 1–175.
De Blas, C., García‐Rebollar, P., Gorrachategui, M., & Mateos, G. (2019). Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos (fourth ed.). Fundación Española para el Desarrollo de la Nutrición Animal.
DiGeronimo, P. M., DiGirolamo, N., Crossland, N. A., del Piero, F., Reigh, R. C., & Nevarez, J. G. (2017). Effects of plant protein diets on the health of farmed American Alligators (Alligator mississippiensis). Journal of Zoo and Wildlife Medicine, 48, 131–135.
Francis, M., Morel, P. C. H., Wilkinson, B. H. P., & Wester, T. J. (2017). Alginate increases water stability whilst maintaining diet digestibility in farmed saltwater crocodiles (Crocodylus porosus). Journal of Animal Science, 95, 820–826.
Garnett, S., & Murray, R. (1986). Parameters Affecting the Growth of the Estuarine Crocodile, Crocodylus‐Porosus, in Captivity. Australian Journal of Zoology, 34, 211–223.
Hilevski, S., Cordero, T., & Siroski, P. (2022). Do crocodilians eat plant material? A review of plant nutrients consumed by captive crocodilians. South American Journal of Herpetology, 24(1), 19–25.
Hilevski, S., & Siroski, P. (2021). A novel laxative method for crocodilians and digestibility of soybean (Glicine max) in broad‐snouted caiman (Caiman latirostris). Aquaculture, 533, 736137.
Huchzermeyer, F. (2003). Crocodiles: Biology, husbandry and diseases. CABI Publishing.
Isberg, S. (2007). Nutrition of juvenile saltwater crocodiles (Crocodylus porosus) in commercial production systems. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2, 1–11.
Larriera, A., Aguinaga, M., & Del Barco, D. (1990). Observaciones sobre el crecimiento de Caiman latirostris (Daudin, 1802), a diferentes temperaturas (Crocodylia: Alligatoridae). Amphibia Reptilia, 1, 115–117.
Leeds, A. (1982). Modification of intestinal absorption by dietary fiber and fiber components. In G. V. Vahouny, & D. Rritchevsky (Eds.), Dietary fiber in health and disease (pp. 53–71). Springer.
Luchini, L., & Wicki, G. (2007). Consideraciones sobre insumos utilizados en los alimentos para organismos acuáticos bajo cultivo. Información básica, Ministerio de agricultura, Ganadería y Pesca, Buenos Aires.
Luxmoore, R., Barzdo, J., Broad, S., & Jones, D. (1985). A directory of crocodile farming operations. University Press. International Union for Conservation of Nature and Natura Resources.
Manolis, S. C., Webb, G. J. W., Barker, S. G., & Lippai, C. (1989). Nutrition of crocodiles, Proceedings of the Intensive Tropical Animal Production Seminar (pp. 19–20).
Martínez del Rio, C., & Stevens, B. R. (1988). Intestinal brush border membrane‐bound disaccharidases of the American alligator, Alligator mississippiensis. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 91(4), 751–754.
McGoogan, B., & Gatlin, D. (1997). Effects of replacing fish meal with soybean meal in diets for red drum Sciuenops ocellatus and potential for palatability enhancement. Journal of World Aquaculture Society, 28(4), 374–385.
McNease, L., & Joanen, T. (1977). Alligator diets in relation to marsh salinity. Annual Meeting of the Southeastern Association of Game and Fish Commissioners, 31, 36–40.
Melstrom, K. M., & Irmis, R. B. (2019). Repeated evolution of herbivorous crocodyliforms during the age of dinosaurs. Current Biology, 29(14), 2389–2395.e3.
Ortiz, A. (2009). Implicaciones de la utilización de altos niveles de soja en avicultura, XLVI Simposium científico de avicultura.
Parachú‐Marco, M., Piña, C., & Larriera, A. (2009). Food conversion rate (FCR) in Caiman latirostris resulted more efficient at higher temperatures. Interciencia, 34(6), 428–431.
Peucker, S. K. J., & Jack, R. H. 2006. Crocodile farming research: On‐farm research of pelleted feed for crocodiles. A report for the rural industries research and development corporation. Rural Industries Research and Development Corporation, RIRDC Publication No. 06/016, Canberra.
Pinheiro, M. S., & Lavorenti, A. (2001). Growth of broad‐nosed caiman, Caiman latirostris (Daudin, 1802) hatchlings, fed with diets of animal origin. Brazilian Journal of Biology, 61, 421–429.
Platt, S. G., Elsey, R. M., Liu, H., Rainwater, T. R., Nifong, J. C., Rosenblatt, A. E., Heithaus, M. R., & Mazzotti, F. J. (2013). Frugivory and seed dispersal by crocodilians: an overlooked form of saurochory? Journal of Zoology, 291(2), 87–99.
Read, M. (2000). Aspects of protein utilization and metabolism by post‐hatchling estuarine crocodiles (Crocodylus porosus Schneider) [PhD dissertation]. University of Queensland, Queensland.
Reigh, R., & Williams, M. (2014). Improvement of diets for alligator aquaculture. Journal of the World Aquaculture Society, 45(3), 64–65.
Reigh, R., & Williams, M. (2016). Feed intake and length‐weight relationship of captive American alligator fed a compounded diet. Journal of the World Aquaculture Society, 47(1), 63–65.
Reigh, R. C., & Williams, M. B. (2013). Amino acid availability of selected plant products and fish meal for American alligator (Alligator mississippiensis). Aquaculture, 412‐413, 81–87.
Reigh, R. C., & Williams, M. B. (2018). Plant products in compounded diets are effectively utilized by American alligator, Alligator mississippiensis. Journal of the World Aquaculture Society, 49(6), 1014–1018.
Richardson, K., Webb, G., & Manolis, C. (2002). Crocodiles: Inside out: A guide to the crocodilians and their functional morphology. Surrey Beatty and Sons.
Rodríguez, M., Clavijo, L., López, F., Gerardino, A., Ceballos, F., Arboleda, J., Silva, A., & Guerrero, P. (1996). Avances en la nutrición de Caiman crocodilus, Proceedings of 13th Working Meeting of the Crocodile Specialist Group, Crocodiles (pp. 347–354). IUCN/SSC Crocodile Specialist Group, Gland.
Shimeno, S., Hosokawa, H., Hirata, H., & Takeda, M. (1977). Comparative studies on carbohydrate metabolism of yellowtail and carp. Nippon Suisan Gakkaishi, 43, 213–217.
Sosa, G., Pérez, E., & Guerra, L. (2011). Resultados de crecimiento de cocodrilo cubano (Crocodylus rhombifer) bajo condiciones de alimentación diferentes en el criadero de ciénaga de Zapata. Cubazoo, 24, 11–14.
Spannhof, L., & Plantikow, H. (1983). Studies on carbohydrate digestion in rainbow trout. Aquaculture, 30(1–4), 95–108.
Staton, M., Edwards, H., Brisbin, L., McNease, L., & Joanen, T. (1990). Dietary energy sources for the American Alligator, Alligator mississippiensis (Daudin). Aquaculture, 89, 245–261.
Staton, M., Edwards, H., Edwards, L., Brisbin, L., Joanen, T., & McNease, L. (1990). Protein and energy relationships in the diet of the American Alligator (Alligator mississippiensis). The Journal of Nutrition, 120(7), 775–785.
Tracy, C. R., McWhorter, T. J., Gienger, C. M., Starck, J. M., Medley, P., Manolis, S. C., Webb, G. J. W., & Christian, K. A. (2015). Alligators and crocodiles have high paracellular absorption of nutrients but differ in digestive morphology and physiology. Integrative and Comparative Biology, 55(6), 986–1004.
Webb, G., Manolis, S., & Buckworth, R. (1983). Crocodylus johnstoni in a controlled environment chamber: a raising trial. Wildlife Research, 10, 421–432.
Webb, G., Reynolds, S., Brien, M., Manolis, C., Brien, J., & Christian, K. (2013). Improving Australia's crocodile industry productivity. Nutritional requirements, feed ingredients and feeding systems for farmed crocodile production. RIRDC.
Wicki, G., Wiltchiensky, E., & Luchini, L. (2003). Ensilados de vísceras de pescado de rio como fuente de proteína y formulas alimentarias a base de harina de soja, o de algodón, o de pluma; como sustituto total o parcial de la harina de pescado en el engorde final de pacu, en el noreste argentino, in: Acuacuba, La Habana.
معلومات مُعتمدة: This work was supported by IUCN-SSC Crocodile Specialist Group for the "Student Research Assistance Scheme"; Hernan Schneider and AVIGAN S.A., and PICT 2016-3256
فهرسة مساهمة: Keywords: alligator; crocodile; farms; nutrition; plant nutrients
تواريخ الأحداث: Date Created: 20240409 Date Completed: 20240708 Latest Revision: 20240708
رمز التحديث: 20240709
DOI: 10.1111/jpn.13958
PMID: 38591221
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-0396
DOI:10.1111/jpn.13958